Misplaced Pages

Monoidal adjunction

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (February 2017) (Learn how and when to remove this message)
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Monoidal adjunction" – news · newspapers · books · scholar · JSTOR (December 2024) (Learn how and when to remove this message)

A monoidal adjunction is an adjunction in mathematics between monoidal categories which respects the monoidal structure.

Suppose that ( C , , I ) {\displaystyle ({\mathcal {C}},\otimes ,I)} and ( D , , J ) {\displaystyle ({\mathcal {D}},\bullet ,J)} are two monoidal categories. A monoidal adjunction between two lax monoidal functors

( F , m ) : ( C , , I ) ( D , , J ) {\displaystyle (F,m):({\mathcal {C}},\otimes ,I)\to ({\mathcal {D}},\bullet ,J)} and ( G , n ) : ( D , , J ) ( C , , I ) {\displaystyle (G,n):({\mathcal {D}},\bullet ,J)\to ({\mathcal {C}},\otimes ,I)}

is an adjunction ( F , G , η , ε ) {\displaystyle (F,G,\eta ,\varepsilon )} between the underlying functors, such that the natural transformations

η : 1 C G F {\displaystyle \eta :1_{\mathcal {C}}\Rightarrow G\circ F} and ε : F G 1 D {\displaystyle \varepsilon :F\circ G\Rightarrow 1_{\mathcal {D}}}

are monoidal natural transformations.

Lifting adjunctions to monoidal adjunctions

Suppose that

( F , m ) : ( C , , I ) ( D , , J ) {\displaystyle (F,m):({\mathcal {C}},\otimes ,I)\to ({\mathcal {D}},\bullet ,J)}

is a lax monoidal functor such that the underlying functor F : C D {\displaystyle F:{\mathcal {C}}\to {\mathcal {D}}} has a right adjoint G : D C {\displaystyle G:{\mathcal {D}}\to {\mathcal {C}}} . This adjunction lifts to a monoidal adjunction ( F , m ) {\displaystyle (F,m)} ( G , n ) {\displaystyle (G,n)} if and only if the lax monoidal functor ( F , m ) {\displaystyle (F,m)} is strong.

See also

  • Every monoidal adjunction ( F , m ) {\displaystyle (F,m)} ( G , n ) {\displaystyle (G,n)} defines a monoidal monad G F {\displaystyle G\circ F} .

References

  1. "monoidal adjunction". nlab. Retrieved 2024-12-23.
  2. Lindner, Harald (1978). "Adjunctions in monoidal categories". Manuscripta Mathematica. 26 (1–2): 123–139. doi:10.1007/BF01167969. ISSN 0025-2611.
  3. Hasegawa, Masahito (2012-12-06). Models of Sharing Graphs. London: Springer Science & Business Media. p. 64. ISBN 978-1-4471-0865-8.
Categories: