Misplaced Pages

NASA-ESA Mars Sample Return

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from NASA-ESA Mars Sample Return Mission) Proposed Mars sample return mission
This article may require copy editing for grammar, style, cohesion, tone, or spelling. You can assist by editing it. (December 2023) (Learn how and when to remove this message)

NASA-ESA MSR Patch
Mars Sample Return Program
(Artwork; July 27, 2022)
Mars Sample Return(Video; November 17, 2022)

The NASA-ESA Mars Sample Return is a proposed Flagship-class Mars sample return (MSR) mission to collect Martian rock and soil samples in 43 small, cylindrical, pencil-sized, titanium tubes and return them to Earth around 2033.

The NASAESA plan, approved in September 2022, is to return samples using three missions: a sample collection mission (Perseverance), a sample retrieval mission (Sample Retrieval Lander + Mars Ascent Vehicle + Sample Transfer Arm + 2 Ingenuity-class helicopters), and a return mission (Earth Return Orbiter). The mission hopes to resolve the question of whether Mars once harbored life.

Although the proposal is still in the design stage, the Perseverance rover is currently gathering samples on Mars and the components of the sample retrieval lander are in testing phase on Earth.

After a project review critical of its cost and complexity, NASA announced that the project was "paused" as of 13 November 2023. On 22 November 2023, NASA was reported to have cut back on the Mars sample-return mission due to a possible shortage of funds. In April 2024, in a NASA update via teleconference, the NASA Administrator emphasized continuing the commitment to retrieving the samples. However, under the then-current mission profile, the cost of $11 billion was infeasible, therefore NASA would turn to industry and the Jet Propulsion Laboratory to form a new, more fiscally feasible mission profile to retrieve the samples, with responses expected by fall 2024.

History

See also: Mars sample-return mission § History

2001 to 2004

In the summer of 2001, the Jet Propulsion Laboratory (JPL) requested mission concepts and proposals from industry-led teams (Boeing, Lockheed Martin, and TRW). The science requirements included at least 500 grams (18 oz) of samples, rover mobility to obtain samples at least 1 kilometre (0.62 mi) from the landing spot, and drilling to obtain one sample from a depth of 2 metres (6 ft 7 in). That following winter, JPL made similar requests of certain university aerospace engineering departments (MIT and the University of Michigan).

Also in 2001, a separate set of industry studies was done for the Mars ascent vehicle (MAV) due to the uniqueness and key role of the MAV for MSR. Figure 11 in this reference summarized the need for MAV flight testing at a high altitude over Earth, based on Lockheed Martin's analysis that the risk of mission failure is "extremely high" if launch vehicle components are only tested separately.

In 2003, JPL reported that the mission concepts from 2001 had been deemed too costly, which led to the study of a more affordable plan accepted by two groups of scientists, a new MSR Science Steering Group and the Mars Exploration Program Analysis Group (MEPAG). Instead of a rover and deep drilling, a scoop on the lander would dig 20 centimetres (7.9 in) deep and place multiple samples together into one container. After five years of technology development, the MAV would be flight-tested twice above Earth before the mission PDR (Preliminary Design Review) in 2009.

Based on the simplified mission plan, assuming a launch from Earth in 2013 and two weeks on Mars for a 2016 return, technology development was initiated to ensure with high reliability that potential Mars microbes would not contaminate Earth, and also that the Mars samples would not be contaminated with Earth-origin biological materials. The sample container would be clean on the outside before departing from Mars, with installation onto the MAV inside an "Earth-clean MAV garage."

In 2004 JPL published an update on the 2003 plan. MSR would use the new large sky crane landing system in development for the Mars Science Laboratory rover (later named Curiosity). An MSR Technology Board was formed, and it was noted that the use of a rover might return to the MSR plan, in light of success with the Spirit and Opportunity rovers that arrived early in 2004. A 285-kilogram (628 lb) ascent rocket would carry 0.5-kilogram (1.1 lb) of samples inside a 5-kilogram (11 lb) payload, the Orbiting Sample (OS). The MAV would transmit enough telemetry to reconstruct events in case of failure on the way up to Mars orbit.

2005 to 2008

As of 2005, a rover had returned to the MSR plan, with a rock core drill in light of results from the Mars Exploration Rover discoveries. Focused technology development would start before the end of 2005 for mission PDR in 2009, followed by launch from Earth in 2013. Related technologies in development included potential advances for Mars arrival (navigation and descent propulsion) and implementing pump-fed liquid launch vehicle technology on a scale small enough for a MAV.

In late 2005, a peer-reviewed analysis showed that ascent trajectories to Mars orbit would differ depending on liquid versus solid propulsion, largely because small solid rocket motors burn faster, requiring a steeper ascent path to avoid excess atmospheric drag, while slower burning liquid propulsion might take advantage of more efficient paths to orbit.

Early in 2006, the Marshall Space Flight Center noted the possibility that a science rover would cache the samples on Mars, then subsequently a mini-rover would be sent along with the MAV on a sample return lander, in which case either the mini-rover or the science rover would deliver the samples to the lander for loading onto the MAV. A two-stage 250-kilogram (550 lb) solid propellant MAV would be gas ejected from a launch tube with its 5-kilogram (11 lb) payload, a 16-centimetre (6.3 in) diameter spherical package containing the samples. The second stage would send telemetry and its steering thrusters would use hydrazine fuel with additives. The authors expected the MAV to need multiple flight tests at a high altitude over Earth.

A peer-reviewed publication in 2007 described testing of autonomous sample capture for Mars orbit rendezvous. Free-floating tests were done on board a NASA aircraft using a parabolic "zero-g" flight path.

In 2007, Alan Stern, then NASA's Associate Administrator for Science, was strongly in favor of completing MSR sooner, and he asked JPL to include sample caching on the Mars Science Laboratory mission (later named Curiosity). A team at the Ames Research Center was designing a hockey puck-sized sample-caching device to be installed as an extra payload on MSL.

A review analysis in 2008 compared Mars ascent to lunar ascent, noting that the MAV would be not only technically daunting, but also a cultural challenge for the planetary community, given that lunar ascent has been done using known technology, and that science missions typically rely on proven propulsion for course corrections and orbit insertion maneuvers, similar to what Earth satellites do routinely.

2009 to 2011

Early in 2009, the In-Space Propulsion Technology project office at the NASA Glenn Research Center (GRC) presented a ranking of six MAV options, concluding that a 285-kilogram (628 lb) two-stage solid rocket with continuous telemetry would be best for delivering a 5-kilogram (11 lb) sample package to Mars orbit. A single-stage pump-fed bipropellant MAV was noted to be less heavy and was ranked second.

Later in 2009, the chief technologist of the Mars Exploration Directorate at JPL referred to a 2008 workshop on MSR technologies at the Lunar and Planetary Institute, and wrote that particularly difficult technology challenges included the MAV, sample acquisition and handling, and back planetary protection, then further commented that "The MAV, in particular, stands out as the system with highest development risk, pointing to the need for an early start" leading to flight testing before preliminary design review (PDR) of the lander that would deliver the MAV.

In October 2009, NASA and ESA established the Mars Exploration Joint Initiative to proceed with the ExoMars program, whose ultimate aim is "the return of samples from Mars in the 2020s". ExoMars's first mission was planned to launch in 2018 with unspecified missions to return samples in the 2020–2022 time frame. As reported to the NASA Advisory Council Science Committee (NAC-SC) early in 2010, MEPAG estimated that MSR "will cost $8-10B, and it is obvious that NASA and ESA can't fund this amount by themselves." The cancellation of the caching rover MAX-C in 2011, and later NASA withdrawal from ExoMars, due to budget limitations, ended the mission. The pull-out was described as "traumatic" for the science community.

In 2010–2011, the NASA In-Space Propulsion Technology (ISPT) program at the Glenn Research Center received proposals and funded industry partners for MAV design studies with contract options to begin technology development, while also considering propulsion needs for Earth return spacecraft. Inserting the spacecraft into Mars orbit, then returning to Earth, was noted to need a high total of velocity changes, leading to a conclusion that solar electric propulsion could reduce mission risk by improving mass margins, compared to the previously assumed use of chemical propulsion along with aerobraking at Mars. The ISPT team also studied scenarios for MAV flight testing over Earth and recommended two flight tests prior to MSR mission PDR, considering the historical low probability of initial success for new launch vehicles.

The NASA–ESA potential mission schedule anticipated launches from Earth in 2018, 2022 and 2024 to send respectively a sample caching rover, a sample return orbiter and a sample retrieval lander for a 2027 Earth arrival, with MAV development starting in 2014 after two years of technology development identified by the MAV design studies. The ISPT program summarized a year of propulsion technology progress for improving Mars arrival, Mars ascent, and Earth return, stating that the first flight test of a MAV engineering model would need to occur in 2018 to meet the 2024 launch date for the sample retrieval lander.

The 2011, MAV industry studies were done by Lockheed-Martin teamed with ATK; Northrop-Grumman; and Firestar Technologies, to deliver a 5-kg (11-lb), 16-cm (6.3-inch) diameter sample sphere to Mars orbit. The Lockheed-Martin-ATK team focused on a solid propellant first stage with either solid or liquid propellant for the upper stage, estimated MAV mass in the range 250 to 300 kg (550 to 660 lb), and identified technologies for development to reduce mass. Northrop-Grumman (the former TRW) similarly estimated a mass below 300 kg using pressure-fed liquid bipropellants for both stages, and had plans for further progress. Firestar Technologies described a single-stage MAV design having liquid fuel and oxidizer blended together in one main propellant tank.

In early 2011 the US National Research Council's Planetary Science Decadal Survey, which laid out mission planning priorities for the period 2013–2022, declared an MSR campaign its highest priority Flagship Mission for that period. In particular, it endorsed the proposed Mars Astrobiology Explorer-Cacher (MAX-C) mission in a "descoped" (less ambitious) form. This mission plan was officially cancelled in April 2011. The plan cancelled in 2011 for budget reasons had been for NASA and ESA to each build a rover to send together in 2018.

2012 to 2013

In 2012, prospects for MSR were slowed further by a 38-percent cut in NASA's Mars program budget for fiscal year 2013, leading to controversy among scientists over whether Mars exploration could thrive on a series of small rover missions. A Mars Program Planning Group (MPPG) was convened as one response to budget cuts.

In mid-2012, eight weeks before Curiosity arrived on Mars, the Lunar and Planetary Institute hosted a NASA-sponsored three-day workshop to gather expertise and ideas from a wide range of professionals and students, as input to help NASA reformulate the Mars Exploration Program, responsive to the latest Planetary Decadal Survey that prioritized MSR. A summary report noted that the workshop was held in response to recent deep budget cuts, 390 submissions were received, 185 people attended and agreed that "credible steps toward MSR" could be done with reduced funding. The MAX-C rover (ultimately implemented as Mars 2020, Perseverance) was considered beyond financial reach at that time, so the report noted that progress toward MSR could include an orbiter mission to test autonomous rendezvous, or a Phoenix-class lander to demonstrate pinpoint landing while delivering a MAV as a technology demonstration. The workshop consisted largely of three breakout group discussions for Technology and Enabling Capabilities, Science and Mission Concepts, and Human Exploration and Precursors.

Wide-ranging discussions were documented by the Technology Panel, which suggested investments for improved drilling and "small is beautiful" rovers with an "emphasis on creative mass-lowering capabilities." The panel stated that MAV "functional technology is not new" but the Mars environment would pose challenges, and referred to MAV technologies as "a risk for most sample return scenarios of any cost range." MAV technology was addressed in numerous written submissions to the workshop, one of which described Mars ascent as "beyond proven technology" (velocity and acceleration in combination for small rockets) and a "huge challenge for the social system," referring to a "Catch-22" dilemma "in which there is no tolerance for new technology if sample return is on the near-term horizon, and no MAV funding if sample return is on the far horizon."

In September 2012 NASA announced its intention to further study MSR strategies as outlined by the MPPG – including a multiple-launch scenario, a single-launch scenario, and a multiple-rover scenario – for a mission beginning as early as 2018. A "fetch rover" would retrieve the sample caches and deliver them to a Mars ascent vehicle (MAV). In July 2018, NASA contracted Airbus to produce a "fetch rover" concept. As of late 2012, It was determined that the MAX-C rover concept to collect samples could be implemented for a launch in 2020 (Mars 2020), within available funding using spare parts and mission plans developed for NASA's Curiosity Mars rover

In 2013 the NASA Ames Research Center proposed that a SpaceX Falcon Heavy could deliver two tons of useful payload to the Mars surface, including an Earth return spacecraft that would be launched from Mars by a one-ton single-stage MAV using liquid bipropellants fed by turbopumps. The successful landing of the Curiosity rover directly on its wheels (August 2012) motivated JPL to take a fresh look at carrying the MAV on the back of a rover. A fully guided 300-kg MAV (like Lockheed's 2011 two-stage solid) would avoid the need for a round-trip fetch rover. A smaller 150-kg MAV would permit one rover to also include sample collection while using MSL heritage to reduce mission cost and development time, placing most development risk on the MAV. The 150-kg MAV would be made lightweight by spinning it up before stage separation, although the lack of telemetry data from the spin-stabilized unguided upper stage was noted as a disadvantage.

JPL later presented more details of the 150-kg solid propellant mini-MAV concept of 2012, in a summary of selected past efforts. The absence of telemetry data during the 1999 loss of the Mars Polar Lander had put an emphasis on "critical event communications", subsequently applied to MSR. Then after the MSL landing in 2012, requirements had been revisited with a goal to reduce MAV mass. Single fault tolerance and continuous telemetry data to Mars orbit were questioned. For the 500 grams (1.1 lb) of samples, a 3.6-kg (7.9 lb) payload was deemed possible instead of 5 kg (11 lb). The 2012 mini-MAV concept had single-string avionics, in addition to the spin-stabilized upper stage without telemetry.

2014 to 2017

In 2014–2015 JPL analyzed many options for Mars ascent including solid, hybrid and liquid propellants, for payloads ranging from 6.5 kg to 25 kg. Four MAV concepts using solid propellant had two stages, while one or two stages were considered for hybrid and liquid propellants. Seven options were scored for ten attributes ("figures of merit"). A single stage hybrid received the highest overall score, including the most points for reducing cost and separately for reducing complexity, with the fewest points for technology readiness. Second overall was a single-stage liquid bipropellant MAV using electric pumps. A pressure-fed bipropellant design was third, with the most points for technology readiness. Solid propellant options had lower scores, partly due to receiving very few points for flexibility. JPL and NASA Langley Research Center cautioned that the high thrust and short burn times of solid rocket motors would result in early burnout at a low altitude with substantial atmosphere remaining to coast through at high Mach numbers, raising stability and control concerns. With concurrence from the Mars Program Director, a decision was made in January 2016 to focus limited technology development funds on advancing a hybrid propellant MAV (liquid oxidizer with solid fuel).

Starting in 2015, a new effort for planetary protection moved the backward planetary protection function from the surface of Mars to the sample Return Orbiter, to "break-the-chain" in flight. Concepts for brazing, bagging, and plasma sterilization were studied and tested, with a primary focus on brazing as of 2016.

2018 to 2022

In April 2018 a letter of intent was signed by NASA and ESA that may provide a basis for a Mars sample-return mission. The agreement was dated during the 2nd International Mars Sample Return Conference in Berlin, Germany. The conference program was archived along with 125 technical submissions that covered sample science (anticipated findings, site selection, collection, curation, analysis) and mission implementation (Mars arrival, rovers, rock drills, sample transfer robotics, Mars ascent, autonomous orbit rendezvous, interplanetary propulsion, Earth arrival, planetary protection). In one of many presentations, an international science team noted that collecting sedimentary rock samples would be required to search for ancient life. A joint NASA-ESA presentation described the baseline mission architecture, including sample collection by the Mars 2020 Rover derived from the MAX-C concept, a Sample Retrieval Lander, and an Earth Return Orbiter. An alternative proposal was to use a SpaceX Falcon Heavy to decrease mission cost while delivering more mass to Mars and returning more samples. Another submission to the Berlin conference noted that mission cost could be reduced by advancing MAV technology to enable a significantly smaller MAV for a given sample payload.

In July 2019 a mission architecture was proposed. In 2019, JPL authors summarized sample retrieval, including a sample fetch rover, options for fitting 20 or 30 sample tubes into a 12-kilogram (26 lb) payload on a 400-kilogram (880 lb) single-stage-to-orbit (SSTO) MAV that would use hybrid propellants, a liquid oxidizer with a solid wax fuel, which had been prioritized for propulsion technology development since 2016. Meanwhile, the Marshall Space Flight Center (MSFC) presented a comparison of solid and hybrid propulsion for the MAV. Later in 2019, MSFC and JPL had collaborated on designing a two-stage solid propellant MAV, and noted that an unguided spinning upper stage could reduce mass, but this approach was abandoned at the time due to the potential for orbital variations.

Early in 2020 JPL updated the overall mission plan for an orbiting sample package (the size of a basketball) containing 30 tubes, showing solid and hybrid MAV options in the range 400 to 500 kilograms (880 to 1,100 lb). Adding details, MSFC presented designs for both the solid and hybrid MAV designs, for a target mass of 400 kilograms (880 lb) at Mars liftoff to deliver 20 or 30 sample tubes in a 14-to-16-kilogram (31 to 35 lb) payload package. In April 2020, an updated version of the mission was presented. The decision to adopt a two-stage solid rocket MAV was followed by Design Analysis Cycle 0.0 in the spring of 2020, which refined the MAV to a 525-kilogram (1,157 lb) design having guidance for both stages, leading to reconsideration of an unguided spin-stabilized second stage to save mass.

In October 2020, the MSR Independent Review Board (IRB) released its report recommending overall that the MSR program proceed, then in November NASA responded to detailed IRB recommendations. The IRB noted that MSR would have eight first-time challenges including the first launch from another planet, autonomous orbital rendezvous, and robotic sample handling with sealing to "break-the-chain". The IRB cautioned that the MAV will be unlike any previous launch vehicle, and experience shows that the smaller a launch vehicle, the more likely it is to end up heavier than designed. Referring to the unguided upper stage of the MAV, the IRB stated the importance of telemetry for critical events, "to allow useful reconstruction of a fault during second stage flight". The IRB indicated that the most probable mission cost would be $3.8-$4.4B. As reported to the NAC-SC in April 2021, the Planetary Science Advisory Committee (PAC) was "very concerned about the high cost" of MSR, and wanted to be sure that astrobiology considerations would be included in plans for returned sample laboratories.

Early in 2022 MSFC presented the guided-unguided MAV design for a 125-kilogram (276 lb) mass reduction and documented remaining challenges including aerodynamic complexities during the first stage burn and coast to altitude, a desire to locate hydrazine steering thrusters farther from the center of mass, and stage separation without tip-off rotation. While stage separation and subsequent spin-up would be flight tested, the authors noted that it would be ideal to flight test an entire flight-like MAV, but there would be a large cost.

In April 2022, the United States National Academies released the Planetary Science Decadal Survey report for 2023-2032, a review of plans and priorities for the upcoming ten years, after many committee meetings starting in 2020, with consideration of over 500 independently submitted white papers, more than 100 regarding Mars including comments on science and technology for sample return. The published document noted NASA's 2017 plan for a "focused and rapid" sample return campaign with essential participation from ESA, then recommended, "The highest scientific priority of NASA's robotic exploration efforts this decade should be completion of Mars Sample Return as soon as is practicably possible." Decadal white papers emphasized the importance of MSR for science, included a description of implementing MSR, and noted that the MAV has been underestimated despite needing flight performance beyond the state of the art for small rockets, needs a sustained development effort, and that technology development for a smaller MAV has the potential to reduce MSR mission cost. Decadal Survey committee meetings hosted numerous invited speakers, notably a presentation from the MSR IRB.

As of March 2022, separate landers were planned for the fetch rover and the MAV because together they would be too large and heavy for a single lander, then a cost-saving plan as of July was to send only one lander with the MAV and rely on the Perseverance rover to pass sample tubes to the MAV in the absence of a fetch rover. Two new lightweight helicopters on the MAV lander would serve as a backup for moving the samples on Mars.

2023 to 2024

At the start of 2023 it was revealed that a "Mars Sample Fetch Helicopter" had been envisioned since at least 2021 by the team at AeroVironment that created Ingenuity to fly in the thin atmosphere of Mars. In a public budget meeting in March, NASA noted the high cost of MSR and had begun to assemble a second independent review board (MSR IRB-2) to assess the design, schedule and required funding. The IRB-2 began working in May 2023 and released its report in September 2023.

In January 2024, a related proposed NASA plan had been challenged due to budget and scheduling considerations, and a newer overhaul plan undertaken. The American Institute of Aeronautics and Astronautics contrasted the mission cost challenge with the science value of returned samples, noting that multiple in-situ science missions could be done for the cost of MSR, but that an electron microscope for example would be too large to send to Mars. A response in March described the high mission cost as related to the size of the MAV and its huge lander, offering that innovation could lead to a smaller MAV.

In April 2024, NASA formally responded to the IRB-2 report, with a report from the MIRT (MSR IRB Response Team) which noted the cost-saving value of a smaller MAV. On April 15, 2024, NASA Administrator Bill Nelson and Science Mission Director Nicola Fox announced the organization's response to the September 2023 independent review board's investigation, notably the finding that Mars Sample Return at its current design and cost, originally estimated at $7 billion with Earth re-entry by 2033, would now cost more than an unacceptable $11 billion and end in Earth re-entry no sooner than 2040. In response, Nelson and Fox stated that NASA would make requests to industry the next day to come up with alternatives that would likely utilize more proven mission architectures with longer heritages and comply with the board's recommendations, with responses preferred by fall 2024. They also said they would spend $310 million on the program for fiscal year 2024. On April 22, a public meeting was held to explain NASA's April 16 request for proposals to revisit alternative mission architectures.

2024 to present

In June 2024, following the agency’s decision to open the mission to industry proposals, 7 firms were selected to move forward in a 90 day mission study.

Sample collection

The Mars 2020 mission landed the Perseverance rover, which is storing samples to be returned to Earth later.

Mars 2020 Perseverance rover

Perseverance rover - cored rock sample collection at 1000 sols (December 12, 2023)
Mapping Perseverance's samples collected to date (The 10 duplicate samples left behind at Three Forks Sample Depot are framed in green colour.)
Facsimiles of Perseverance's sample tubes at JPL in Southern California

The Mars 2020 mission landed the Perseverance rover in Jezero crater in February 2021. It collected multiple samples and packed them into cylinders for later return. Jezero appears to be an ancient lakebed, suitable for ground sampling.

At the beginning of August 2021, Perseverance made its first attempt to collect a ground sample by drilling out a finger-size core of Martian rock. This attempt did not succeed. A drill hole was produced, as indicated by instrument readings, and documented by a photograph of the drill hole. However, the sample container turned out to be empty, indicating that the rock sampled was not robust enough to produce a solid core.

Perseverance's sampling bits
  • Far left: One pointed regolith drill
  • Middle: Six rock drills
  • Right: Two shorter abrasion tools

A second target rock judged to have a better chance to yield a sufficiently robust sample was sampled at the end of August and the beginning of September 2021. After abrading the rock, cleaning away dust by puffs of pressurized nitrogen, and inspecting the resulting rock surface, a hole was drilled on September 1. A rock sample appeared to be in the tube, but it was not immediately placed in a container. A new procedure of inspecting the tube optically was performed. On September 6, the process was completed and the first sample placed in a container.

In support of the NASA-ESA Mars Sample Return, rock, regolith (Martian soil), and atmosphere samples are being cached by Perseverance. As of October 2023, 27 out of 43 sample tubes have been filled, including 8 igneous rock samples, 12 sedimentary rock sample tubes, a Silica-cemented carbonate rock sample tube, two regolith sample tubes, an atmosphere sample tube, and three witness tubes. Before launch, 5 of the 43 tubes were designated "witness tubes" and filled with materials that would capture particulates in the ambient environment of Mars. Out of 43 tubes, 3 witness sample tubes will not be returned to Earth and will remain on rover as the sample canister will only have 30 tube slots. Further, 10 of the 43 tubes are left as backups at the Three Forks Sample Depot.

From December 21, 2022 Perseverance started a campaign to deposit 10 of its collected samples at the backup depot, Three Forks. This work was completed on January 28, 2023.

List of samples cached

Sample Tube Status
  Left at Three Forks Sample Depot   Remain stowed in the Rover
Sample Details
Sampling Attempt Date Tube No. Seal No. Ferrule Prefix Ferrule No. Contents Sample Name and Image during Caching Sample Depot Deposit Date, Spot and Image Rock Name Core Length Estimated Martian Atmosphere Headspace Gas Location Notes
1 June 22, 2021
(Sol 121)
SN061 SN147 10464848-7 SN090 Witness Tube (Empty)
WB-1
N/A N/A 2.2 x 10 mol North Séítah Unit This was taken as a dry-run in preparation for later sampling attempts, and did not aim to sample a rock. During final pre-launch activities, this witness tube was activated (the inner seal was punctured to begin accumulation) and placed in the Bit Carousel. This tube will therefore have accumulated contaminants for the entire duration of exposure from a few months before launch through cruise and EDL until it was sealed on the surface of Mars. Given its long exposure, it is likely that the inner surfaces of WB1 will be saturated with organic contaminants, i.e., they will be in adsorption equilibrium with their immediate surroundings in the rover (and or the entire spacecraft prior to landing). WB1 is therefore expected to have higher concentrations of contaminants, and potentially different contaminants, than the sample tubes.
2 August 6, 2021
(Sol 164)
SN233 SN025 10464848-7 SN062 Atmospheric Gas
Roubion (failed attempt of caching rock sample)

January 4, 2023 (Sol 667) at Three Forks Sample Spot "4"
Roubion
18°25′40″N 77°27′06″E / 18.42767°N 77.45167°E / 18.42767; 77.45167
N/A 4.9x10 mol Polygon Valley, Cratered Floor Fractured Rough Unit Attempted to sample a rock consisting of Basaltic lava flow or sandstone or Microgabbro but did not succeed, as they didn't reach the bit carousel and the caching system stored and sealed an empty tube. However, in this process, it collected atmospheric samples.
3 September 6, 2021
(Sol 195)
SN266 SN170 10464848-6 SN099 Basalt (or possibly basaltic sandstone) Rock Sample
Montdenier

January 10, 2023 (Sol 672) at Three Forks Sample Spot "6"
Rochette
18°25′51″N 77°26′40″E / 18.43074°N 77.44433°E / 18.43074; 77.44433
5.98 cm (2.35 in) 1.2x10 mol Arturby Ridge, Citadelle, South Séítah Unit Successful sample.
4 September 8, 2021
(Sol 197)
SN267 SN170 10464848-6 SN074 Basalt (or possibly basaltic sandstone) Rock Sample
Montagnac
Rochette
18°25′51″N 77°26′40″E / 18.43074°N 77.44433°E / 18.43074; 77.44433
6.14 cm (2.42 in) 1.3x10 mol Arturby Ridge, Citadelle, South Séítah Unit Sampled from same rock as previous sample.
5 November 15, 2021
(Sol 263)
SN246 SN194 10464848-5 SN107 Olivine cumulate Rock Sample
Salette
Brac
18°26′02″N 77°26′35″E / 18.43398°N 77.44305°E / 18.43398; 77.44305
6.28 cm (2.47 in) 1.1 x10 mol Brac Outcrop, South Séítah Unit
6 November 24, 2021
(Sol 272)
SN284 SN219 10464848-6 SN189 Olivine cumulate Rock Sample
Coulettes

January 6, 2023 (Sol 669) at Three Forks Sample Spot "5"
Brac
18°26′02″N 77°26′35″E / 18.43398°N 77.44305°E / 18.43398; 77.44305
3.30 cm (1.30 in) 2.5 x10 mol Brac Outcrop, South Séítah Unit
7 December 22, 2021
(Sol 299)
SN206 SN184 10464848-7 SN064 Olivine cumulate Rock Sample
Robine
Issole
18°25′58″N 77°26′29″E / 18.43264°N 77.44134°E / 18.43264; 77.44134
6.08 cm (2.39 in) 1.0 x10 mol Issole, South Séítah Unit
8 December 29, 2021
(Sol 307)
SN261 SN053 10464848-6 SN062 Olivine cumulate Rock Sample
Pauls (Abandoned sample from this site due to Core Bit Dropoff.)

December 21, 2022 (Sol 653) at Three Forks Sample Spot "1"
Issole
18°25′58″N 77°26′29″E / 18.43264°N 77.44134°E / 18.43264; 77.44134
N/A N/A Issole, South Séítah Unit Pebble-sized debris from the first sample fell into the bit carousel during transfer of the coring bit, which blocked the successful caching of the sample. It was decided to abandon this sample and do a second sampling attempt again. Subsequent tests and measures cleared remaining samples in tube and debris in caching system The tube was reused for second sample attempt, which was successful.

It was the first sample tube to be deposited at a Sample Depot (in this case the depot is Three Forks).

9 January 31, 2022
(Sol 338)

Malay (During Caching)
3.07 cm (1.21 in) 2.7 x10 mol
10 March 7, 2022
(Sol 372)
SN262 SN172 10464848-6 SN129 Basaltic andesite Rock Sample
Ha'ahóni (aka "Hahonih")
Sid
18°27′09″N 77°26′38″E / 18.45242°N 77.44386°E / 18.45242; 77.44386
6.50 cm (2.56 in) 0.98 x10mol Ch'ał outcrop(100 m (330 ft) east of Octavia E. Butler Landing), Séítah Unit
11 March 13, 2022
(Sol 378)
SN202 SN168 10464848-4 SN074 Basaltic andesite Rock Sample
Atsá (aka "Atsah")

January 20, 2023 (Sol 682) at Three Forks Sample Spot "9"
Sid
18°27′09″N 77°26′38″E / 18.45242°N 77.44386°E / 18.45242; 77.44386
6.00 cm (2.36 in) 1.3 x10 mol Ch'ał outcrop(100 m (330 ft) east of Octavia E. Butler Landing), Séítah Unit
12 July 7, 2022
(Sol 490)
SN186 SN188 10464848-4 SN101 Clastic Sedimentary Rock Sample
Swift Run
Skinner Ridge
18°24′22″N 77°27′32″E / 18.40617°N 77.45893°E / 18.40617; 77.45893
6.69 cm (2.63 in) 1.23 x 10 mol Skinner Ridge, Delta Front First Deltaic and First sedimentary sample cached by Perseverance.
13 July 12, 2022
(Sol 495)
SN272 SN192 10464848-6 SN068 Clastic Sedimentary Rock Sample
Skyland

January 18, 2023 (Sol 680) at Three Forks Sample Spot "8"
Skinner Ridge
18°24′22″N 77°27′32″E / 18.40617°N 77.45893°E / 18.40617; 77.45893
5.85 cm (2.30 in) 1.7 x 10 mol Skinner Ridge, Delta Front
14 July 16, 2022
(Sol 499)
SN205 SN119 10464848-6 SN170 Witness Tube (Empty)
WB2
N/A N/A 2.7 x 10 mol Hogwallow Flats, Delta Front This may have been done to clean out any leftover debris during the previous sampling attempts. On sol 495, a string-like piece of foreign object debris (FOD) similar to materials released during EDL was observed in the workspace images. On sol 499 this object was no longer observed, presumably because it blew out of the scene. This observation suggests the possibility of FOD in tubes sealed in this general area.
15 July 27, 2022
(Sol 510)
SN172 SN157 10464848-7 SN099 Fine grained, well-sorted sedimentary rock sample, sulphate-bearing coarse mudstone
Hazeltop
Wildcat Ridge
18°24′21″N 77°27′31″E / 18.40589°N 77.45863°E / 18.40589; 77.45863
5.97 cm (2.35 in) 1.63 x 10 mol Wildcat Ridge, Delta Front
16 August 3, 2022
(Sol 517)
SN259 SN177 10464848-5 SN110 Fine grained, well-sorted sedimentary rock sample, sulphate-bearing coarse mudstone
Bearwallow

January 13, 2023 (Sol 675) at Three Forks Sample Spot "7"
Wildcat Ridge
18°24′21″N 77°27′31″E / 18.40589°N 77.45863°E / 18.40589; 77.45863
6.24 cm (2.46 in) 1.43 x 10 mol Wildcat Ridge, Delta Front
17 October 2, 2022
(Sol 575)
SN264 SN068 10464848-5 SN085 Fine grained, well-sorted sedimentary rock, olivine-bearing coarse mudstone
Shuyak
Amalik outcrop
77°24′05″N 18°27′03″E / 77.40144°N 18.45073°E / 77.40144; 18.45073
5.55 cm (2.19 in) 1.73 x 10 mol Amalik outcrop, Delta Front
18 October 6, 2022
(Sol 579) – November 16, 2022 (Sol 589)
SN184 SN587 10464848-4 SN030 Fine grained, well-sorted sedimentary rock, olivine-bearing coarse mudstone
Mageik

December 23, 2022 (Sol 655) at Three Forks Sample Spot "2"
Amalik outcrop
77°24′05″N 18°27′03″E / 77.40144°N 18.45073°E / 77.40144; 18.45073
7.36 cm (2.90 in) 0.63 x 10 mol Amalik outcrop, Delta Front The anomaly first appeared on Oct 5 after the successful coring of the mission's 14th sample, called "Mageik," when the seal assigned to cap the rock-core-filled sample tube did not release as expected from its dispenser.

The process of sealing a sample happens in the rover's Sampling and Caching System. During sealing, a small robotic arm moves the rock-core-filled tube to one of seven dispensers and presses its open end against a waiting seal. On the 17 previous occasions when a sample tube had been sealed during the mission, the seal was pressed fully into the tube. That allowed the seal to be extracted from the dispenser and the arm to move the seal-tube combination to a different station where they are pressed together, creating a hermetic seal. However, when the sample handling system attempted to dispense a seal in the tube of the Mageik sample, the seal encountered too much resistance and did not come free. The sampling system automatically detected the lack of seal and stored the unsealed tube safely so the tube and sample hardware remain in a stable configuration.

One of the possible causes of the seal's nondeployment may be that Martian dust adhered to a location on the tube's interior surface where the dust could impede successful coupling and extraction. To ensure a hermetic seal, the tolerances between tube and seal are, by necessity, extremely small: 0.00008 inches (0.002 mm). The rover's CacheCam captured images showing light deposits of dust on the tube's lip, but the camera's imaging capabilities along the tube's inner surface are quite limited.

Sealing which was tried again and again was finally completed on November 16, 2022 (Sol 589) successfully.

19 October 14, 2022
(Sol 586)
SN188 SN153 10464848-5 SN073 Witness Tube (Empty)
WB3

January 28, 2023 (Sol 690) at Three Forks Sample Spot "10"
N/A N/A 2.31 x 10 mol The witness tubes do not collect samples but are opened near the sampling location to "witness" the Martian environment. The witness tubes go through the motions of sample collection without collecting rock or soil samples and are sealed and cached like Martian samples. Witness tubes aim to ensure that any potential Earth contaminants are detected during sample collection. This is to provide the validity of the samples once returned to Earth for analysis. During the processing of the WTA, two faults occurred. On sol 584 there was a fault during the simulated coring which resulted in only 5 of the normally 7 spindle/percuss motions being performed, and no percuss-to-ingest motion was executed. While anomaly recovery was being undertaken, the tube remained in the corer and exposed to the Martian environment about 10 times longer than normal WTA/sample exposure time. A second fault occurred after the sealing of the tube on sol 586, and left the hermetically sealed WTA sitting in the sealing station at an elevated temperature (up to 40 °C) until sol 591. The witness tube was successfully sealed on October 14, 2022 (Sol 587) and placed into storage on October 19, 2022
(Sol 592).
20 November 24, 2022
(Sol 627) – November 29, 2022
(Sol 632)
SN242 SN151 10464848-5 SN113 Fine grained, moderately-sorted sedimentary rock, sulphate-bearing coarse sandstone
Kukaklek
Hidden Harbor
77°23′57″N 18°27′13″E / 77.39911°N 18.45364°E / 77.39911; 18.45364
4.97 cm (1.96 in) 1.78 x 10 mol Hidden Harbor, Delta Front First Sample from an abrasion patch, abraded earlier on the rock. It was sampled on November 29, 2022
(Sol 632)
21 December 2, 2022
(Sol 635)
SN059 SN098 10464848-5 SN063 Regolith Sand Sample, likely containing mixed sedimentary and igneous grains
Atmo Mountain
Observation Mountain
77°24′04″N 18°27′05″E / 77.40122°N 18.45131°E / 77.40122; 18.45131
5.30 cm (2.09 in) 1.87 x 10 mol Observation Mountain, Delta Front First Regolith Sample.
22 November 7, 2022
(Sol 639)
SN173 SN191 10464848-6 SN106 Regolith Sand Sample, likely containing mixed sedimentary and igneous grains
Crosswind Lake

December 29, 2022 (Sol 661) at Three Forks Sample Spot "3"
Observation Mountain
77°24′04″N 18°27′05″E / 77.40122°N 18.45131°E / 77.40122; 18.45131
5.30 cm (2.09 in) 1.88 x 10 mol Observation Mountain, Delta Front
23 March 30, 2023
(Sol 749)
SN214 SN066 1064848-5 SN150 Sedimentary Rock Sample
Melyn
Berea Outcrop
77°23′02″N 18°28′13″E / 77.383946°N 18.470216°E / 77.383946; 18.470216
6.04 cm (2.38 in) Berea, Tenby, Upper Fan First Sample taken after completion of sample depot and the first taken under the new mission campaign.
24 May 23, 2023
(Sol 802)
SN094 10464848-3 Conglomerate Sedimentary Rock Sample N/A (Abandoned sample from this site due to small sample collection.) Onahu outcrop
77°22′07″N 18°26′00″E / 77.368526°N 18.433455°E / 77.368526; 18.433455
1.30 cm (0.51 in) (Non-Cached) N/A Onahu, Upper Fan The first attempt yielded a sample that was unfortunately too small, and the second attempt was unsuccessful and caching would have resulted in another empty Roubion atmospheric sample tube.

A conglomerate rock is of special interest to the Science Team because they are made up of many clasts of rocks. These distinct clasts become cemented together over time to form the conglomerate. Importantly, these clasts were likely transported to Jezero crater from much farther away. Analyzing the distinct clasts and cements captured in a sample of the conglomerate would give insights into where these materials were sourced, how far they traveled, and what the martian environment was like, both when the clasts first formed and when the conglomerate rock formed.

25 June 4, 2023
(Sol 814)
N/A (Abandoned after failed attempt of collecting rock sample) N/A N/A
26 June 23, 2023
(Sol 832)
Otis Peak Emerald Lake
77°22′05″N 18°28′59″E / 77.368179°N 18.482989°E / 77.368179; 18.482989
5.77 cm (2.27 in) Emerald Lake, Upper Fan
27 September 15, 2023
(Sol 914)
SN258 SN451 10464848-4 SN196 Pilot Mountain Dream Lake 6.00 cm (2.36 in) Dream Lake, Upper Fan
28 September 23, 2023
(Sol 922)
SN178 SN024 10464848-6 SN113 Sedimentary Rock Sample Pelican Point Hans Amundsen Memorial Workspace 6.10 cm (2.40 in) Hans Amundsen Memorial Workspace, Margin Unit
29 October 21, 2023
(Sol 949)
SN263 SN018 10464848-6 SN089 Sedimentary Rock Sample Lefroy Bay Turquoise Bay 4.70 cm (1.85 in) Turquoise Bay, Margin Unit
30 March 11, 2024
(Sol 1087)
SN174 SN214 10464848-6 SN026 Silica-cemented Carbonate Comet Geyser Bunsen Peak 5.78 cm (2.28 in) Bunsen Peak, Margin Unit
31 July 21, 2024
(Sol 1216)
Sedimentary Cheyava Falls Cheyava Falls 6.2 cm (2.4 in) Cheyava Falls, Neretva Vallis
Sources:
Sample and Depot Overview
Samples Tubes Cached  (65%) 43 28 Samples Tubes Left at Three Forks Sample Depot  (100%) 10


Type Of Cached Samples

Samples By Type

  Witness (3) (10.71%)  Atmospheric (1) (3.57%)  Igneous (8) (28.57%)  Sedimentary (13) (46.43%)  Regolith (2) (7.14%)  Silica-cemented Carbonate (1) (3.57%)
Drilled Holes
All Drilled Holes On Mars By Perseverance (except Atsá sample) (Scrollable image)
Sample Depot at Three Forks
Mars Sample Depot at 3 forks

Three Forks Sample Depot

After nearly a Martian year of NASA's Perseverance Mars rover's science and sample caching operations for MSR campaign, the rover is currently tasked to deposit ten samples that it has cached from beginning at Three Forks Sample Depot as NASA aims to eventually return them to Earth starting from December 19, 2022. This depot will serve as a backup spot, in case Perseverance cannot deliver its samples. Perseverance is depositing the samples at a relatively flat terrain known as Three Forks so that NASA and ESA could recover them in its successive missions in the MSR campaign. It is even selected as the backup landing spot for the Sample Retrieval Lander. It is a relatively benign place. It is as flat and smooth as a table top.

Testing a Sample Drop in the Mars Yard with VSTB OPTIMISM Rover

Perseverance's complex Sampling and Caching System takes almost an hour to retrieve the metal tube from inside the rover's belly, view it one last time with its internal Cachecam, and drop the sample ~0.89 m (2 ft 11 in) onto a carefully selected patch of Martian surface.

Mars Perseverance rover – wind lifts a massive dust cloud (June 18, 2021)

The tubes will not be piled up at a single spot. Instead, each tube-drop location will have an "area of operation" ~5.5 m (18 ft) in diameter. To that end, the tubes will be deposited on the surface in an intricate zigzag pattern of 10 spots for 10 tubes, with each sample ~5 m (16 ft) to ~15 m (49 ft) apart from one another near the proposed Sample retrieval lander's landing site. There are various reasons for this plan, most significantly the design of the sample recovery helicopters. They are designed to interact with only one tube at a time. Alongside, they will perform takeoffs and landings, and driving in that spot. To ensure a helicopter could retrieve samples without any problem, the plan is to be executed properly and would span over more than two months.

Perseverance Views Dust Devils Swirling Across Jezero Crater

Before and after Perseverance drops each tube, mission controllers will review a multitude of images from the rover's SHERLOC WATSON camera. Images by the SHERLOC WATSON camera are also used to check for surety that the tube had not rolled into the path of the rover's wheels. They also look to ensure the tube had not landed in such a way that it was standing on its end (each tube has a flat end piece called a "glove" to make it easier to be picked up by future missions). That occurred less than 5% of the time during testing with Perseverance's Earthly twin OPTIMISM in JPL's Mars Yard. In case it does happen on Mars, the mission has written a series of commands for Perseverance to carefully knock the tube over with part of the turret at the end of its robotic arm.

A Map of Perseverance's Sample Depots

These SHERLOC WATSON camera images will also give the Mars Sample Return team the precise data necessary to locate the tubes in the event of the samples becoming covered by dust or sand before they are collected. Mars does get windy, but not like on Earth, as the atmosphere on Mars is 100 times less dense than that of Earth's atmosphere, so winds on Mars can pick up speed (the fastest are Dust devils), but they don't pick up a lot of dust particles. Martian wind can certainly lift fine dust and leave it on surfaces, but even if significant dust is accumulated these images the depositing pattern will help to recover them back. A lucky encounter with a dust devil could remove dust over the samples as in case with the solar panels of Spirit rover and Opportunity rover.

Once this whole task of depositing all the 10 samples is completed, Perseverance will carry on with its mission, traversing to the Crater floor and scaling Delta's summit. The rover be traversing along the edge of the crater and probably, caching more tubes then whilst following the plan of taking single sample at one rock. Till now, several pairs of samples were taken and one samples from pair will be placed at the depot and the other pair will stay on board the rover.

Sample retrieval

The Mars Sample Return mission earlier in its design process consisted of the ESA Sample Fetch Rover and its associated second lander, alongside the Mars ascent vehicle and its lander that will take the samples to it, from where the samples will be launched back to Earth. But after consideration and cost overruns, it was decided that given Perseverance's expected longevity, the extant rover will be the primary means of transporting samples to the Sample Retrieval Lander (SRL).

Sample Retrieval Lander

The sample retrieval mission involves launching a 5-solar array sample return lander in 2028 with the Mars Ascent Vehicle and two sample recovery helicopters as a backup for Perseverance. The SRL lander is about the size of an average two-car garage weighing ~3,375 kg (7,441 lb); tentatively planned to be 7.7 m (25 ft) wide and 2.1 m (6.9 ft) high when fully deployed. The payload mass of the lander is double that of the Perseverance rover, that is, ~563 kg (1,241 lb). The lander needs to be close to the Perseverance rover to facilitate the transfer of Mars samples. It must land within 60 m (200 ft) of its target site – much closer than previous Mars rovers and landers. Thus, it will have a secondary battery to power the lander to land on Mars. The lander would take advantage of an enhanced version of NASA's successful Terrain Relative Navigation that helped land Perseverance safely. The new Enhanced Lander Vision System would, among other improvements, add a second camera, an altimeter, and better capabilities to use propulsion for precision landing. It is planned to land near at Three Forks in 2029.

ESA Sample Transfer Arm

The Mars 2020 rover and helicopters will transport the samples to the SRL lander. SRL's ESA-built ~2.40 m (7.9 ft) long, Sample Transfer Arm will be used to extract the samples and load them into the Sample Return Capsule in the Ascent Vehicle.

Mars Sample Recovery Helicopters

Main article: Mars Sample Recovery Helicopter

The MSR campaign includes Ingenuity-class helicopters, both of which will collect the samples with the help of a tiny robotic arm and move them to the SRL, in case the Perseverance rover runs into problems.

Mars Ascent Vehicle (MAV)

Mars Ascent Vehicle
Mars Ascent Vehicle mockup on display.
FunctionMars Orbital launch vehicle
ManufacturerNASA's Marshall Space Flight Center/Lockheed Martin/Northrop Grumman
Country of originUnited States
Size
Height2.26 m (7.4 ft)
Diameter0.5 m (1.6 ft)
Mass450 kg (990 lb)
Stages2
Capacity
Payload to LAO
Altitude500 km (310 mi)
Mass500 g (18 oz)
Launch history
StatusUnder Development
Launch sitesVector mid-air after release from Sample Retrieval Lander, Three Forks, Jezero Crater
Total launches1 (planned)
UTC date of spacecraft launch2030 (planned)
Type of passengers/cargoOrbiting Sample Container with 30–43 tubes, Radio Beacon (hosted)
First stage
Powered by1 optimized Star 20 (Altair 3)
Burn time75 s
PropellantCTPB
Second stage
Powered by1 optimized Star 15G
Burn time20 s
PropellantHTPB
[edit on Wikidata]

Mars Ascent Vehicle (MAV) is a two-stage, solid-fueled rocket that will deliver the collected samples from the surface of Mars to the Earth Return Orbiter. Early in 2022, Lockheed Martin was awarded a contract to partner with NASA's Marshall Space Flight Center in developing the MAV and engines from Northrop Grumman. It is planned to be catapulted upward as high as 4.5 m (15 ft) above the lander – or 6.5 m (21 ft) above the Martian surface, into the air just before it ignites, at a rate of 5 m (16 ft) per second, to remove the odds of liftoff issues such as slipping or tilting the SRL with the rocket's sheer weight and exhaust at liftoff. The front would be tossed a bit harder than the back, causing the rocket to point upward, toward the Martian sky. Thus, the Vertically Ejected Controlled Tip-off Release (VECTOR) system adds a slight rotation during launch, pitching the rocket up and away from the surface. MAV would enter a 380-kilometre (240 mi) orbit. It will remain stowed inside a cylinder on the SRL and will have a thermal protective coating. The rocket's first stage (SRM-1) would burn for 75 seconds. The SRM1 engine can gimbal, but most gimballing solid rocket motor nozzles are designed in a way that can't handle the extreme cold MAV will experience, so the Northrop Grumman team had to come up with something that could: a state-of-the-art trapped ball nozzle featuring a supersonic split line. After SRM1 burnout, the MAV will remain in a coast period for approximately 400 seconds. During this time, the MPA aerodynamic fairing and entire first stage will separate from the vehicle. After stage separation, the second stage will initiate a spin up via side mounted small scale RCS thrusters. The entire second stage will be unguided and spin-stabilized at a rate of approximately 175 RPM. Having achieved the target spin rate, the second stage (SRM-2) will ignite and burn for approximately 18–20 seconds, raising the periapsis and circularizing the orbit. The second stage is planned to be spin-stabilized to save weight in lieu of active guidance, while the Mars samples will result in an unknown payload mass distribution. Spin stabilization allows the rocket to be lighter, so it won't have to carry active control all the way to orbit. Following SRM2 burnout, the second stage will coast for up to 10 minutes while residual thrust from the SRM2 occurs. Side-mounted small de-spin motors will then fire, reducing the spin rate to less than 40 RPM. Once the target orbit has been achieved, the MAV will command the MPA to eject the Orbiting Sample Container (OS). The spent second stage of the MAV will remain in orbit, broadcasting a hosted radio beacon signal for up to 25 days. This will aid in the capture of the OS by the ERO.

MAV is scheduled to be launched in 2028 onboard the SRL lander.

Components of the Sample Return LandersConcept launch set-upInterior design of MAV, First Extraterrestrial Staging RocketMAV exterior designMAV flight planMars Sample Return 2020–2033 Timeline

Sample return

Earth Return Orbiter (ERO)

ERO is an ESA-developed spacecraft. It includes the NASA-built Capture and Containment and Return System (CCRS) and Electra UHF Communications Package. It will rendezvous with the samples delivered by MAV in low Mars orbit (LMO). The ERO orbiter is planned to weigh ~7,000 kg (15,000 lb) (largest Mars Orbiter) and have solar arrays resulting in a wingspan of more than 38 m (125 ft). These solar panels are some of the largest ever launched into space.

ERO is scheduled to launch on an Ariane 6 rocket in 2027 and arrive at Mars in 2029, using ion propulsion and a separate chemical propulsion element to gradually reach the proper orbit of 325 km (202 mi) and then rendezvous with the orbiting sample. The MAV's second stage's radio beacon will give controllers the information they need to get the ESA Earth Return Orbiter close enough to the Orbiting Sample to see it through reflective light and capture it for return to earth. To do this, the ERO would use high-performance cameras to detect the Orbiting Sample at over 1,000 km (620 mi) distance. Once "locked on" the ERO would track it continuously using cameras and LiDARs throughout the rendezvous phase. Once aligned with the sample container, the Capture, Containment, and Return System would power on, open its capture lid, and turn on its capture sensors. ESA's orbiter would then push itself toward the sample container at about 1 to 2 inches (2.5 to 5 centimeters) per second to overtake and "swallow" it. After detecting that the sample container is safely inside, the Capture, Containment, and Return System would quickly close its lid. Thus, the orbiter will retrieve and seal the canisters in orbit and use a NASA-built robotic arm to place the sealed container into an Earth-entry capsule. The 600 kg (1,300 lb) CCRS would be responsible for thoroughly sterilizing the exterior of the Orbiting Sample and double sealing it inside the EES, creating a secondary containment barrier to keep the samples safely isolated and intact for maximum scientific return. It will raise its orbit, jettison the propulsion element (including ~500 kg (1,100 lb) of CCRS hardware, which is of no use after sterilizing samples), and return to Earth during the 2033 Mars-to-Earth transfer window.

The ERO will measure the total radiation dose received throughout the entire flight. Results will help monitor the health of the spacecraft and provide important information on how to protect human explorers in future trips to Mars.

Earth Entry Vehicle (EEV)

OSIRIS-REx Sample Return Capsule in Utah (The EEV will have a similar design with added structural hardening to withstand a non-parachuted landing)

The Capture/Containment and Return System (CCRS) would stow the sample in the EEV. The EEV would return to Earth and land passively, without a parachute. About a week before arrival at Earth, and only after successfully completing a full system safety check-out, the ERO spacecraft would be configured to perform the Earth return phase. When the orbiter is three days away from Earth, the EEV will be released from the main spacecraft and fly a precision entry trajectory to a predetermined landing site. Shortly after separation, the orbiter itself would perform a series of maneuvers to enter orbit around the Sun, never to return to Earth. The desert sand at the Utah Test and Training Range and shock absorbing materials in the vehicle are planned to protect the samples from impact forces. The EEV is scheduled to land on Earth in 2033.

Artist's concept of Mars sample return orbiterCross section of the Earth return orbiterEarth Return OrbiterCapture and containment system

Gallery

  • Potential sample-return landing site (14 April 2022)
Mars sample-return mission – Sampling ProcessContextMidViewCloseUpSample in drillSampling drillSample Tube 233 Mars sample-return mission – Sample TubesExteriorInteriorCT Scan (animation)Witness Sample Tube Mars sample-return missionPerseverance rover – Sample collection and storage
(animated video; 02:22; February 6, 2020)Orbiting sample container (concept; 2020)Inserting sample tubes into the roverCleaning sample tubes Mars sample-return mission (2020; artist's impression)01. Perseverance rover obtaining samples02. Perseverance rover storing samples03. SRL 1 landing pattern04. SRL unfolded05. Mars Samples return helicopters deployed by SRL and fetching samples as a backup 06. SRL picking up samples and loading them on MAV for launch07. Launching from Mars to low Martian Orbit08. MAV in powered flight after release from vector09. MAV in coast phase in Low Mars orbit after Main engine cutoff awaiting stage separation and second engine startup10. Payload Separation thereby Releasing samples for later pickup by the Earth Return Orbiter

See also

Notes

  1. Based on CacheCam Images
  2. The witness tubes not involving use of drill bits or using regolith drill bit are displayed by cachecam images
  3. measured by volume stations
  4. measured by volume stations

References

  1. Chang, Kenneth (July 27, 2022). "NASA Will Send More Helicopters to Mars – Instead of sending another rover to help retrieve rock and dirt samples from the red planet and bring them to Earth, the agency will provide the helicopters as a backup option". The New York Times. Retrieved July 28, 2022.
  2. Mars Sample Return: Bringing Mars Rock Samples Back to Earth, November 17, 2022, retrieved February 6, 2023
  3. Berger, Eric (September 21, 2023). "Independent reviewers find NASA Mars Sample Return plans are seriously flawed". Ars Technica. Retrieved September 23, 2023.
  4. Chang, Kenneth (July 28, 2020). "Bringing Mars Rocks to Earth: Our Greatest Interplanetary Circus Act – NASA and the European Space Agency plan to toss rocks from one spacecraft to another before the samples finally land on Earth in 2031". The New York Times. Retrieved July 28, 2020.
  5. ^ Foust, Jeff (March 27, 2022). "NASA to delay Mars Sample Return, switch to dual-lander approach". SpaceNews. Retrieved March 28, 2022.
  6. "Future Planetary Exploration: New Mars Sample Return Plan". December 8, 2009.
  7. "Mars sample return". www.esa.int. Retrieved January 3, 2022.
  8. mars.nasa.gov. "Mars Sample Return Campaign". mars.nasa.gov. Retrieved June 15, 2022.
  9. Barnett, Jessica (July 31, 2023). Ridgeway, Beth (ed.). "NASA Mars Ascent Vehicle Continues Progress Toward Mars Sample Return". NASA. Archived from the original on October 4, 2024. Retrieved October 4, 2024.
  10. Berger, Eric (June 23, 2023). "NASA's Mars Sample Return has a new price tag—and it's colossal". Ars Technica. Retrieved August 1, 2023.
  11. Berger, Eric (July 13, 2023). "The Senate just lobbed a tactical nuke at NASA's Mars Sample Return program". Ars Technica. Retrieved August 1, 2023.
  12. Smith, Marcia (November 13, 2023). "NASA "Pauses" Mars Sample Return Program While Assessing Options". spacepolicyonline.com. Retrieved November 18, 2023.
  13. Berg, Matt (November 22, 2023). "Lawmakers 'mystified' after NASA scales back Mars collection program - The space agency's cut could "cost hundreds of jobs and a decade of lost science," the bipartisan group says". Politico. Archived from the original on November 22, 2023. Retrieved November 25, 2023.
  14. ^ "NASA Invites Media to Mars Sample Return Update - NASA". Retrieved April 15, 2024.
  15. "NASA says it's revising the Mars Sample Return mission due to cost, long wait time". ABC News. Retrieved April 15, 2024.
  16. ^ Chang, Kenneth (April 15, 2024). "NASA Seeks 'Hail Mary' for Its Mars Rocks Return Mission - The agency will seek new ideas for its Mars Sample Return program, expected to be billions of dollars over budget and years behind schedule". The New York Times. Archived from the original on April 16, 2024. Retrieved April 16, 2024.
  17. "Mars Sample Return – Studies for a Fresh Look," R. Mattingly, S. Matousek and R. Gershman, 2002 IEEE Aerospace Conference, 2–493.
  18. "Mars Ascent Vehicle – Concept Development," D. Stephenson, AIAA 2002–4318, 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 7–10, 2002.
  19. "Mars Sample Return, Updated to a Groundbreaking Approach," R. Mattingly, S. Matousek and F. Jordan, 2003 IEEE Aerospace Conference, 2–745.
  20. "Planetary Protection Technology for Mars Sample Return," R. Gershman, M. Adams, R. Dillman and J. Fragola, paper number 1444, 2005 IEEE Aerospace Conference, March 2005.
  21. "Continuing Evolution of Mars Sample Return," R. Mattingly, S. Matousek and F. Jordan, 2004 IEEE Aerospace Conference, p. 477.
  22. "Technology Development Plans for the Mars Sample Return Mission," R. Mattingly, S. Hayati and G. Udomkesmalee, 2005 IEEE Aerospace Conference.
  23. "Mars Base Technology Program Overview," C. Chu, S. Hayati, S Udomkesmalee and D Lavery, AIAA 2005–6744, AIAA Space 2005 Conference, August 30 to September 1, 2005.
  24. Whitehead, J.C. (November–December 2005). "Trajectory Analysis and Staging Trades for Smaller Mars Ascent Vehicles". Journal of Spacecraft and Rockets. 42 (6): 1039–1046. Bibcode:2005JSpRo..42.1039W. doi:10.2514/1.10680.
  25. "Mars Ascent Vehicle Key Elements of a Mars Sample Return Mission," D. Stephenson and H. Willenberg, 2006 IEEE Aerospace Conference paper number 1009.
  26. Kornfeld, R., J. Parrish, and S. Sell (May–June 2007). "Mars Sample Return: Testing the Last Meter of Rendezvous and Sample Capture." Journal of Spacecraft and Rockets. 44 (3): 692–702.
  27. "Space, science, and the bottom line," A. Witze, Nature. 448, p 978, August 30, 2007.
  28. "Mars Sample Return Proposal Stirs Excitement, Controversy," L. David, Space News, July 23, 2007, p 19.
  29. "Defining the Mars Ascent Problem for Sample Return," J. Whitehead, AIAA 2008–7768, AIAA Space 2008 Conference, San Diego Calif., September 2008.
  30. "Mars Ascent Vehicle Technology Planning," J. Dankanich, 2009 IEEE Aerospace Conference, March 2009.
  31. "Pump Fed Propulsion for Mars Ascent and Other Challenging Maneuvers," J. Whitehead, NASA Science Technology Conference, June 2007.
  32. "Strategic Technology Development for Future Mars Missions (2013–2022)," S. Hayati et al., A white paper submitted to the National Research Council as input to the Planetary Decadal Survey, September 2009. https://mepag.jpl.nasa.gov/reports/decadal/SamadAHayati.pdf Mars Exploration Program Analysis Group, Retrieved November 11, 2022
  33. "NASA and ESA Establish a Mars Exploration Joint Initiative". NASA. July 8, 2009. Archived from the original on October 28, 2009. Retrieved December 27, 2022. Public Domain This article incorporates text from this source, which is in the public domain.
  34. Christensen, Phil (April 2010). "Planetary Science Decadal Survey: MSR Lander Mission". JPL. NASA. Retrieved August 24, 2012. Public Domain This article incorporates text from this source, which is in the public domain.
  35. Mars Sample-Return Archived May 18, 2008, at the Wayback Machine NASA Accessed May 26, 2008 Public Domain This article incorporates text from this source, which is in the public domain.
  36. "BBC – Science/Nature – Date set for Mars sample mission". July 10, 2008.
  37. "Mars Sample Return: bridging robotic and human exploration". European Space Agency. July 21, 2008. Retrieved November 18, 2008.
  38. ^ "NASA Advisory Council Science Committee website," https://science.nasa.gov/science-committee, Retrieved July 4, 2023
  39. "NASA Advisory Council Science Committee February 16–17, 2010 Meeting Report," https://smd-prod.s3.amazonaws.com/science-pink/s3fs-public/mnt/medialibrary/2010/08/31/SC-Minutes-Feb2010_Mtg-Final-100423-Signed.pdf#page=6, NASA Headquarters. Page 6. Retrieved July 4, 2023
  40. ^ "International cooperation called key to planet exploration". NBC News. August 22, 2012. Archived from the original on September 24, 2020.
  41. "Sample Return Propulsion Technology Development under NASA's ISPT Project," D. Anderson, J. Dankanich, D. Hahne, E. Pencil, T. Peterson, and M. Munk, 2011 IEEE Aerospace Conference, Paper number 1115, March 2011.
  42. "Mars Sample Return Orbiter/Earth Return Vehicle Technology Needs and Mission Risk Assessment," J. Dankanich, L. Burke, and J. Hemminger, 2010 IEEE Aerospace Conference, Paper number 1483, March 2010.
  43. "Mars Ascent Vehicle Test Requirements and Terrestrial Validation," D. Anderson, J. Dankanich, D. Hahne, E. Pencil, T. Peterson, and M. Munk, 2011 IEEE Aerospace Conference, Paper number 1115, March 2011.
  44. "Mars Sample Return Campaign Status," E. Nilsen, C. Whetsel, R. Mattingly, and L. May 2012 IEEE Aerospace Conference, Paper number 1627, March 2012.
  45. "Status of Sample Return Propulsion Technology Development under NASA's ISPT Program," D. Anderson, M. Munk, J. Dankanich, L. Glaab, E. Pencil, and T. Peterson, 2012 IEEE Aerospace Conference, March 2012.
  46. ^ "Mars Ascent Vehicle Development Status," J. Dankanich and E. Klein, 2012 IEEE Aerospace Conference, March 2012.
  47. ^ "Mars Ascent Vehicle (MAV): Designing for High Heritage and Low Risk," D. Ross, J. Russell, and B. Sutter, 2012 IEEE Aerospace Conference, March 2012.
  48. "Mars Ascent Vehicle System Studies and Baseline Conceptual Design," M. Trinidad, E. Zabrensky, and A. Sengupta, 2012 IEEE Aerospace Conference, March 2012.
  49. "Systems Engineering and Support Systems Technology Considerations of a Mars Ascent Vehicle," A. Sengupta, M. Pauken, A. Kennett, M. Trinidad, and E. Zabrensky, 2012 IEEE Aerospace Conference, March 2012.
  50. "NOFBX Single Stage to Orbit Mars Ascent Vehicle," G. Mungas, D. Fisher, J. Vozoff, and M. Villa, 2012 IEEE Aerospace Conference, March 2012.
  51. ^ National Academy of Sciences, National Academies Press, Visions and Voyages for Planetary Science in the Decade 2013–2022, 2011; ISBN 978-0-309-22464-2. Retrieved December 30, 2022
  52. "EXPLORING OUR SOLAR SYSTEM: THE ASTEROIDS ACT AS A KEY STEP". www.govinfo.gov.
  53. "Will Tight Budgets Sink NASA Flagships?," Y. Bhattacharjee, Science, 334: 758–759 11 November 2011.
  54. "Planetary Science is Busting Budgets," R. Kerr, Science, 337: 402–404, July 27, 2012.
  55. "House Panel Wants NASA to Plan Mars Sample Return," Y. Bhattacharjee, Science, April 18, 2012.
  56. "Concepts and Approaches for Mars Exploration, June 12–14, 2012, Houston, Texas," https://www.lpi.usra.edu/meetings/marsconcepts2012/, Universities Space Research Association website. Retrieved August 15, 2023
  57. "Concepts and Approaches for Mars Exploration - Report of a Workshop at LPI, June 12–14, 2012," https://www.lpi.usra.edu/lpi/contribution_docs/LPI-001676.pdf, S. Mackwell et al, Universities Space Research Association website. Retrieved August 15, 2023
  58. "Technology and Enabling Capabilities," https://www.lpi.usra.edu/meetings/marsconcepts2012/reports/1_technology_and_enabling_capabilities.pdf, M. Amato, B. Ehlmann, V. Hamilton, B. Mulac, Universities Space Research Association website. Retrieved August 15, 2023
  59. "Launch and Transfer Systems Technology and Architecture Considerations for Mars Exploration," https://www.lpi.usra.edu/meetings/marsconcepts2012/pdf/4144.pdf, L. Craig, Universities Space Research Association website. Retrieved August 15, 2023
  60. "High-Performance Mars Ascent Propulsion Technologies with Adaptability to ISRU and Human Exploration," https://www.lpi.usra.edu/meetings/marsconcepts2012/pdf/4222.pdf, M. Trinidad, J. Calvignac, A. Lo, Universities Space Research Association website. Retrieved August 15, 2023
  61. ^ "A Perspective on Mars Ascent for Scientists," https://www.lpi.usra.edu/meetings/marsconcepts2012/pdf/4290.pdf, J. Whitehead, Universities Space Research Association website. Retrieved August 15, 2023
  62. "A Storable, Hybrid Mars Ascent Vehicle Technology Demonstrator for the 2020 Launch Opportunity," https://www.lpi.usra.edu/meetings/marsconcepts2012/pdf/4342.pdf, A. Chandler et al, Universities Space Research Association website. Retrieved August 15, 2023
  63. "NOFBX™ Mars Ascent Vehicle: A Single Stage to Orbit Approach," https://www.lpi.usra.edu/meetings/marsconcepts2012/pdf/4353.pdf, J. Vozoff, D Fisher, G. Mungas, Universities Space Research Association website. Retrieved August 15, 2023
  64. Leone, Dan (October 3, 2012). "Mars Planning Group Endorses Sample Return". SpaceNews. Retrieved March 1, 2022.
  65. Mars Program Planning Group, September 25, 2012, "Summary of the Final Report" (PDF). Archived from the original (PDF) on June 2, 2016. Retrieved December 27, 2022.
  66. Wall, Mike (September 27, 2012). "Bringing Pieces of Mars to Earth: How NASA Will Do It". Space.com.
  67. Mattingly, Richard (March 2010). "Mission Concept Study: Planetary Science Decadal Survey – MSR Orbiter Mission (Including Mars Returned Sample Handling)" (PDF). NASA. Archived from the original (PDF) on September 29, 2015. Public Domain This article incorporates text from this source, which is in the public domain.
  68. Amos, Jonathan (July 6, 2018). "Fetch rover! Robot to retrieve Mars rocks". BBC.
  69. Harwood, William (December 4, 2012). "NASA announces plans for new US$1.5 billion Mars rover". CNET. Retrieved August 15, 2023. Using spare parts and mission plans developed for NASA's Curiosity Mars rover, the space agency says it can build and launch the rover in 2020 and stay within current budget guidelines.
  70. "Mars Sample Return Using Commercial Capabilities: Mission Architecture Overview," A. Gonzales, C. Stoker, L. Lemke, J. Bowles, L. Huynh, N. Faber, and M. Race, 2014 IEEE Aerospace Conference, March 2014.
  71. "Mars Sample Return Using Commercial Capabilities: Propulsive Entry, Descent, and Landing," L. Lemke, A. Gonzales, and L. Huynh, 2014 IEEE Aerospace Conference, March 2014.
  72. "Mars Sample Return: Mars Ascent Vehicle Mission & Technology Requirements," J. Bowles, L. Huynh, V. Hawke, and X. Jiang, NASA/TM-2013-216620, November 2013. https://ntrs.nasa.gov/api/citations/20140011316/downloads/20140011316.pdf NASA Technical Reports Server, Retrieved January 8, 2023
  73. "The Mobile MAV Concept for Mars Sample Return," E. Klein, E. Nilsen, A. Nicholas, C. Whetsel, J. Parrish, R. Mattingly, and L. May 2014 IEEE Aerospace Conference, March 2014.
  74. ^ "History of Mars Ascent Vehicle Development Over the Last 20 Years," R. Shotwell, 2016 IEEE Aerospace Conference, March 2016.
  75. "Technology Development and Design of Liquid Bipropellant Mars Ascent Vehicles," D. Vaughan, B. Nakazono, A. Karp, R. Shotwell, A. London, A. Mehra, and F. Mechentel, 2016 IEEE Aerospace Conference, March 2016.
  76. "Drivers, Developments and Options Under Consideration for a Mars Ascent Vehicle," R. Shotwell, J. Benito, A. Karp, and J. Dankanich, 2016 IEEE Aerospace Conference, March 2016.
  77. "A Mars Ascent Vehicle for Potential Mars Sample Return," R. Shotwell, J. Benito, A. Karp, and J. Dankanich, 2017 IEEE Aerospace Conference, March 2017.
  78. "Break-the-Chain Technology for Potential Mars Sample Return," R. Gershman, Y. Bar-Cohen, M. Hendry, M. Stricker, D. Dobrynin, and A. Morrese, 2018 IEEE Aerospace Conference, March 2018.
  79. Rincon, Paul (April 26, 2018). "Space agencies intent on mission to deliver Mars rocks to Earth". BBC.
  80. "Video (02:22) – Bringing Mars Back To Earth". NASA. April 26, 2018. Archived from the original on December 22, 2021. Public Domain This article incorporates text from this source, which is in the public domain.
  81. "Joint Statement of Intent between the National Aeronautics and Space Administration and the European Space Agency on Mars Sample Return," T. Zurbuchen and D. Parker, April 26, 2018. https://mepag.jpl.nasa.gov/announcements/2018-04-26%20NASA-ESA%20SOI%20(Signed).pdf, Mars Exploration Program Analysis Group, Retrieved January 28, 2023
  82. 2nd International Mars Sample Return Conference, April 25–27, 2018. https://astrobiology.nasa.gov/events/2nd-international-mars-sample-return-conference/, Astrobiology at NASA, Retrieved January 28, 2023
  83. "2018 International Mars Sample Return Conference Berlin." https://www.lpi.usra.edu/lpi/contribution_docs/LPI-002071.pdf, Lunar and Planetary Institute, Retrieved January 28, 2023
  84. "Seeking Signs of Life on Mars: The Importance of Sedimentary Suites as Part of Mars Sample Return," iMOST Team (International MSR Objectives and Samples Team), MSR 2018 Berlin, https://www.lpi.usra.edu/lpi/contribution_docs/LPI-002071.pdf#page=103, Lunar and Planetary Institute, Retrieved 18 February 2023
  85. "Mars Sample Return Architecture Overview," C. Edwards and S. Vijendran, MSR 2018 Berlin, https://www.lpi.usra.edu/lpi/contribution_docs/LPI-002071.pdf#page=74, Lunar and Planetary Institute, Retrieved February 12, 2023
  86. "Commercial Capabilities to Accelerate Timeline and Decrease Cost for Return of Samples from Mars," P. Wooster, M. Marinova, and J. Brost, MSR 2018 Berlin, https://www.lpi.usra.edu/lpi/contribution_docs/LPI-002071.pdf#page=172, Lunar and Planetary Institute, Retrieved February 12, 2023
  87. "Mars Ascent Vehicle Needs Technology Development with a Focus on High Propellant Fractions," J. Whitehead, MSR 2018 Berlin, https://www.lpi.usra.edu/lpi/contribution_docs/LPI-002071.pdf#page=168, Lunar and Planetary Institute, Retrieved February 12, 2023
  88. Foust, Jeff (July 28, 2019). "Mars sample return mission plans begin to take shape". SpaceNews.
  89. Cowart, Justin (August 13, 2019). "NASA, ESA Officials Outline Latest Mars Sample Return Plans". The Planetary Society.
  90. "Mars Sample Return Lander Mission Concepts," B. Muirhead and A. Karp, 2019 IEEE Aerospace Conference, March 2019.
  91. "Development Concepts for Mars Ascent Vehicle (MAV) Solid and Hybrid Vehicle Systems," L. McCollum et al., 2019 IEEE Aerospace Conference, March 2019.
  92. "A Design for a Two-Stage Solid Mars Ascent Vehicle," A. Prince, T. Kibbey, and A. Karp, AIAA 2019–4149, AIAA Propulsion and Energy Forum, August 2019.
  93. "Bold plan to retrieve Mars samples takes shape," D. Clery and P. Voosen, Science, 366: 932, November 22, 2019.
  94. "Mars Sample Return Mission Concept Status," B. Muirhead, A. Nicholas, and J. Umland, 2020 IEEE Aerospace Conference, March 2020.
  95. "Mars Ascent Vehicle Solid Propulsion Configuration," D. Yaghoubi and A. Schnell, 2020 IEEE Aerospace Conference, March 2020.
  96. "Mars Ascent Vehicle Hybrid Propulsion Configuration," D. Yaghoubi and A. Schnell, 2020 IEEE Aerospace Conference, March 2020.
  97. Clark, Stephen (April 20, 2020). "NASA narrows design for rocket to launch samples off of Mars". Spaceflight Now. Retrieved April 21, 2020.
  98. "Integrated Design Results for the MSR DAC-0.0 Mars Ascent Vehicle," D. Yaghoubi and P. Ma, 2021 IEEE Aerospace Conference, March 2021.
  99. "Mars Sample Return (MSR) Program: Final Report of the Independent Review Board (IRB)," https://www.nasa.gov/sites/default/files/atoms/files/nasa_esa_mars_sample_return_final_report_small.pdf#page=10, NASA reports website. Retrieved July 6, 2023
  100. "Summary of NASA Responses to Mars Sample Return Independent Review Board Recommendations," https://www.nasa.gov/sites/default/files/atoms/files/nasa_esa_mars_sample_return_final_report_small.pdf#page=1, NASA reports website. Retrieved July 6, 2023
  101. "Mars Sample Return (MSR) Program: Final Report of the Independent Review Board (IRB)," Notes below Chart 33, https://www.nasa.gov/sites/default/files/atoms/files/nasa_esa_mars_sample_return_final_report_small.pdf#page=42, NASA reports website. Retrieved July 6, 2023
  102. "Mars Sample Return (MSR) Program: Final Report of the Independent Review Board (IRB)," Chart 42 and notes below it, https://www.nasa.gov/sites/default/files/atoms/files/nasa_esa_mars_sample_return_final_report_small.pdf#page=51, NASA reports website. Retrieved July 6, 2023
  103. "Mars Sample Return (MSR) Program: Final Report of the Independent Review Board (IRB)," Chart 43 and notes below it, https://www.nasa.gov/sites/default/files/atoms/files/nasa_esa_mars_sample_return_final_report_small.pdf#page=52, NASA reports website. Retrieved July 6, 2023
  104. "Mars Sample Return (MSR) Program: Final Report of the Independent Review Board (IRB)," Chart 57 and notes below it, https://www.nasa.gov/sites/default/files/atoms/files/nasa_esa_mars_sample_return_final_report_small.pdf#page=66, NASA reports website. Retrieved July 6, 2023
  105. "NASA Planetary Science Advisory Committee website," https://science.nasa.gov/researchers/nac/science-advisory-committees/pac, Retrieved July 4, 2023
  106. NASA Advisory Council Science Committee April 14–15, 2021 Meeting Report (PDF) (Report). Washington, DC. 2021. p. 3.
  107. "Integrated Design Results for the MSR SRC Mars Ascent Vehicle," D. Yaghoubi and S. Maynor, 2022 IEEE Aerospace Conference, March 2022.
  108. "Planetary Science and Astrobiology Decadal Survey 2023-2032," https://www.nationalacademies.org/our-work/planetary-science-and-astrobiology-decadal-survey-2023-2032, National Academies of Sciences, Engineering, and Medicine. Retrieved February 26, 2023
  109. "Origins, Worlds, and Life. A Decadal Strategy for Planetary Science and Astrobiology 2023–2032," https://nap.nationalacademies.org/catalog/26522/origins-worlds-and-life-a-decadal-strategy-for-planetary-science, https://doi.org/10.17226/26522, National Academies of Sciences, Engineering, and Medicine, Space Studies Board, National Academies Press, 2022; ISBN 978-0-309-47578-5. See pages 22-7 to 22-9. Retrieved February 26, 2023
  110. "Why Mars Sample Return is a Mission Campaign of Compelling Importance to Planetary Science and Exploration," https://mepag.jpl.nasa.gov/reports/decadal2023-2032/MSR%20science%20white%20paper-final4.pdf, MEPAG website. Retrieved July 5, 2023
  111. "Mars Sample Return Campaign Concept Architecture," https://mepag.jpl.nasa.gov/reports/decadal2023-2032/Decadal%20White%20Paper%20MuirheadBrianK.pdf, MEPAG website. Retrieved July 5, 2023
  112. "The Challenge of Launching Geology Samples off of Mars is Easily Underestimated, Due to Tempting Misconceptions," https://mepag.jpl.nasa.gov/reports/decadal2023-2032/WhiteheadMisconceptionsMAV2020Oct11.pdf, MEPAG website. Retrieved July 4, 2023
  113. "Mars Ascent Vehicle needs a Sustained Development Effort, Regardless of Sample Return Mission Timelines," https://mepag.jpl.nasa.gov/reports/decadal2023-2032/WhiteheadSustainMAV2020Oct11.pdf, MEPAG website. Retrieved July 4, 2023
  114. "Technology Development Can Lead to Smaller Mars Ascent Vehicles, for Multiple Affordable Sample Returns," https://mepag.jpl.nasa.gov/reports/decadal2023-2032/WhiteheadSmallerMAV2020Oct11.pdf, MEPAG website. Retrieved July 4, 2023
  115. "Decadal Survey on Planetary Science and Astrobiology: Steering Group Seventh Meeting Revised Final Agenda," https://www.nationalacademies.org/documents/embed/link/LF2255DA3DD1C41C0A42D3BEF0989ACAECE3053A6A9B/file/DE1EC51702FEF69877C024F38B3437AA2CD7C9F72218?noSaveAs=1, National Academies of Sciences, Engineering, and Medicine. Retrieved July 6, 2023
  116. Foust, Jeff (July 27, 2022) "NASA and ESA remove rover from Mars Sample Return plans," https://spacenews.com/nasa-and-esa-remove-rover-from-mars-sample-return-plans/ Space News. Retrieved December 21, 2023
  117. "Mars choppers displace fetch rover in sample-return plan," J. Foust, Space News, August 2022, p. 6-7.
  118. "Martian aviator," an interview with Ben Pipenberg, P. Marks, Aerospace America, January 2023, p. 14-19.
  119. “Mars Rocks Await a Ride to Earth -- Can NASA Deliver?,” A. Witze, Nature. 616, p. 230-231, April 13, 2023.
  120. NASA news release (September 21, 2023). "NASA Releases Independent Review's Mars Sample Return Report". Retrieved July 7, 2024.
  121. Figueroa, Orlando, et al. (September 1, 2023). Mars Sample Return (MSR) Independent Review Board-2 Final Report (PDF) (Report). NASA. Retrieved June 15, 2024.
  122. David, Leonard (January 15, 2024). "NASA's troubled Mars sample-return mission has scientists seeing red - Projected multibillion-dollar overruns have some calling the agency's plan a 'dumpster fire.'". Space.com. Archived from the original on January 16, 2024. Retrieved January 16, 2024.
  123. "NASA Faces Its Mars Conundrum," J. Kelvey, Aerospace America, January 2024, p. 28-35, https://aerospaceamerica.aiaa.org/features/nasa-faces-its-mars-conundrum/ AIAA website. Retrieved June 15, 2024
  124. "For Mars Sample Return, a small rocket poses a big challenge," J. Whitehead, Aerospace America, March 2024, p. 5, https://aerospaceamerica.aiaa.org/departments/for-mars-sample-return-a-small-rocket-poses-a-big-challenge/ AIAA website. Retrieved June 15, 2024
  125. “SMD MIRT Response to MSR Independent Review Board (IRB-2) Recommendations,” https://science.nasa.gov/wp-content/uploads/2024/04/mirt-04152024-updated-signed.pdf, April 15, 2024. Retrieved June 8, 2024
  126. Industry Day meeting video for Rapid Mission Design Studies for MSR, https://www.youtube.com/watch?v=kNUN_fYXtcI Retrieved June 15, 2024
  127. "NASA Exploring Alternative Mars Sample Return Methods - NASA". Retrieved June 8, 2024.
  128. Foust, Jeff (June 10, 2024). "NASA selects seven companies for MSR studies". SpaceNews. Retrieved July 2, 2024.
  129. "Welcome to 'Octavia E. Butler Landing'". NASA. March 5, 2021. Retrieved March 5, 2021.
  130. Voosen, Paul (July 31, 2021). "Mars rover's sampling campaign begins". Science. 373 (6554). AAAS: 477. Bibcode:2021Sci...373..477V. doi:10.1126/science.373.6554.477. PMID 34326215. S2CID 236514399. Retrieved August 1, 2021.
  131. mars.nasa.gov. "On the Eve of Perseverance's First Sample". mars.nasa.gov. Retrieved August 12, 2021.
  132. Voosem, Paul (June 21, 2021). "NASA's Perseverance rover to drill first samples of martian rock". Science. AAAS. Retrieved August 1, 2021.
  133. mars.nasa.gov. "Assessing Perseverance's First Sample Attempt". mars.nasa.gov. Retrieved August 12, 2021.
  134. mars.nasa.gov (September 2, 2021). "Nasa's perseverance rover successfully cores its first rock". mars.nasa.gov. Retrieved September 10, 2021.
  135. mars.nasa.gov (September 6, 2021). "Nasa's perseverance rover collects first Mars rock sample". mars.nasa.gov. Retrieved September 10, 2021.
  136. mars.nasa.gov. "Perseverance Rover Mars Rock Samples". NASA Mars Exploration. Archived from the original on November 11, 2022. Retrieved December 25, 2023.
  137. "Nobody Tell Elmo About Issole". nasa.gov. Retrieved February 11, 2022.
  138. mars.nasa.gov (August 26, 2021). "NASA's Perseverance Plans Next Sample Attempt". NASA’s Mars Exploration Program. Retrieved August 27, 2021.
  139. "Sample Caching Dry Run, 1st sample tube cached". Twitter. Retrieved August 27, 2021.
  140. mars.nasa.gov. "Perseverance Sample Tube 266". NASA’s Mars Exploration Program. Retrieved September 9, 2021.
  141. @NASAPersevere (July 8, 2021). "Lots of first-time activities before I start drilling. I recently ran one sample tube through inspection, sealing a..." (Tweet). Retrieved August 27, 2021 – via Twitter.
  142. "Witness Tube in Perseverance Sample Caching System". NASA Jet Propulsion Laboratory (JPL). Retrieved September 9, 2021.
  143. mars.nasa.gov. "Perseverance's Drive to Citadelle". NASA's Mars Exploration Program. Retrieved September 6, 2021.
  144. mars.nasa.gov. "Kicking off the Sampling Sol Path at Citadelle". mars.nasa.gov. Retrieved September 6, 2021.
  145. Fox, Karen; Johnson, Alana; Agle, AG (September 2, 2021). "NASA's Perseverance Rover Successfully Cores Its First Rock". NASA. Retrieved September 3, 2021.
  146. Chang, Kenneth (September 3, 2021). "On Mars, NASA's Perseverance Rover Drilled the Rocks It Came For – After an earlier drilling attempt failed to collect anything, the rover appeared to gather its first sample. But mission managers need to take another look before sealing the tube". The New York Times. Retrieved September 3, 2021.
  147. Chang, Kenneth (September 7, 2021). "NASA's Perseverance Rover Stashes First Mars Rock Sample – The rock, sealed in a tube, is the first of many the robotic explorer will collect to one day send back to Earth for scientists to study". The New York Times. Retrieved September 8, 2021.
  148. mars.nasa.gov. "A Historic Moment – Perseverance Collects, Seals, and Stores its First Two Rock Samples". mars.nasa.gov. Retrieved December 18, 2021.
  149. ^ @NASAPersevere (November 24, 2021). "A rock so nice, I sampled it twice! Just capped and sealed my fifth sample tube, with another piece from this inter..." (Tweet). Retrieved December 18, 2021 – via Twitter.
  150. mars.nasa.gov. "Assessing Perseverance's Seventh Sample Collection". mars.nasa.gov. Retrieved March 8, 2022.
  151. mars.nasa.gov. "Pebbles Before Mountains". mars.nasa.gov. Retrieved March 8, 2022.
  152. mars.nasa.gov. "Ejecting Mars' Pebbles". mars.nasa.gov. Retrieved March 8, 2022.
  153. ^ mars.nasa.gov (December 21, 2022). "NASA's Perseverance Rover Deposits First Sample on Mars Surface". NASA Mars Exploration. Retrieved December 22, 2022.Public Domain This article incorporates text from this source, which is in the public domain.
  154. @PaulHammond51 (August 7, 2022). "@chiragp87233561 Be careful with names. The witness tube was not sampled at 'Skinner Ridge'. Skinner Ridge is the n..." (Tweet). Retrieved November 4, 2022 – via Twitter.
  155. mars.nasa.gov. "Sealing Sample 14 – NASA". mars.nasa.gov. Retrieved November 24, 2022.
  156. Stephanie Connell. "Perseverance Activities at Amalik Outcrop – NASA". mars.nasa.gov. Retrieved November 24, 2022.
  157. mars.nasa.gov. "Perseverance Rover Mars Rock Samples". NASA Mars Exploration. Retrieved June 15, 2022.
  158. "MARS 2020 INITIAL REPORTS Crater Floor Campaign" (PDF).
  159. "MARS 2020 INITIAL REPORTS Volume 2 Delta Front Campaign February 15, 2023" (PDF).
  160. "MARS 2020 INITIAL REPORTS Volume 1 Crater Floor Campaign August 11, 2022" (PDF).
  161. "Mars 2020 Returned Sample Science Archive". pds-geosciences.wustl.edu. Retrieved October 6, 2022.
  162. "I had a list I was working on, combined it with the NASA website chart". Twitter. Retrieved October 24, 2022.
  163. @NASAPersevere (December 23, 2022). "Mars does get windy, but not like on Earth. The atmosphere here is much less dense: about 1/100th that of Earth's. Winds around here can pick up *speed,* but they don't pick up a lot of *stuff.* Think fast, but not strong" (Tweet). Retrieved February 7, 2023 – via Twitter.
  164. Foust, Jeff (December 18, 2022). "Perseverance prepares to deposit Mars sample cache". SpaceNews. Retrieved December 22, 2022.
  165. mars.nasa.gov (December 16, 2022). "NASA's Perseverance Rover to Begin Building Martian Sample Depot". NASA Mars Exploration. Retrieved December 22, 2022.
  166. mars.nasa.gov. "Sample Retrieval Lander – NASA". mars.nasa.gov. Retrieved January 8, 2023.
  167. ^ mars.nasa.gov. "Mars Ascent Vehicle – NASA". mars.nasa.gov. Retrieved January 8, 2023.
  168. Gebhardt, Chris (June 2, 2022). "How Lockheed Martin, NASA will send a rocket to Mars to launch samples off the planet to a waiting European Orbiter". NASASpaceFlight.com. Retrieved January 9, 2023.
  169. Gebhardt, Chris (June 4, 2021). "Mars Ascent Vehicle from Northrop Grumman takes shape for Mars Sample Return mission". NASASpaceFlight.com. Retrieved January 9, 2023.
  170. "NASA Selects Developer for Rocket to Retrieve First Samples from Mars". NASA Press Release 22-015, February 7, 2022. February 7, 2022. Retrieved July 2, 2022.
  171. "NASA Begins Testing Robotics to Bring First Samples Back From Mars". NASA Jet Propulsion Laboratory (JPL). December 13, 2021. Retrieved August 2, 2022.
  172. ^ Yaghoubi, Darius; Maynor, Shawn. "Integrated Design Results for the MSR SRC Mars Ascent Vehicle" (PDF). NASA Technical Reports Server. Retrieved April 26, 2022.
  173. "identify this object – What are these two little valve stem-like projections from the Northrop Grumman STAR 15G upper stage rocket motor? Why doesn't the STAR 20 have them?". Space Exploration Stack Exchange. Retrieved December 22, 2022.
  174. "Airbus to bring first Mars samples to Earth: ESA contract award | Airbus". www.airbus.com. October 28, 2021. Retrieved December 14, 2021.
  175. ^ "Mission Concept Study: Planetary Science Decadal Survey, MSR Orbiter Mission (Including Mars Returned Sample Handling)" (PDF). September 29, 2015. Archived from the original (PDF) on September 29, 2015. Retrieved December 25, 2022.
  176. ^ mars.nasa.gov. "Earth Return Orbiter - ESA - NASA". mars.nasa.gov. Retrieved August 1, 2023.
  177. "Earth Return Orbiter – the first round-trip to Mars". ESA. April 7, 2023. Retrieved April 8, 2023.
  178. Kellas, Sotiris (March 2017). "Passive earth entry vehicle landing test". 2017 IEEE Aerospace Conference. Big Sky, MT, USA: IEEE. pp. 1–10. doi:10.1109/AERO.2017.7943744. hdl:2060/20170002221. ISBN 978-1-5090-1613-6. S2CID 24286971.
  179. "Post : NASA Eyes Sample-Return Capability for Post-2020 Mars Orbiter : Denver Museum of Nature & Science". August 31, 2017. Archived from the original on August 31, 2017. Retrieved December 25, 2022.
  180. Gebhardt, Chris; Barker, Nathan (June 4, 2021). "Mars Ascent Vehicle from Northrop Grumman takes shape for Mars Sample Return mission". NASASpaceFlight.com. Retrieved August 27, 2021.
  181. Kahn, Amina (February 10, 2020). "NASA gives JPL green light for mission to bring a piece of Mars back to Earth". Los Angeles Times. Retrieved February 11, 2020.
  182. "Mission to Mars – Mars Sample Return". NASA. 2020. Retrieved February 11, 2020. Public Domain This article incorporates text from this source, which is in the public domain.

External links

Spacecraft missions to Mars
Active
Flybys
Orbiters
Rovers


Past
Flybys
Orbiters
Landers
Rovers
Aircraft
Failed
launches
Future
Planned
Proposed
Cancelled
or not developed
Exploration
Concepts
Strategies
Advocacy
Missions are ordered by launch date. Sign indicates failure en route or before intended mission data returned. indicates use of the planet as a gravity assist en route to another destination.
European Space Agency
Space Centres
Launch vehicles
Facilities
Communications
Programmes
Predecessors
Related topics
Projects and missions
Science
Solar physics
Planetary science
Astronomy and
cosmology
Earth observation
ISS contributions
Telecommunications
Technology
demonstrators
Cancelled
and proposed
Failed
Future missions in italics
Extraterrestrial life
Events and objects
Signals of interest
Misidentified
Stars
Other
Life in the Universe
Planetary
habitability
Space missions
Interstellar
communication
Types of alleged
extraterrestrial beings
Hypotheses
Fermi paradox solutions
Related topics
Astrobiology
Disciplines
Main topics
Planetary
habitability
Space
missions
Earth orbit
Mars
Comets and
asteroids
Heliocentric
Planned
Proposed
Cancelled and
undeveloped
Institutions
and programs
Categories: