Misplaced Pages

Mott polynomials

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Mott polynomial)

In mathematics the Mott polynomials sn(x) are polynomials given by the exponential generating function:

e x ( 1 t 2 1 ) / t = n s n ( x ) t n / n ! . {\displaystyle e^{x({\sqrt {1-t^{2}}}-1)/t}=\sum _{n}s_{n}(x)t^{n}/n!.}

They were introduced by Nevill Francis Mott who applied them to a problem in the theory of electrons.

Because the factor in the exponential has the power series

1 t 2 1 t = k 0 C k ( t 2 ) 2 k + 1 {\displaystyle {\frac {{\sqrt {1-t^{2}}}-1}{t}}=-\sum _{k\geq 0}C_{k}\left({\frac {t}{2}}\right)^{2k+1}}

in terms of Catalan numbers C k {\displaystyle C_{k}} , the coefficient in front of x k {\displaystyle x^{k}} of the polynomial can be written as

[ x k ] s n ( x ) = ( 1 ) k n ! k ! 2 n n = l 1 + l 2 + + l k C ( l 1 1 ) / 2 C ( l 2 1 ) / 2 C ( l k 1 ) / 2 {\displaystyle s_{n}(x)=(-1)^{k}{\frac {n!}{k!2^{n}}}\sum _{n=l_{1}+l_{2}+\cdots +l_{k}}C_{(l_{1}-1)/2}C_{(l_{2}-1)/2}\cdots C_{(l_{k}-1)/2}} , according to the general formula for generalized Appell polynomials, where the sum is over all compositions n = l 1 + l 2 + + l k {\displaystyle n=l_{1}+l_{2}+\cdots +l_{k}} of n {\displaystyle n} into k {\displaystyle k} positive odd integers. The empty product appearing for k = n = 0 {\displaystyle k=n=0} equals 1. Special values, where all contributing Catalan numbers equal 1, are
[ x n ] s n ( x ) = ( 1 ) n 2 n . {\displaystyle s_{n}(x)={\frac {(-1)^{n}}{2^{n}}}.}
[ x n 2 ] s n ( x ) = ( 1 ) n n ( n 1 ) ( n 2 ) 2 n . {\displaystyle s_{n}(x)={\frac {(-1)^{n}n(n-1)(n-2)}{2^{n}}}.}

By differentiation the recurrence for the first derivative becomes

s ( x ) = k = 0 ( n 1 ) / 2 n ! ( n 1 2 k ) ! 2 2 k + 1 C k s n 1 2 k ( x ) . {\displaystyle s'(x)=-\sum _{k=0}^{\lfloor (n-1)/2\rfloor }{\frac {n!}{(n-1-2k)!2^{2k+1}}}C_{k}s_{n-1-2k}(x).}

The first few of them are (sequence A137378 in the OEIS)

s 0 ( x ) = 1 ; {\displaystyle s_{0}(x)=1;}
s 1 ( x ) = 1 2 x ; {\displaystyle s_{1}(x)=-{\frac {1}{2}}x;}
s 2 ( x ) = 1 4 x 2 ; {\displaystyle s_{2}(x)={\frac {1}{4}}x^{2};}
s 3 ( x ) = 3 4 x 1 8 x 3 ; {\displaystyle s_{3}(x)=-{\frac {3}{4}}x-{\frac {1}{8}}x^{3};}
s 4 ( x ) = 3 2 x 2 + 1 16 x 4 ; {\displaystyle s_{4}(x)={\frac {3}{2}}x^{2}+{\frac {1}{16}}x^{4};}
s 5 ( x ) = 15 2 x 15 8 x 3 1 32 x 5 ; {\displaystyle s_{5}(x)=-{\frac {15}{2}}x-{\frac {15}{8}}x^{3}-{\frac {1}{32}}x^{5};}
s 6 ( x ) = 225 8 x 2 + 15 8 x 4 + 1 64 x 6 ; {\displaystyle s_{6}(x)={\frac {225}{8}}x^{2}+{\frac {15}{8}}x^{4}+{\frac {1}{64}}x^{6};}

The polynomials sn(x) form the associated Sheffer sequence for –2t/(1–t)

An explicit expression for them in terms of the generalized hypergeometric function 3F0:

s n ( x ) = ( x / 2 ) n 3 F 0 ( n , 1 n 2 , 1 n 2 ; ; 4 x 2 ) {\displaystyle s_{n}(x)=(-x/2)^{n}{}_{3}F_{0}(-n,{\frac {1-n}{2}},1-{\frac {n}{2}};;-{\frac {4}{x^{2}}})}

References

  1. Mott, N. F. (1932). "The Polarisation of Electrons by Double Scattering". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 135 (827): 429–458 . doi:10.1098/rspa.1932.0044. ISSN 0950-1207. JSTOR 95868.
  2. Roman, Steven (1984). The umbral calculus. Pure and Applied Mathematics. Vol. 111. London: Academic Press Inc. . p. 130. ISBN 978-0-12-594380-2. MR 0741185. Reprinted by Dover, 2005.
  3. Erdélyi, Arthur; Magnus, Wilhelm; Oberhettinger, Fritz ; Tricomi, Francesco G. (1955). Higher transcendental functions. Vol. III. New York-Toronto-London: McGraw-Hill Book Company, Inc. p. 251. MR 0066496.


Stub icon

This polynomial-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: