Misplaced Pages

Modified Uniformly Redundant Array

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article is about coded aperture masks. For other uses, see Mura.

A modified uniformly redundant array (MURA) is a type of mask used in coded aperture imaging. They were first proposed by Gottesman and Fenimore in 1989.

Mathematical Construction of MURAs

MURAs can be generated in any length L that is prime and of the form

L = 4 m + 1 ,     m = 1 , 2 , 3 , . . . , {\displaystyle L=4m+1,\ \ m=1,2,3,...,}

the first five such values being L = 5 , 13 , 17 , 29 , 37 {\displaystyle L=5,13,17,29,37} . The binary sequence of a linear MURA is given by A = A i i = 0 L 1 {\displaystyle A={A_{i}}_{i=0}^{L-1}} , where

A i = { 0 if  i = 0 , 1 if  i  is a quadratic residue modulo  L , i 0 , 0 otherwise {\displaystyle A_{i}={\begin{cases}0&{\mbox{if }}i=0,\\1&{\mbox{if }}i{\mbox{ is a quadratic residue modulo }}L,i\neq 0,\\0&{\mbox{otherwise}}\end{cases}}}

These linear MURA arrays can also be arranged to form hexagonal MURA arrays. One may note that if L = 4 m + 3 {\displaystyle L=4m+3} and A 0 = 1 {\displaystyle A_{0}=1} , a uniformly redundant array(URA) is a generated.

As with any mask in coded aperture imaging, an inverse sequence must also be constructed. In the MURA case, this inverse G can be constructed easily given the original coding pattern A:

G i = { + 1 if  i = 0 , + 1 if  A i = 1 , i 0 , 1 if  A i = 0 , i 0 , {\displaystyle G_{i}={\begin{cases}+1&{\mbox{if }}i=0,\\+1&{\mbox{if }}A_{i}=1,i\neq 0,\\-1&{\mbox{if }}A_{i}=0,i\neq 0,\end{cases}}}

Rectangular MURA arrays are constructed in a slightly different manner, letting A = { A i j } i , j = 0 p 1 {\displaystyle A=\{A_{ij}\}_{i,j=0}^{p-1}} , where

A i j = { 0 if  i = 0 , 1 if  j = 0 , i 0 , 1 if  C i C j = + 1 , 0 otherwise, {\displaystyle A_{ij}={\begin{cases}0&{\mbox{if }}i=0,\\1&{\mbox{if }}j=0,i\neq 0,\\1&{\mbox{if }}C_{i}C_{j}=+1,\\0&{\mbox{otherwise,}}\end{cases}}}

and

C i = { + 1 if  i  is a quadratic residue modulo  p , 1 otherwise, {\displaystyle C_{i}={\begin{cases}+1&{\mbox{if }}i{\mbox{ is a quadratic residue modulo }}p,\\-1&{\mbox{otherwise,}}\end{cases}}}
A rectangular MURA mask of size 101

The corresponding decoding function G is constructed as follows:

G i j = { + 1 if  i + j = 0 ; + 1 if  A i j = 1 ,   ( i + j 0 ) ; 1 if  A i j = 0 ,   ( i + j 0 ) , ; {\displaystyle G_{ij}={\begin{cases}+1&{\mbox{if }}i+j=0;\\+1&{\mbox{if }}A_{ij}=1,\ (i+j\neq 0);\\-1&{\mbox{if }}A_{ij}=0,\ (i+j\neq 0),;\end{cases}}}

References

  1. Fenimore, E. E.; Gottesman, Stephen R. (1989-10-15). "New family of binary arrays for coded aperture imaging". Applied Optics. 28 (20): 4344–4352. doi:10.1364/AO.28.004344. ISSN 2155-3165.
Category: