Misplaced Pages

Nakano vanishing theorem

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Generalizes the Kodaira vanishing theorem

In mathematics, specifically in the study of vector bundles over complex Kähler manifolds, the Nakano vanishing theorem, sometimes called the Akizuki–Nakano vanishing theorem, generalizes the Kodaira vanishing theorem. Given a compact complex manifold M with a holomorphic line bundle F over M, the Nakano vanishing theorem provides a condition on when the cohomology groups H q ( M ; Ω p ( F ) ) {\textstyle H^{q}(M;\Omega ^{p}(F))} equal zero. Here, Ω p ( F ) {\textstyle \Omega ^{p}(F)} denotes the sheaf of holomorphic (p,0)-forms taking values on F. The theorem states that, if the first Chern class of F is negative, H q ( M ; Ω p ( F ) ) = 0  when  q + p < n . {\displaystyle H^{q}(M;\Omega ^{p}(F))=0{\text{ when }}q+p<n.} Alternatively, if the first Chern class of F is positive, H q ( M ; Ω p ( F ) ) = 0  when  q + p > n . {\displaystyle H^{q}(M;\Omega ^{p}(F))=0{\text{ when }}q+p>n.}

See also

References

Original publications

Secondary sources

  1. Hitchin, N. J. (1981-07-01). "Kählerian Twistor Spaces" (PDF). Proceedings of the London Mathematical Society. s3-43 (1): 133–150. doi:10.1112/plms/s3-43.1.133. ISSN 1460-244X. S2CID 121623969.
  2. Raufi, Hossein (2012-12-18). "The Nakano vanishing theorem and a vanishing theorem of Demailly-Nadel type for holomorphic vector bundles". arXiv:1212.4417 .
  3. Kobayashi, Shoshichi (2014-07-14). Differential Geometry of Complex Vector Bundles. Princeton University Press. p. 68. ISBN 9781400858682.


Stub icon

This mathematical analysis–related article is a stub. You can help Misplaced Pages by expanding it.

Categories: