Misplaced Pages

Multilinear map

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Multilinear function) Vector-valued function of multiple vectors, linear in each argument For multilinear maps used in cryptography, see Cryptographic multilinear map.
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Multilinear map" – news · newspapers · books · scholar · JSTOR (October 2023) (Learn how and when to remove this message)

In linear algebra, a multilinear map is a function of several variables that is linear separately in each variable. More precisely, a multilinear map is a function

f : V 1 × × V n W , {\displaystyle f\colon V_{1}\times \cdots \times V_{n}\to W{\text{,}}}

where V 1 , , V n {\displaystyle V_{1},\ldots ,V_{n}} ( n Z 0 {\displaystyle n\in \mathbb {Z} _{\geq 0}} ) and W {\displaystyle W} are vector spaces (or modules over a commutative ring), with the following property: for each i {\displaystyle i} , if all of the variables but v i {\displaystyle v_{i}} are held constant, then f ( v 1 , , v i , , v n ) {\displaystyle f(v_{1},\ldots ,v_{i},\ldots ,v_{n})} is a linear function of v i {\displaystyle v_{i}} . One way to visualize this is to imagine two orthogonal vectors; if one of these vectors is scaled by a factor of 2 while the other remains unchanged, the cross product likewise scales by a factor of two. If both are scaled by a factor of 2, the cross product scales by a factor of 2 2 {\displaystyle 2^{2}} .

A multilinear map of one variable is a linear map, and of two variables is a bilinear map. More generally, for any nonnegative integer k {\displaystyle k} , a multilinear map of k variables is called a k-linear map. If the codomain of a multilinear map is the field of scalars, it is called a multilinear form. Multilinear maps and multilinear forms are fundamental objects of study in multilinear algebra.

If all variables belong to the same space, one can consider symmetric, antisymmetric and alternating k-linear maps. The latter two coincide if the underlying ring (or field) has a characteristic different from two, else the former two coincide.

Examples

  • Any bilinear map is a multilinear map. For example, any inner product on a R {\displaystyle \mathbb {R} } -vector space is a multilinear map, as is the cross product of vectors in R 3 {\displaystyle \mathbb {R} ^{3}} .
  • The determinant of a matrix is an alternating multilinear function of the columns (or rows) of a square matrix.
  • If F : R m R n {\displaystyle F\colon \mathbb {R} ^{m}\to \mathbb {R} ^{n}} is a C function, then the k {\displaystyle k} th derivative of F {\displaystyle F} at each point p {\displaystyle p} in its domain can be viewed as a symmetric k {\displaystyle k} -linear function D k F : R m × × R m R n {\displaystyle D^{k}\!F\colon \mathbb {R} ^{m}\times \cdots \times \mathbb {R} ^{m}\to \mathbb {R} ^{n}} .

Coordinate representation

Let

f : V 1 × × V n W , {\displaystyle f\colon V_{1}\times \cdots \times V_{n}\to W{\text{,}}}

be a multilinear map between finite-dimensional vector spaces, where V i {\displaystyle V_{i}\!} has dimension d i {\displaystyle d_{i}\!} , and W {\displaystyle W\!} has dimension d {\displaystyle d\!} . If we choose a basis { e i 1 , , e i d i } {\displaystyle \{{\textbf {e}}_{i1},\ldots ,{\textbf {e}}_{id_{i}}\}} for each V i {\displaystyle V_{i}\!} and a basis { b 1 , , b d } {\displaystyle \{{\textbf {b}}_{1},\ldots ,{\textbf {b}}_{d}\}} for W {\displaystyle W\!} (using bold for vectors), then we can define a collection of scalars A j 1 j n k {\displaystyle A_{j_{1}\cdots j_{n}}^{k}} by

f ( e 1 j 1 , , e n j n ) = A j 1 j n 1 b 1 + + A j 1 j n d b d . {\displaystyle f({\textbf {e}}_{1j_{1}},\ldots ,{\textbf {e}}_{nj_{n}})=A_{j_{1}\cdots j_{n}}^{1}\,{\textbf {b}}_{1}+\cdots +A_{j_{1}\cdots j_{n}}^{d}\,{\textbf {b}}_{d}.}

Then the scalars { A j 1 j n k 1 j i d i , 1 k d } {\displaystyle \{A_{j_{1}\cdots j_{n}}^{k}\mid 1\leq j_{i}\leq d_{i},1\leq k\leq d\}} completely determine the multilinear function f {\displaystyle f\!} . In particular, if

v i = j = 1 d i v i j e i j {\displaystyle {\textbf {v}}_{i}=\sum _{j=1}^{d_{i}}v_{ij}{\textbf {e}}_{ij}\!}

for 1 i n {\displaystyle 1\leq i\leq n\!} , then

f ( v 1 , , v n ) = j 1 = 1 d 1 j n = 1 d n k = 1 d A j 1 j n k v 1 j 1 v n j n b k . {\displaystyle f({\textbf {v}}_{1},\ldots ,{\textbf {v}}_{n})=\sum _{j_{1}=1}^{d_{1}}\cdots \sum _{j_{n}=1}^{d_{n}}\sum _{k=1}^{d}A_{j_{1}\cdots j_{n}}^{k}v_{1j_{1}}\cdots v_{nj_{n}}{\textbf {b}}_{k}.}

Example

Let's take a trilinear function

g : R 2 × R 2 × R 2 R , {\displaystyle g\colon R^{2}\times R^{2}\times R^{2}\to R,}

where Vi = R, di = 2, i = 1,2,3, and W = R, d = 1.

A basis for each Vi is { e i 1 , , e i d i } = { e 1 , e 2 } = { ( 1 , 0 ) , ( 0 , 1 ) } . {\displaystyle \{{\textbf {e}}_{i1},\ldots ,{\textbf {e}}_{id_{i}}\}=\{{\textbf {e}}_{1},{\textbf {e}}_{2}\}=\{(1,0),(0,1)\}.} Let

g ( e 1 i , e 2 j , e 3 k ) = f ( e i , e j , e k ) = A i j k , {\displaystyle g({\textbf {e}}_{1i},{\textbf {e}}_{2j},{\textbf {e}}_{3k})=f({\textbf {e}}_{i},{\textbf {e}}_{j},{\textbf {e}}_{k})=A_{ijk},}

where i , j , k { 1 , 2 } {\displaystyle i,j,k\in \{1,2\}} . In other words, the constant A i j k {\displaystyle A_{ijk}} is a function value at one of the eight possible triples of basis vectors (since there are two choices for each of the three V i {\displaystyle V_{i}} ), namely:

{ e 1 , e 1 , e 1 } , { e 1 , e 1 , e 2 } , { e 1 , e 2 , e 1 } , { e 1 , e 2 , e 2 } , { e 2 , e 1 , e 1 } , { e 2 , e 1 , e 2 } , { e 2 , e 2 , e 1 } , { e 2 , e 2 , e 2 } . {\displaystyle \{{\textbf {e}}_{1},{\textbf {e}}_{1},{\textbf {e}}_{1}\},\{{\textbf {e}}_{1},{\textbf {e}}_{1},{\textbf {e}}_{2}\},\{{\textbf {e}}_{1},{\textbf {e}}_{2},{\textbf {e}}_{1}\},\{{\textbf {e}}_{1},{\textbf {e}}_{2},{\textbf {e}}_{2}\},\{{\textbf {e}}_{2},{\textbf {e}}_{1},{\textbf {e}}_{1}\},\{{\textbf {e}}_{2},{\textbf {e}}_{1},{\textbf {e}}_{2}\},\{{\textbf {e}}_{2},{\textbf {e}}_{2},{\textbf {e}}_{1}\},\{{\textbf {e}}_{2},{\textbf {e}}_{2},{\textbf {e}}_{2}\}.}

Each vector v i V i = R 2 {\displaystyle {\textbf {v}}_{i}\in V_{i}=R^{2}} can be expressed as a linear combination of the basis vectors

v i = j = 1 2 v i j e i j = v i 1 × e 1 + v i 2 × e 2 = v i 1 × ( 1 , 0 ) + v i 2 × ( 0 , 1 ) . {\displaystyle {\textbf {v}}_{i}=\sum _{j=1}^{2}v_{ij}{\textbf {e}}_{ij}=v_{i1}\times {\textbf {e}}_{1}+v_{i2}\times {\textbf {e}}_{2}=v_{i1}\times (1,0)+v_{i2}\times (0,1).}

The function value at an arbitrary collection of three vectors v i R 2 {\displaystyle {\textbf {v}}_{i}\in R^{2}} can be expressed as

g ( v 1 , v 2 , v 3 ) = i = 1 2 j = 1 2 k = 1 2 A i j k v 1 i v 2 j v 3 k , {\displaystyle g({\textbf {v}}_{1},{\textbf {v}}_{2},{\textbf {v}}_{3})=\sum _{i=1}^{2}\sum _{j=1}^{2}\sum _{k=1}^{2}A_{ijk}v_{1i}v_{2j}v_{3k},}

or in expanded form as

g ( ( a , b ) , ( c , d ) , ( e , f ) ) = a c e × g ( e 1 , e 1 , e 1 ) + a c f × g ( e 1 , e 1 , e 2 ) + a d e × g ( e 1 , e 2 , e 1 ) + a d f × g ( e 1 , e 2 , e 2 ) + b c e × g ( e 2 , e 1 , e 1 ) + b c f × g ( e 2 , e 1 , e 2 ) + b d e × g ( e 2 , e 2 , e 1 ) + b d f × g ( e 2 , e 2 , e 2 ) . {\displaystyle {\begin{aligned}g((a,b),(c,d)&,(e,f))=ace\times g({\textbf {e}}_{1},{\textbf {e}}_{1},{\textbf {e}}_{1})+acf\times g({\textbf {e}}_{1},{\textbf {e}}_{1},{\textbf {e}}_{2})\\&+ade\times g({\textbf {e}}_{1},{\textbf {e}}_{2},{\textbf {e}}_{1})+adf\times g({\textbf {e}}_{1},{\textbf {e}}_{2},{\textbf {e}}_{2})+bce\times g({\textbf {e}}_{2},{\textbf {e}}_{1},{\textbf {e}}_{1})+bcf\times g({\textbf {e}}_{2},{\textbf {e}}_{1},{\textbf {e}}_{2})\\&+bde\times g({\textbf {e}}_{2},{\textbf {e}}_{2},{\textbf {e}}_{1})+bdf\times g({\textbf {e}}_{2},{\textbf {e}}_{2},{\textbf {e}}_{2}).\end{aligned}}}

Relation to tensor products

There is a natural one-to-one correspondence between multilinear maps

f : V 1 × × V n W , {\displaystyle f\colon V_{1}\times \cdots \times V_{n}\to W{\text{,}}}

and linear maps

F : V 1 V n W , {\displaystyle F\colon V_{1}\otimes \cdots \otimes V_{n}\to W{\text{,}}}

where V 1 V n {\displaystyle V_{1}\otimes \cdots \otimes V_{n}\!} denotes the tensor product of V 1 , , V n {\displaystyle V_{1},\ldots ,V_{n}} . The relation between the functions f {\displaystyle f} and F {\displaystyle F} is given by the formula

f ( v 1 , , v n ) = F ( v 1 v n ) . {\displaystyle f(v_{1},\ldots ,v_{n})=F(v_{1}\otimes \cdots \otimes v_{n}).}

Multilinear functions on n×n matrices

One can consider multilinear functions, on an n×n matrix over a commutative ring K with identity, as a function of the rows (or equivalently the columns) of the matrix. Let A be such a matrix and ai, 1 ≤ in, be the rows of A. Then the multilinear function D can be written as

D ( A ) = D ( a 1 , , a n ) , {\displaystyle D(A)=D(a_{1},\ldots ,a_{n}),}

satisfying

D ( a 1 , , c a i + a i , , a n ) = c D ( a 1 , , a i , , a n ) + D ( a 1 , , a i , , a n ) . {\displaystyle D(a_{1},\ldots ,ca_{i}+a_{i}',\ldots ,a_{n})=cD(a_{1},\ldots ,a_{i},\ldots ,a_{n})+D(a_{1},\ldots ,a_{i}',\ldots ,a_{n}).}

If we let e ^ j {\displaystyle {\hat {e}}_{j}} represent the jth row of the identity matrix, we can express each row ai as the sum

a i = j = 1 n A ( i , j ) e ^ j . {\displaystyle a_{i}=\sum _{j=1}^{n}A(i,j){\hat {e}}_{j}.}

Using the multilinearity of D we rewrite D(A) as

D ( A ) = D ( j = 1 n A ( 1 , j ) e ^ j , a 2 , , a n ) = j = 1 n A ( 1 , j ) D ( e ^ j , a 2 , , a n ) . {\displaystyle D(A)=D\left(\sum _{j=1}^{n}A(1,j){\hat {e}}_{j},a_{2},\ldots ,a_{n}\right)=\sum _{j=1}^{n}A(1,j)D({\hat {e}}_{j},a_{2},\ldots ,a_{n}).}

Continuing this substitution for each ai we get, for 1 ≤ in,

D ( A ) = 1 k 1 n 1 k i n 1 k n n A ( 1 , k 1 ) A ( 2 , k 2 ) A ( n , k n ) D ( e ^ k 1 , , e ^ k n ) . {\displaystyle D(A)=\sum _{1\leq k_{1}\leq n}\ldots \sum _{1\leq k_{i}\leq n}\ldots \sum _{1\leq k_{n}\leq n}A(1,k_{1})A(2,k_{2})\dots A(n,k_{n})D({\hat {e}}_{k_{1}},\dots ,{\hat {e}}_{k_{n}}).}

Therefore, D(A) is uniquely determined by how D operates on e ^ k 1 , , e ^ k n {\displaystyle {\hat {e}}_{k_{1}},\dots ,{\hat {e}}_{k_{n}}} .

Example

In the case of 2×2 matrices, we get

D ( A ) = A 1 , 1 A 1 , 2 D ( e ^ 1 , e ^ 1 ) + A 1 , 1 A 2 , 2 D ( e ^ 1 , e ^ 2 ) + A 1 , 2 A 2 , 1 D ( e ^ 2 , e ^ 1 ) + A 1 , 2 A 2 , 2 D ( e ^ 2 , e ^ 2 ) , {\displaystyle D(A)=A_{1,1}A_{1,2}D({\hat {e}}_{1},{\hat {e}}_{1})+A_{1,1}A_{2,2}D({\hat {e}}_{1},{\hat {e}}_{2})+A_{1,2}A_{2,1}D({\hat {e}}_{2},{\hat {e}}_{1})+A_{1,2}A_{2,2}D({\hat {e}}_{2},{\hat {e}}_{2}),\,}

where e ^ 1 = [ 1 , 0 ] {\displaystyle {\hat {e}}_{1}=} and e ^ 2 = [ 0 , 1 ] {\displaystyle {\hat {e}}_{2}=} . If we restrict D {\displaystyle D} to be an alternating function, then D ( e ^ 1 , e ^ 1 ) = D ( e ^ 2 , e ^ 2 ) = 0 {\displaystyle D({\hat {e}}_{1},{\hat {e}}_{1})=D({\hat {e}}_{2},{\hat {e}}_{2})=0} and D ( e ^ 2 , e ^ 1 ) = D ( e ^ 1 , e ^ 2 ) = D ( I ) {\displaystyle D({\hat {e}}_{2},{\hat {e}}_{1})=-D({\hat {e}}_{1},{\hat {e}}_{2})=-D(I)} . Letting D ( I ) = 1 {\displaystyle D(I)=1} , we get the determinant function on 2×2 matrices:

D ( A ) = A 1 , 1 A 2 , 2 A 1 , 2 A 2 , 1 . {\displaystyle D(A)=A_{1,1}A_{2,2}-A_{1,2}A_{2,1}.}

Properties

  • A multilinear map has a value of zero whenever one of its arguments is zero.

See also

References

  1. Lang, Serge (2005) . "XIII. Matrices and Linear Maps §S Determinants". Algebra. Graduate Texts in Mathematics. Vol. 211 (3rd ed.). Springer. pp. 511–. ISBN 978-0-387-95385-4.
Category: