This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. Find sources: "Most-perfect magic square" – news · newspapers · books · scholar · JSTOR (July 2021) (Learn how and when to remove this message) |
| ||||||||||||||||
transcription of the indian numerals |
A most-perfect magic square of order n is a magic square containing the numbers 1 to n with two additional properties:
- Each 2 × 2 subsquare sums to 2s, where s = n + 1.
- All pairs of integers distant n/2 along a (major) diagonal sum to s.
Examples
Two 12 × 12 most-perfect magic squares can be obtained adding 1 to each element of:
64 92 81 94 48 77 67 63 50 61 83 78 31 99 14 97 47 114 28 128 45 130 12 113 24 132 41 134 8 117 27 103 10 101 43 118 23 107 6 105 39 122 20 136 37 138 4 121 16 140 33 142 0 125 19 111 2 109 35 126 75 55 58 53 91 70 72 84 89 86 56 69 76 80 93 82 60 65 79 51 62 49 95 66 115 15 98 13 131 30 112 44 129 46 96 29 116 40 133 42 100 25 119 11 102 9 135 26 123 7 106 5 139 22 120 36 137 38 104 21 124 32 141 34 108 17 127 3 110 1 143 18 71 59 54 57 87 74 68 88 85 90 52 73
4 113 14 131 3 121 31 138 21 120 32 130 136 33 126 15 137 25 109 8 119 26 108 16 73 44 83 62 72 52 100 69 90 51 101 61 64 105 54 87 65 97 37 80 47 98 36 88 1 116 11 134 0 124 28 141 18 123 29 133 103 66 93 48 104 58 76 41 86 59 75 49 112 5 122 23 111 13 139 30 129 12 140 22 34 135 24 117 35 127 7 110 17 128 6 118 43 74 53 92 42 82 70 99 60 81 71 91 106 63 96 45 107 55 79 38 89 56 78 46 115 2 125 20 114 10 142 27 132 9 143 19 67 102 57 84 68 94 40 77 50 95 39 85
Properties
All most-perfect magic squares are panmagic squares.
Apart from the trivial case of the first order square, most-perfect magic squares are all of order 4n. In their book, Kathleen Ollerenshaw and David S. Brée give a method of construction and enumeration of all most-perfect magic squares. They also show that there is a one-to-one correspondence between reversible squares and most-perfect magic squares.
For n = 36, there are about 2.7 × 10 essentially different most-perfect magic squares.
References
- Kathleen Ollerenshaw, David S. Brée: Most-perfect Pandiagonal Magic Squares: Their Construction and Enumeration, Southend-on-Sea : Institute of Mathematics and its Applications, 1998, 186 pages, ISBN 0-905091-06-X
- T.V.Padmakumar, Number Theory and Magic Squares, Sura books Archived 2010-02-25 at the Wayback Machine, India, 2008, 128 pages, ISBN 978-81-8449-321-4
External links
- STRONGLY MAGIC SQUARES by T. V. Padmakumar
- OEIS: A051235 Number of essentially different most-perfect pandiagonal magic squares of order 4n from The On-Line Encyclopedia of Integer Sequences
Magic polygons | ||
---|---|---|
Types | ||
Related shapes | ||
Higher dimensional shapes | ||
Classification | ||
Related concepts |