Misplaced Pages

Mittag-Leffler polynomials

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Mathematical functions Not to be confused with Mittag-Leffler function.

In mathematics, the Mittag-Leffler polynomials are the polynomials gn(x) or Mn(x) studied by Mittag-Leffler (1891).

Mn(x) is a special case of the Meixner polynomial Mn(x;b,c) at b = 0, c = -1.

Definition and examples

Generating functions

The Mittag-Leffler polynomials are defined respectively by the generating functions

n = 0 g n ( x ) t n := 1 2 ( 1 + t 1 t ) x {\displaystyle \displaystyle \sum _{n=0}^{\infty }g_{n}(x)t^{n}:={\frac {1}{2}}{\Bigl (}{\frac {1+t}{1-t}}{\Bigr )}^{x}} and
n = 0 M n ( x ) t n n ! := ( 1 + t 1 t ) x = ( 1 + t ) x ( 1 t ) x = exp ( 2 x  artanh  t ) . {\displaystyle \displaystyle \sum _{n=0}^{\infty }M_{n}(x){\frac {t^{n}}{n!}}:={\Bigl (}{\frac {1+t}{1-t}}{\Bigr )}^{x}=(1+t)^{x}(1-t)^{-x}=\exp(2x{\text{ artanh }}t).}

They also have the bivariate generating function

n = 1 m = 1 g n ( m ) x m y n = x y ( 1 x ) ( 1 x y x y ) . {\displaystyle \displaystyle \sum _{n=1}^{\infty }\sum _{m=1}^{\infty }g_{n}(m)x^{m}y^{n}={\frac {xy}{(1-x)(1-x-y-xy)}}.}

Examples

The first few polynomials are given in the following table. The coefficients of the numerators of the g n ( x ) {\displaystyle g_{n}(x)} can be found in the OEIS, though without any references, and the coefficients of the M n ( x ) {\displaystyle M_{n}(x)} are in the OEIS as well.

n gn(x) Mn(x)
0 1 2 {\displaystyle {\frac {1}{2}}} 1 {\displaystyle 1}
1 x {\displaystyle x} 2 x {\displaystyle 2x}
2 x 2 {\displaystyle x^{2}} 4 x 2 {\displaystyle 4x^{2}}
3 1 3 ( x + 2 x 3 ) {\displaystyle {\frac {1}{3}}(x+2x^{3})} 8 x 3 + 4 x {\displaystyle 8x^{3}+4x}
4 1 3 ( 2 x 2 + x 4 ) {\displaystyle {\frac {1}{3}}(2x^{2}+x^{4})} 16 x 4 + 32 x 2 {\displaystyle 16x^{4}+32x^{2}}
5 1 15 ( 3 x + 10 x 3 + 2 x 5 ) {\displaystyle {\frac {1}{15}}(3x+10x^{3}+2x^{5})} 32 x 5 + 160 x 3 + 48 x {\displaystyle 32x^{5}+160x^{3}+48x}
6 1 45 ( 23 x 2 + 20 x 4 + 2 x 6 ) {\displaystyle {\frac {1}{45}}(23x^{2}+20x^{4}+2x^{6})} 64 x 6 + 640 x 4 + 736 x 2 {\displaystyle 64x^{6}+640x^{4}+736x^{2}}
7 1 315 ( 45 x + 196 x 3 + 70 x 5 + 4 x 7 ) {\displaystyle {\frac {1}{315}}(45x+196x^{3}+70x^{5}+4x^{7})} 128 x 7 + 2240 x 5 + 6272 x 3 + 1440 x {\displaystyle 128x^{7}+2240x^{5}+6272x^{3}+1440x}
8 1 315 ( 132 x 2 + 154 x 4 + 28 x 6 + x 8 ) {\displaystyle {\frac {1}{315}}(132x^{2}+154x^{4}+28x^{6}+x^{8})} 256 x 8 + 7168 x 6 + 39424 x 4 + 33792 x 2 {\displaystyle 256x^{8}+7168x^{6}+39424x^{4}+33792x^{2}}
9 1 2835 ( 315 x + 1636 x 3 + 798 x 5 + 84 x 7 + 2 x 9 ) {\displaystyle {\frac {1}{2835}}(315x+1636x^{3}+798x^{5}+84x^{7}+2x^{9})} 512 x 9 + 21504 x 7 + 204288 x 5 + 418816 x 3 + 80640 x {\displaystyle 512x^{9}+21504x^{7}+204288x^{5}+418816x^{3}+80640x}
10 1 14175 ( 5067 x 2 + 7180 x 4 + 1806 x 6 + 120 x 8 + 2 x 10 ) {\displaystyle {\frac {1}{14175}}(5067x^{2}+7180x^{4}+1806x^{6}+120x^{8}+2x^{10})} 1024 x 10 + 61440 x 8 + 924672 x 6 + 3676160 x 4 + 2594304 x 2 {\displaystyle 1024x^{10}+61440x^{8}+924672x^{6}+3676160x^{4}+2594304x^{2}}

Properties

The polynomials are related by M n ( x ) = 2 n ! g n ( x ) {\displaystyle M_{n}(x)=2\cdot {n!}\,g_{n}(x)} and we have g n ( 1 ) = 1 {\displaystyle g_{n}(1)=1} for n 1 {\displaystyle n\geqslant 1} . Also g 2 k ( 1 2 ) = g 2 k + 1 ( 1 2 ) = 1 2 ( 2 k 1 ) ! ! ( 2 k ) ! ! = 1 2 1 3 ( 2 k 1 ) 2 4 ( 2 k ) {\displaystyle g_{2k}({\frac {1}{2}})=g_{2k+1}({\frac {1}{2}})={\frac {1}{2}}{\frac {(2k-1)!!}{(2k)!!}}={\frac {1}{2}}\cdot {\frac {1\cdot 3\cdots (2k-1)}{2\cdot 4\cdots (2k)}}} .

Explicit formulas

Explicit formulas are

g n ( x ) = k = 1 n 2 k 1 ( n 1 n k ) ( x k ) = k = 0 n 1 2 k ( n 1 k ) ( x k + 1 ) {\displaystyle g_{n}(x)=\sum _{k=1}^{n}2^{k-1}{\binom {n-1}{n-k}}{\binom {x}{k}}=\sum _{k=0}^{n-1}2^{k}{\binom {n-1}{k}}{\binom {x}{k+1}}}
g n ( x ) = k = 0 n 1 ( n 1 k ) ( k + x n ) {\displaystyle g_{n}(x)=\sum _{k=0}^{n-1}{\binom {n-1}{k}}{\binom {k+x}{n}}}
g n ( m ) = 1 2 k = 0 m ( m k ) ( n 1 + m k m 1 ) = 1 2 k = 0 min ( n , m ) m n + m k ( n + m k k , n k , m k ) {\displaystyle g_{n}(m)={\frac {1}{2}}\sum _{k=0}^{m}{\binom {m}{k}}{\binom {n-1+m-k}{m-1}}={\frac {1}{2}}\sum _{k=0}^{\min(n,m)}{\frac {m}{n+m-k}}{\binom {n+m-k}{k,n-k,m-k}}}

(the last one immediately shows n g n ( m ) = m g m ( n ) {\displaystyle ng_{n}(m)=mg_{m}(n)} , a kind of reflection formula), and

M n ( x ) = ( n 1 ) ! k = 1 n k 2 k ( n k ) ( x k ) {\displaystyle M_{n}(x)=(n-1)!\sum _{k=1}^{n}k2^{k}{\binom {n}{k}}{\binom {x}{k}}} , which can be also written as
M n ( x ) = k = 1 n 2 k ( n k ) ( n 1 ) n k ( x ) k {\displaystyle M_{n}(x)=\sum _{k=1}^{n}2^{k}{\binom {n}{k}}(n-1)_{n-k}(x)_{k}} , where ( x ) n = n ! ( x n ) = x ( x 1 ) ( x n + 1 ) {\displaystyle (x)_{n}=n!{\binom {x}{n}}=x(x-1)\cdots (x-n+1)} denotes the falling factorial.

In terms of the Gaussian hypergeometric function, we have

g n ( x ) = x 2 F 1 ( 1 n , 1 x ; 2 ; 2 ) . {\displaystyle g_{n}(x)=x\!\cdot {}_{2}\!F_{1}(1-n,1-x;2;2).}

Reflection formula

As stated above, for m , n N {\displaystyle m,n\in \mathbb {N} } , we have the reflection formula n g n ( m ) = m g m ( n ) {\displaystyle ng_{n}(m)=mg_{m}(n)} .

Recursion formulas

The polynomials M n ( x ) {\displaystyle M_{n}(x)} can be defined recursively by

M n ( x ) = 2 x M n 1 ( x ) + ( n 1 ) ( n 2 ) M n 2 ( x ) {\displaystyle M_{n}(x)=2xM_{n-1}(x)+(n-1)(n-2)M_{n-2}(x)} , starting with M 1 ( x ) = 0 {\displaystyle M_{-1}(x)=0} and M 0 ( x ) = 1 {\displaystyle M_{0}(x)=1} .

Another recursion formula, which produces an odd one from the preceding even ones and vice versa, is

M n + 1 ( x ) = 2 x k = 0 n / 2 n ! ( n 2 k ) ! M n 2 k ( x ) {\displaystyle M_{n+1}(x)=2x\sum _{k=0}^{\lfloor n/2\rfloor }{\frac {n!}{(n-2k)!}}M_{n-2k}(x)} , again starting with M 0 ( x ) = 1 {\displaystyle M_{0}(x)=1} .


As for the g n ( x ) {\displaystyle g_{n}(x)} , we have several different recursion formulas:

( 1 ) g n ( x + 1 ) g n 1 ( x + 1 ) = g n ( x ) + g n 1 ( x ) {\displaystyle \displaystyle (1)\quad g_{n}(x+1)-g_{n-1}(x+1)=g_{n}(x)+g_{n-1}(x)}
( 2 ) ( n + 1 ) g n + 1 ( x ) ( n 1 ) g n 1 ( x ) = 2 x g n ( x ) {\displaystyle \displaystyle (2)\quad (n+1)g_{n+1}(x)-(n-1)g_{n-1}(x)=2xg_{n}(x)}
( 3 ) x ( g n ( x + 1 ) g n ( x 1 ) ) = 2 n g n ( x ) {\displaystyle (3)\quad x{\Bigl (}g_{n}(x+1)-g_{n}(x-1){\Bigr )}=2ng_{n}(x)}
( 4 ) g n + 1 ( m ) = g n ( m ) + 2 k = 1 m 1 g n ( k ) = g n ( 1 ) + g n ( 2 ) + + g n ( m ) + g n ( m 1 ) + + g n ( 1 ) {\displaystyle (4)\quad g_{n+1}(m)=g_{n}(m)+2\sum _{k=1}^{m-1}g_{n}(k)=g_{n}(1)+g_{n}(2)+\cdots +g_{n}(m)+g_{n}(m-1)+\cdots +g_{n}(1)}

Concerning recursion formula (3), the polynomial g n ( x ) {\displaystyle g_{n}(x)} is the unique polynomial solution of the difference equation x ( f ( x + 1 ) f ( x 1 ) ) = 2 n f ( x ) {\displaystyle x(f(x+1)-f(x-1))=2nf(x)} , normalized so that f ( 1 ) = 1 {\displaystyle f(1)=1} . Further note that (2) and (3) are dual to each other in the sense that for x N {\displaystyle x\in \mathbb {N} } , we can apply the reflection formula to one of the identities and then swap x {\displaystyle x} and n {\displaystyle n} to obtain the other one. (As the g n ( x ) {\displaystyle g_{n}(x)} are polynomials, the validity extends from natural to all real values of x {\displaystyle x} .)

Initial values

The table of the initial values of g n ( m ) {\displaystyle g_{n}(m)} (these values are also called the "figurate numbers for the n-dimensional cross polytopes" in the OEIS) may illustrate the recursion formula (1), which can be taken to mean that each entry is the sum of the three neighboring entries: to its left, above and above left, e.g. g 5 ( 3 ) = 51 = 33 + 8 + 10 {\displaystyle g_{5}(3)=51=33+8+10} . It also illustrates the reflection formula n g n ( m ) = m g m ( n ) {\displaystyle ng_{n}(m)=mg_{m}(n)} with respect to the main diagonal, e.g. 3 44 = 4 33 {\displaystyle 3\cdot 44=4\cdot 33} .

nm 1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1
2 2 4 6 8 10 12 14 16 18
3 3 9 19 33 51 73 99 129
4 4 16 44 96 180 304 476
5 5 25 85 225 501 985
6 6 36 146 456 1182
7 7 49 231 833
8 8 64 344
9 9 81
10 10

Orthogonality relations

For m , n N {\displaystyle m,n\in \mathbb {N} } the following orthogonality relation holds:

g n ( i y ) g m ( i y ) y sinh π y d y = 1 2 n δ m n . {\displaystyle \int _{-\infty }^{\infty }{\frac {g_{n}(-iy)g_{m}(iy)}{y\sinh \pi y}}dy={\frac {1}{2n}}\delta _{mn}.}

(Note that this is not a complex integral. As each g n {\displaystyle g_{n}} is an even or an odd polynomial, the imaginary arguments just produce alternating signs for their coefficients. Moreover, if m {\displaystyle m} and n {\displaystyle n} have different parity, the integral vanishes trivially.)

Binomial identity

Being a Sheffer sequence of binomial type, the Mittag-Leffler polynomials M n ( x ) {\displaystyle M_{n}(x)} also satisfy the binomial identity

M n ( x + y ) = k = 0 n ( n k ) M k ( x ) M n k ( y ) {\displaystyle M_{n}(x+y)=\sum _{k=0}^{n}{\binom {n}{k}}M_{k}(x)M_{n-k}(y)} .

Integral representations

Based on the representation as a hypergeometric function, there are several ways of representing g n ( z ) {\displaystyle g_{n}(z)} for | z | < 1 {\displaystyle |z|<1} directly as integrals, some of them being even valid for complex z {\displaystyle z} , e.g.

( 26 ) g n ( z ) = sin ( π z ) 2 π 1 1 t n 1 ( 1 + t 1 t ) z d t {\displaystyle (26)\qquad g_{n}(z)={\frac {\sin(\pi z)}{2\pi }}\int _{-1}^{1}t^{n-1}{\Bigl (}{\frac {1+t}{1-t}}{\Bigr )}^{z}dt}
( 27 ) g n ( z ) = sin ( π z ) 2 π e u z ( tanh u 2 ) n sinh u d u {\displaystyle (27)\qquad g_{n}(z)={\frac {\sin(\pi z)}{2\pi }}\int _{-\infty }^{\infty }e^{uz}{\frac {(\tanh {\frac {u}{2}})^{n}}{\sinh u}}du}
( 32 ) g n ( z ) = 1 π 0 π cot z ( u 2 ) cos ( π z 2 ) cos ( n u ) d u {\displaystyle (32)\qquad g_{n}(z)={\frac {1}{\pi }}\int _{0}^{\pi }\cot ^{z}({\frac {u}{2}})\cos({\frac {\pi z}{2}})\cos(nu)du}
( 33 ) g n ( z ) = 1 π 0 π cot z ( u 2 ) sin ( π z 2 ) sin ( n u ) d u {\displaystyle (33)\qquad g_{n}(z)={\frac {1}{\pi }}\int _{0}^{\pi }\cot ^{z}({\frac {u}{2}})\sin({\frac {\pi z}{2}})\sin(nu)du}
( 34 ) g n ( z ) = 1 2 π 0 2 π ( 1 + e i t ) z ( 2 + e i t ) n 1 e i n t d t {\displaystyle (34)\qquad g_{n}(z)={\frac {1}{2\pi }}\int _{0}^{2\pi }(1+e^{it})^{z}(2+e^{it})^{n-1}e^{-int}dt} .

Closed forms of integral families

There are several families of integrals with closed-form expressions in terms of zeta values where the coefficients of the Mittag-Leffler polynomials occur as coefficients. All those integrals can be written in a form containing either a factor tan ± n {\displaystyle \tan ^{\pm n}} or tanh ± n {\displaystyle \tanh ^{\pm n}} , and the degree of the Mittag-Leffler polynomial varies with n {\displaystyle n} . One way to work out those integrals is to obtain for them the corresponding recursion formulas as for the Mittag-Leffler polynomials using integration by parts.

1. For instance, define for n m 2 {\displaystyle n\geqslant m\geqslant 2}

I ( n , m ) := 0 1 artanh n x x m d x = 0 1 log n / 2 ( 1 + x 1 x ) d x x m = 0 z n coth m 2 z sinh 2 z d z . {\displaystyle I(n,m):=\int _{0}^{1}{\dfrac {{\text{artanh}}^{n}x}{x^{m}}}dx=\int _{0}^{1}\log ^{n/2}{\Bigl (}{\dfrac {1+x}{1-x}}{\Bigr )}{\dfrac {dx}{x^{m}}}=\int _{0}^{\infty }z^{n}{\dfrac {\coth ^{m-2}z}{\sinh ^{2}z}}dz.}

These integrals have the closed form

( 1 ) I ( n , m ) = n ! 2 n 1 ζ n + 1   g m 1 ( 1 ζ ) {\displaystyle (1)\quad I(n,m)={\frac {n!}{2^{n-1}}}\zeta ^{n+1}~g_{m-1}({\frac {1}{\zeta }})}

in umbral notation, meaning that after expanding the polynomial in ζ {\displaystyle \zeta } , each power ζ k {\displaystyle \zeta ^{k}} has to be replaced by the zeta value ζ ( k ) {\displaystyle \zeta (k)} . E.g. from g 6 ( x ) = 1 45 ( 23 x 2 + 20 x 4 + 2 x 6 )   {\displaystyle g_{6}(x)={\frac {1}{45}}(23x^{2}+20x^{4}+2x^{6})\ } we get   I ( n , 7 ) = n ! 2 n 1 23   ζ ( n 1 ) + 20   ζ ( n 3 ) + 2   ζ ( n 5 ) 45   {\displaystyle \ I(n,7)={\frac {n!}{2^{n-1}}}{\frac {23~\zeta (n-1)+20~\zeta (n-3)+2~\zeta (n-5)}{45}}\ } for n 7 {\displaystyle n\geqslant 7} .

2. Likewise take for n m 2 {\displaystyle n\geqslant m\geqslant 2}

J ( n , m ) := 1 arcoth n x x m d x = 1 log n / 2 ( x + 1 x 1 ) d x x m = 0 z n tanh m 2 z cosh 2 z d z . {\displaystyle J(n,m):=\int _{1}^{\infty }{\dfrac {{\text{arcoth}}^{n}x}{x^{m}}}dx=\int _{1}^{\infty }\log ^{n/2}{\Bigl (}{\dfrac {x+1}{x-1}}{\Bigr )}{\dfrac {dx}{x^{m}}}=\int _{0}^{\infty }z^{n}{\dfrac {\tanh ^{m-2}z}{\cosh ^{2}z}}dz.}

In umbral notation, where after expanding, η k {\displaystyle \eta ^{k}} has to be replaced by the Dirichlet eta function η ( k ) := ( 1 2 1 k ) ζ ( k ) {\displaystyle \eta (k):=\left(1-2^{1-k}\right)\zeta (k)} , those have the closed form

( 2 ) J ( n , m ) = n ! 2 n 1 η n + 1   g m 1 ( 1 η ) {\displaystyle (2)\quad J(n,m)={\frac {n!}{2^{n-1}}}\eta ^{n+1}~g_{m-1}({\frac {1}{\eta }})} .

3. The following holds for n m {\displaystyle n\geqslant m} with the same umbral notation for ζ {\displaystyle \zeta } and η {\displaystyle \eta } , and completing by continuity η ( 1 ) := ln 2 {\displaystyle \eta (1):=\ln 2} .

( 3 ) 0 π / 2 x n tan m x d x = cos ( m 2 π ) ( π / 2 ) n + 1 n + 1 + cos ( m n 1 2 π ) n !   m 2 n ζ n + 2 g m ( 1 ζ ) + v = 0 n cos ( m v 1 2 π ) n !   m   π n v ( n v ) !   2 n η n + 2 g m ( 1 η ) . {\displaystyle (3)\quad \int \limits _{0}^{\pi /2}{\frac {x^{n}}{\tan ^{m}x}}dx=\cos {\Bigl (}{\frac {m}{2}}\pi {\Bigr )}{\frac {(\pi /2)^{n+1}}{n+1}}+\cos {\Bigl (}{\frac {m-n-1}{2}}\pi {\Bigr )}{\frac {n!~m}{2^{n}}}\zeta ^{n+2}g_{m}({\frac {1}{\zeta }})+\sum \limits _{v=0}^{n}\cos {\Bigl (}{\frac {m-v-1}{2}}\pi {\Bigr )}{\frac {n!~m~\pi ^{n-v}}{(n-v)!~2^{n}}}\eta ^{n+2}g_{m}({\frac {1}{\eta }}).}

Note that for n m 2 {\displaystyle n\geqslant m\geqslant 2} , this also yields a closed form for the integrals

0 arctan n x x m d x = 0 π / 2 x n tan m x d x + 0 π / 2 x n tan m 2 x d x . {\displaystyle \int \limits _{0}^{\infty }{\frac {\arctan ^{n}x}{x^{m}}}dx=\int \limits _{0}^{\pi /2}{\frac {x^{n}}{\tan ^{m}x}}dx+\int \limits _{0}^{\pi /2}{\frac {x^{n}}{\tan ^{m-2}x}}dx.}

4. For n m 2 {\displaystyle n\geqslant m\geqslant 2} , define K ( n , m ) := 0 tanh n ( x ) x m d x {\displaystyle \quad K(n,m):=\int \limits _{0}^{\infty }{\dfrac {\tanh ^{n}(x)}{x^{m}}}dx} .

If n + m {\displaystyle n+m} is even and we define h k := ( 1 ) k 1 2 ( k 1 ) ! ( 2 k 1 ) ζ ( k ) 2 k 1 π k 1 {\displaystyle h_{k}:=(-1)^{\frac {k-1}{2}}{\frac {(k-1)!(2^{k}-1)\zeta (k)}{2^{k-1}\pi ^{k-1}}}} , we have in umbral notation, i.e. replacing h k {\displaystyle h^{k}} by h k {\displaystyle h_{k}} ,

( 4 ) K ( n , m ) := 0 tanh n ( x ) x m d x = n 2 m 1 ( m 1 ) ! ( h ) m 1 g n ( h ) . {\displaystyle (4)\quad K(n,m):=\int \limits _{0}^{\infty }{\dfrac {\tanh ^{n}(x)}{x^{m}}}dx={\dfrac {n\cdot 2^{m-1}}{(m-1)!}}(-h)^{m-1}g_{n}(h).}

Note that only odd zeta values (odd k {\displaystyle k} ) occur here (unless the denominators are cast as even zeta values), e.g.

K ( 5 , 3 ) = 2 3 ( 3 h 3 + 10 h 5 + 2 h 7 ) = 7 ζ ( 3 ) π 2 + 310 ζ ( 5 ) π 4 1905 ζ ( 7 ) π 6 , {\displaystyle K(5,3)=-{\frac {2}{3}}(3h_{3}+10h_{5}+2h_{7})=-7{\frac {\zeta (3)}{\pi ^{2}}}+310{\frac {\zeta (5)}{\pi ^{4}}}-1905{\frac {\zeta (7)}{\pi ^{6}}},}
K ( 6 , 2 ) = 4 15 ( 23 h 3 + 20 h 5 + 2 h 7 ) , K ( 6 , 4 ) = 4 45 ( 23 h 5 + 20 h 7 + 2 h 9 ) . {\displaystyle K(6,2)={\frac {4}{15}}(23h_{3}+20h_{5}+2h_{7}),\quad K(6,4)={\frac {4}{45}}(23h_{5}+20h_{7}+2h_{9}).}

5. If n + m {\displaystyle n+m} is odd, the same integral is much more involved to evaluate, including the initial one 0 tanh 3 ( x ) x 2 d x {\displaystyle \int \limits _{0}^{\infty }{\dfrac {\tanh ^{3}(x)}{x^{2}}}dx} . Yet it turns out that the pattern subsists if we define s k := η ( k ) = 2 k + 1 ζ ( k ) ln 2 ( 2 k + 1 1 ) ζ ( k ) {\displaystyle s_{k}:=\eta '(-k)=2^{k+1}\zeta (-k)\ln 2-(2^{k+1}-1)\zeta '(-k)} , equivalently s k = ζ ( k ) ζ ( k ) η ( k ) + ζ ( k ) η ( 1 ) η ( k ) η ( 1 ) {\displaystyle s_{k}={\frac {\zeta (-k)}{\zeta '(-k)}}\eta (-k)+\zeta (-k)\eta (1)-\eta (-k)\eta (1)} . Then K ( n , m ) {\displaystyle K(n,m)} has the following closed form in umbral notation, replacing s k {\displaystyle s^{k}} by s k {\displaystyle s_{k}} :

( 5 ) K ( n , m ) = 0 tanh n ( x ) x m d x = n 2 m ( m 1 ) ! ( s ) m 2 g n ( s ) {\displaystyle (5)\quad K(n,m)=\int \limits _{0}^{\infty }{\dfrac {\tanh ^{n}(x)}{x^{m}}}dx={\frac {n\cdot 2^{m}}{(m-1)!}}(-s)^{m-2}g_{n}(s)} , e.g.
K ( 5 , 4 ) = 8 9 ( 3 s 3 + 10 s 5 + 2 s 7 ) , K ( 6 , 3 ) = 8 15 ( 23 s 3 + 20 s 5 + 2 s 7 ) , K ( 6 , 5 ) = 8 45 ( 23 s 5 + 20 s 7 + 2 s 9 ) . {\displaystyle K(5,4)={\frac {8}{9}}(3s_{3}+10s_{5}+2s_{7}),\quad K(6,3)=-{\frac {8}{15}}(23s_{3}+20s_{5}+2s_{7}),\quad K(6,5)=-{\frac {8}{45}}(23s_{5}+20s_{7}+2s_{9}).}

Note that by virtue of the logarithmic derivative ζ ζ ( s ) + ζ ζ ( 1 s ) = log π 1 2 Γ Γ ( s 2 ) 1 2 Γ Γ ( 1 s 2 ) {\displaystyle {\frac {\zeta '}{\zeta }}(s)+{\frac {\zeta '}{\zeta }}(1-s)=\log \pi -{\frac {1}{2}}{\frac {\Gamma '}{\Gamma }}\left({\frac {s}{2}}\right)-{\frac {1}{2}}{\frac {\Gamma '}{\Gamma }}\left({\frac {1-s}{2}}\right)} of Riemann's functional equation, taken after applying Euler's reflection formula, these expressions in terms of the s k {\displaystyle s_{k}} can be written in terms of ζ ( 2 j ) ζ ( 2 j ) {\displaystyle {\frac {\zeta '(2j)}{\zeta (2j)}}} , e.g.

K ( 5 , 4 ) = 8 9 ( 3 s 3 + 10 s 5 + 2 s 7 ) = 1 9 { 1643 420 16 315 ln 2 + 3 ζ ( 4 ) ζ ( 4 ) 20 ζ ( 6 ) ζ ( 6 ) + 17 ζ ( 8 ) ζ ( 8 ) } . {\displaystyle K(5,4)={\frac {8}{9}}(3s_{3}+10s_{5}+2s_{7})={\frac {1}{9}}\left\{{\frac {1643}{420}}-{\frac {16}{315}}\ln 2+3{\frac {\zeta '(4)}{\zeta (4)}}-20{\frac {\zeta '(6)}{\zeta (6)}}+17{\frac {\zeta '(8)}{\zeta (8)}}\right\}.}

6. For n < m {\displaystyle n<m} , the same integral K ( n , m ) {\displaystyle K(n,m)} diverges because the integrand behaves like x n m {\displaystyle x^{n-m}} for x 0 {\displaystyle x\searrow 0} . But the difference of two such integrals with corresponding degree differences is well-defined and exhibits very similar patterns, e.g.

( 6 ) K ( n 1 , n ) K ( n , n + 1 ) = 0 ( tanh n 1 ( x ) x n tanh n ( x ) x n + 1 ) d x = 1 n + ( n + 1 ) 2 n ( n 1 ) ! s n 2 g n ( s ) {\displaystyle (6)\quad K(n-1,n)-K(n,n+1)=\int \limits _{0}^{\infty }\left({\dfrac {\tanh ^{n-1}(x)}{x^{n}}}-{\dfrac {\tanh ^{n}(x)}{x^{n+1}}}\right)dx=-{\frac {1}{n}}+{\frac {(n+1)\cdot 2^{n}}{(n-1)!}}s^{n-2}g_{n}(s)} .

See also

References

  1. see the formula section of OEIS A142978
  2. see OEIS A064984
  3. see OEIS A137513
  4. Özmen, Nejla & Nihal, Yılmaz (2019). "On The Mittag-Leffler Polynomials and Deformed Mittag-Leffler Polynomials". {{cite journal}}: Cite journal requires |journal= (help)
  5. see the comment section of OEIS A142983
  6. see OEIS A142978
  7. Stankovic, Miomir S.; Marinkovic, Sladjana D. & Rajkovic, Predrag M. (2010). "Deformed Mittag–Leffler Polynomials". arXiv:1007.3612. {{cite journal}}: Cite journal requires |journal= (help)
  8. Mathworld entry "Mittag-Leffler Polynomial"
  9. Bateman, H. (1940). "The polynomial of Mittag-Leffler" (PDF). Proceedings of the National Academy of Sciences of the United States of America. 26 (8): 491–496. Bibcode:1940PNAS...26..491B. doi:10.1073/pnas.26.8.491. ISSN 0027-8424. JSTOR 86958. MR 0002381. PMC 1078216. PMID 16588390.
  10. see at the end of this question on Mathoverflow
  11. answer on math.stackexchange
  12. similar to this question on Mathoverflow
  13. method used in this answer on Mathoverflow
  14. or see formula (14) in https://mathworld.wolfram.com/RiemannZetaFunction.html
Category: