Misplaced Pages

Monad transformer

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Monad transformers)
This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.
Find sources: "Monad transformer" – news · newspapers · books · scholar · JSTOR (November 2023)

In functional programming, a monad transformer is a type constructor which takes a monad as an argument and returns a monad as a result.

Monad transformers can be used to compose features encapsulated by monads – such as state, exception handling, and I/O – in a modular way. Typically, a monad transformer is created by generalising an existing monad; applying the resulting monad transformer to the identity monad yields a monad which is equivalent to the original monad (ignoring any necessary boxing and unboxing).

Definition

A monad transformer consists of:

  1. A type constructor t of kind (* -> *) -> * -> *
  2. Monad operations return and bind (or an equivalent formulation) for all t m where m is a monad, satisfying the monad laws
  3. An additional operation, lift :: m a -> t m a, satisfying the following laws: (the notation `bind` below indicates infix application):
    1. lift . return = return
    2. lift (m `bind` k) = (lift m) `bind` (lift . k)

Examples

The option monad transformer

Given any monad M A {\displaystyle \mathrm {M} \,A} , the option monad transformer M ( A ? ) {\displaystyle \mathrm {M} \left(A^{?}\right)} (where A ? {\displaystyle A^{?}} denotes the option type) is defined by:

r e t u r n : A M ( A ? ) = a r e t u r n ( J u s t a ) b i n d : M ( A ? ) ( A M ( B ? ) ) M ( B ? ) = m f b i n d m ( a { return Nothing if  a = N o t h i n g f a if  a = J u s t a ) l i f t : M ( A ) M ( A ? ) = m b i n d m ( a r e t u r n ( J u s t a ) ) {\displaystyle {\begin{array}{ll}\mathrm {return} :&A\rightarrow \mathrm {M} \left(A^{?}\right)=a\mapsto \mathrm {return} (\mathrm {Just} \,a)\\\mathrm {bind} :&\mathrm {M} \left(A^{?}\right)\rightarrow \left(A\rightarrow \mathrm {M} \left(B^{?}\right)\right)\rightarrow \mathrm {M} \left(B^{?}\right)=m\mapsto f\mapsto \mathrm {bind} \,m\,\left(a\mapsto {\begin{cases}{\mbox{return Nothing}}&{\mbox{if }}a=\mathrm {Nothing} \\f\,a'&{\mbox{if }}a=\mathrm {Just} \,a'\end{cases}}\right)\\\mathrm {lift} :&\mathrm {M} (A)\rightarrow \mathrm {M} \left(A^{?}\right)=m\mapsto \mathrm {bind} \,m\,(a\mapsto \mathrm {return} (\mathrm {Just} \,a))\end{array}}}

The exception monad transformer

Given any monad M A {\displaystyle \mathrm {M} \,A} , the exception monad transformer M ( A + E ) {\displaystyle \mathrm {M} (A+E)} (where E is the type of exceptions) is defined by:

r e t u r n : A M ( A + E ) = a r e t u r n ( v a l u e a ) b i n d : M ( A + E ) ( A M ( B + E ) ) M ( B + E ) = m f b i n d m ( a { return err  e if  a = e r r e f a if  a = v a l u e a ) l i f t : M A M ( A + E ) = m b i n d m ( a r e t u r n ( v a l u e a ) ) {\displaystyle {\begin{array}{ll}\mathrm {return} :&A\rightarrow \mathrm {M} (A+E)=a\mapsto \mathrm {return} (\mathrm {value} \,a)\\\mathrm {bind} :&\mathrm {M} (A+E)\rightarrow (A\rightarrow \mathrm {M} (B+E))\rightarrow \mathrm {M} (B+E)=m\mapsto f\mapsto \mathrm {bind} \,m\,\left(a\mapsto {\begin{cases}{\mbox{return err }}e&{\mbox{if }}a=\mathrm {err} \,e\\f\,a'&{\mbox{if }}a=\mathrm {value} \,a'\end{cases}}\right)\\\mathrm {lift} :&\mathrm {M} \,A\rightarrow \mathrm {M} (A+E)=m\mapsto \mathrm {bind} \,m\,(a\mapsto \mathrm {return} (\mathrm {value} \,a))\\\end{array}}}

The reader monad transformer

Given any monad M A {\displaystyle \mathrm {M} \,A} , the reader monad transformer E M A {\displaystyle E\rightarrow \mathrm {M} \,A} (where E is the environment type) is defined by:

r e t u r n : A E M A = a e r e t u r n a b i n d : ( E M A ) ( A E M B ) E M B = m k e b i n d ( m e ) ( a k a e ) l i f t : M A E M A = a e a {\displaystyle {\begin{array}{ll}\mathrm {return} :&A\rightarrow E\rightarrow \mathrm {M} \,A=a\mapsto e\mapsto \mathrm {return} \,a\\\mathrm {bind} :&(E\rightarrow \mathrm {M} \,A)\rightarrow (A\rightarrow E\rightarrow \mathrm {M} \,B)\rightarrow E\rightarrow \mathrm {M} \,B=m\mapsto k\mapsto e\mapsto \mathrm {bind} \,(m\,e)\,(a\mapsto k\,a\,e)\\\mathrm {lift} :&\mathrm {M} \,A\rightarrow E\rightarrow \mathrm {M} \,A=a\mapsto e\mapsto a\\\end{array}}}

The state monad transformer

Given any monad M A {\displaystyle \mathrm {M} \,A} , the state monad transformer S M ( A × S ) {\displaystyle S\rightarrow \mathrm {M} (A\times S)} (where S is the state type) is defined by:

r e t u r n : A S M ( A × S ) = a s r e t u r n ( a , s ) b i n d : ( S M ( A × S ) ) ( A S M ( B × S ) ) S M ( B × S ) = m k s b i n d ( m s ) ( ( a , s ) k a s ) l i f t : M A S M ( A × S ) = m s b i n d m ( a r e t u r n ( a , s ) ) {\displaystyle {\begin{array}{ll}\mathrm {return} :&A\rightarrow S\rightarrow \mathrm {M} (A\times S)=a\mapsto s\mapsto \mathrm {return} \,(a,s)\\\mathrm {bind} :&(S\rightarrow \mathrm {M} (A\times S))\rightarrow (A\rightarrow S\rightarrow \mathrm {M} (B\times S))\rightarrow S\rightarrow \mathrm {M} (B\times S)=m\mapsto k\mapsto s\mapsto \mathrm {bind} \,(m\,s)\,((a,s')\mapsto k\,a\,s')\\\mathrm {lift} :&\mathrm {M} \,A\rightarrow S\rightarrow \mathrm {M} (A\times S)=m\mapsto s\mapsto \mathrm {bind} \,m\,(a\mapsto \mathrm {return} \,(a,s))\end{array}}}

The writer monad transformer

Given any monad M A {\displaystyle \mathrm {M} \,A} , the writer monad transformer M ( W × A ) {\displaystyle \mathrm {M} (W\times A)} (where W is endowed with a monoid operation ∗ with identity element ε {\displaystyle \varepsilon } ) is defined by:

r e t u r n : A M ( W × A ) = a r e t u r n ( ε , a ) b i n d : M ( W × A ) ( A M ( W × B ) ) M ( W × B ) = m f b i n d m ( ( w , a ) b i n d ( f a ) ( ( w , b ) r e t u r n ( w w , b ) ) ) l i f t : M A M ( W × A ) = m b i n d m ( a r e t u r n ( ε , a ) ) {\displaystyle {\begin{array}{ll}\mathrm {return} :&A\rightarrow \mathrm {M} (W\times A)=a\mapsto \mathrm {return} \,(\varepsilon ,a)\\\mathrm {bind} :&\mathrm {M} (W\times A)\rightarrow (A\rightarrow \mathrm {M} (W\times B))\rightarrow \mathrm {M} (W\times B)=m\mapsto f\mapsto \mathrm {bind} \,m\,((w,a)\mapsto \mathrm {bind} \,(f\,a)\,((w',b)\mapsto \mathrm {return} \,(w*w',b)))\\\mathrm {lift} :&\mathrm {M} \,A\rightarrow \mathrm {M} (W\times A)=m\mapsto \mathrm {bind} \,m\,(a\mapsto \mathrm {return} \,(\varepsilon ,a))\\\end{array}}}

The continuation monad transformer

Given any monad M A {\displaystyle \mathrm {M} \,A} , the continuation monad transformer maps an arbitrary type R into functions of type ( A M R ) M R {\displaystyle (A\rightarrow \mathrm {M} \,R)\rightarrow \mathrm {M} \,R} , where R is the result type of the continuation. It is defined by:

r e t u r n : A ( A M R ) M R = a k k a b i n d : ( ( A M R ) M R ) ( A ( B M R ) M R ) ( B M R ) M R = c f k c ( a f a k ) l i f t : M A ( A M R ) M R = b i n d {\displaystyle {\begin{array}{ll}\mathrm {return} \colon &A\rightarrow \left(A\rightarrow \mathrm {M} \,R\right)\rightarrow \mathrm {M} \,R=a\mapsto k\mapsto k\,a\\\mathrm {bind} \colon &\left(\left(A\rightarrow \mathrm {M} \,R\right)\rightarrow \mathrm {M} \,R\right)\rightarrow \left(A\rightarrow \left(B\rightarrow \mathrm {M} \,R\right)\rightarrow \mathrm {M} \,R\right)\rightarrow \left(B\rightarrow \mathrm {M} \,R\right)\rightarrow \mathrm {M} \,R=c\mapsto f\mapsto k\mapsto c\,\left(a\mapsto f\,a\,k\right)\\\mathrm {lift} \colon &\mathrm {M} \,A\rightarrow (A\rightarrow \mathrm {M} \,R)\rightarrow \mathrm {M} \,R=\mathrm {bind} \end{array}}}

Note that monad transformations are usually not commutative: for instance, applying the state transformer to the option monad yields a type S ( A × S ) ? {\displaystyle S\rightarrow \left(A\times S\right)^{?}} (a computation which may fail and yield no final state), whereas the converse transformation has type S ( A ? × S ) {\displaystyle S\rightarrow \left(A^{?}\times S\right)} (a computation which yields a final state and an optional return value).

See also

References

  1. Liang, Sheng; Hudak, Paul; Jones, Mark (1995). "Monad transformers and modular interpreters" (PDF). Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of programming languages. New York, NY: ACM. pp. 333–343. doi:10.1145/199448.199528.

External links

This section needs expansion. You can help by adding to it. (May 2008)
Category: