In mathematics, the Neumann polynomials , introduced by Carl Neumann for the special case
α
=
0
{\displaystyle \alpha =0}
, are a sequence of polynomials in
1
/
t
{\displaystyle 1/t}
used to expand functions in term of Bessel functions .
The first few polynomials are
O
0
(
α
)
(
t
)
=
1
t
,
{\displaystyle O_{0}^{(\alpha )}(t)={\frac {1}{t}},}
O
1
(
α
)
(
t
)
=
2
α
+
1
t
2
,
{\displaystyle O_{1}^{(\alpha )}(t)=2{\frac {\alpha +1}{t^{2}}},}
O
2
(
α
)
(
t
)
=
2
+
α
t
+
4
(
2
+
α
)
(
1
+
α
)
t
3
,
{\displaystyle O_{2}^{(\alpha )}(t)={\frac {2+\alpha }{t}}+4{\frac {(2+\alpha )(1+\alpha )}{t^{3}}},}
O
3
(
α
)
(
t
)
=
2
(
1
+
α
)
(
3
+
α
)
t
2
+
8
(
1
+
α
)
(
2
+
α
)
(
3
+
α
)
t
4
,
{\displaystyle O_{3}^{(\alpha )}(t)=2{\frac {(1+\alpha )(3+\alpha )}{t^{2}}}+8{\frac {(1+\alpha )(2+\alpha )(3+\alpha )}{t^{4}}},}
O
4
(
α
)
(
t
)
=
(
1
+
α
)
(
4
+
α
)
2
t
+
4
(
1
+
α
)
(
2
+
α
)
(
4
+
α
)
t
3
+
16
(
1
+
α
)
(
2
+
α
)
(
3
+
α
)
(
4
+
α
)
t
5
.
{\displaystyle O_{4}^{(\alpha )}(t)={\frac {(1+\alpha )(4+\alpha )}{2t}}+4{\frac {(1+\alpha )(2+\alpha )(4+\alpha )}{t^{3}}}+16{\frac {(1+\alpha )(2+\alpha )(3+\alpha )(4+\alpha )}{t^{5}}}.}
A general form for the polynomial is
O
n
(
α
)
(
t
)
=
α
+
n
2
α
∑
k
=
0
⌊
n
/
2
⌋
(
−
1
)
n
−
k
(
n
−
k
)
!
k
!
(
−
α
n
−
k
)
(
2
t
)
n
+
1
−
2
k
,
{\displaystyle O_{n}^{(\alpha )}(t)={\frac {\alpha +n}{2\alpha }}\sum _{k=0}^{\lfloor n/2\rfloor }(-1)^{n-k}{\frac {(n-k)!}{k!}}{-\alpha \choose n-k}\left({\frac {2}{t}}\right)^{n+1-2k},}
and they have the "generating function"
(
z
2
)
α
Γ
(
α
+
1
)
1
t
−
z
=
∑
n
=
0
O
n
(
α
)
(
t
)
J
α
+
n
(
z
)
,
{\displaystyle {\frac {\left({\frac {z}{2}}\right)^{\alpha }}{\Gamma (\alpha +1)}}{\frac {1}{t-z}}=\sum _{n=0}O_{n}^{(\alpha )}(t)J_{\alpha +n}(z),}
where J are Bessel functions .
To expand a function f in the form
f
(
z
)
=
(
2
z
)
α
∑
n
=
0
a
n
J
α
+
n
(
z
)
{\displaystyle f(z)=\left({\frac {2}{z}}\right)^{\alpha }\sum _{n=0}a_{n}J_{\alpha +n}(z)\,}
for
|
t
|
<
c
{\displaystyle |t|<c}
, compute
a
n
=
Γ
(
α
+
1
)
2
π
i
∮
|
t
|
=
c
′
f
(
t
)
O
n
(
α
)
(
t
)
d
t
,
{\displaystyle a_{n}={\frac {\Gamma (\alpha +1)}{2\pi i}}\oint _{|t|=c'}f(t)O_{n}^{(\alpha )}(t)\,dt,}
where
c
′
<
c
{\displaystyle c'<c}
and c is the distance of the nearest singularity of f(z) from
z
=
0
{\displaystyle z=0}
.
Examples
An example is the extension
(
1
2
z
)
s
=
Γ
(
s
)
⋅
∑
k
=
0
(
−
1
)
k
J
s
+
2
k
(
z
)
(
s
+
2
k
)
(
−
s
k
)
,
{\displaystyle \left({\tfrac {1}{2}}z\right)^{s}=\Gamma (s)\cdot \sum _{k=0}(-1)^{k}J_{s+2k}(z)(s+2k){-s \choose k},}
or the more general Sonine formula
e
i
γ
z
=
Γ
(
s
)
⋅
∑
k
=
0
i
k
C
k
(
s
)
(
γ
)
(
s
+
k
)
J
s
+
k
(
z
)
(
z
2
)
s
.
{\displaystyle e^{i\gamma z}=\Gamma (s)\cdot \sum _{k=0}i^{k}C_{k}^{(s)}(\gamma )(s+k){\frac {J_{s+k}(z)}{\left({\frac {z}{2}}\right)^{s}}}.}
where
C
k
(
s
)
{\displaystyle C_{k}^{(s)}}
is Gegenbauer's polynomial . Then,
(
z
2
)
2
k
(
2
k
−
1
)
!
J
s
(
z
)
=
∑
i
=
k
(
−
1
)
i
−
k
(
i
+
k
−
1
2
k
−
1
)
(
i
+
k
+
s
−
1
2
k
−
1
)
(
s
+
2
i
)
J
s
+
2
i
(
z
)
,
{\displaystyle {\frac {\left({\frac {z}{2}}\right)^{2k}}{(2k-1)!}}J_{s}(z)=\sum _{i=k}(-1)^{i-k}{i+k-1 \choose 2k-1}{i+k+s-1 \choose 2k-1}(s+2i)J_{s+2i}(z),}
∑
n
=
0
t
n
J
s
+
n
(
z
)
=
e
t
z
2
t
s
∑
j
=
0
(
−
z
2
t
)
j
j
!
γ
(
j
+
s
,
t
z
2
)
Γ
(
j
+
s
)
=
∫
0
∞
e
−
z
x
2
2
t
z
x
t
J
s
(
z
1
−
x
2
)
1
−
x
2
s
d
x
,
{\displaystyle \sum _{n=0}t^{n}J_{s+n}(z)={\frac {e^{\frac {tz}{2}}}{t^{s}}}\sum _{j=0}{\frac {\left(-{\frac {z}{2t}}\right)^{j}}{j!}}{\frac {\gamma \left(j+s,{\frac {tz}{2}}\right)}{\,\Gamma (j+s)}}=\int _{0}^{\infty }e^{-{\frac {zx^{2}}{2t}}}{\frac {zx}{t}}{\frac {J_{s}(z{\sqrt {1-x^{2}}})}{{\sqrt {1-x^{2}}}^{s}}}\,dx,}
the confluent hypergeometric function
M
(
a
,
s
,
z
)
=
Γ
(
s
)
∑
k
=
0
∞
(
−
1
t
)
k
L
k
(
−
a
−
k
)
(
t
)
J
s
+
k
−
1
(
2
t
z
)
(
t
z
)
s
−
k
−
1
,
{\displaystyle M(a,s,z)=\Gamma (s)\sum _{k=0}^{\infty }\left(-{\frac {1}{t}}\right)^{k}L_{k}^{(-a-k)}(t){\frac {J_{s+k-1}\left(2{\sqrt {tz}}\right)}{({\sqrt {tz}})^{s-k-1}}},}
and in particular
J
s
(
2
z
)
z
s
=
4
s
Γ
(
s
+
1
2
)
π
e
2
i
z
∑
k
=
0
L
k
(
−
s
−
1
/
2
−
k
)
(
i
t
4
)
(
4
i
z
)
k
J
2
s
+
k
(
2
t
z
)
t
z
2
s
+
k
,
{\displaystyle {\frac {J_{s}(2z)}{z^{s}}}={\frac {4^{s}\Gamma \left(s+{\frac {1}{2}}\right)}{\sqrt {\pi }}}e^{2iz}\sum _{k=0}L_{k}^{(-s-1/2-k)}\left({\frac {it}{4}}\right)(4iz)^{k}{\frac {J_{2s+k}\left(2{\sqrt {tz}}\right)}{{\sqrt {tz}}^{2s+k}}},}
the index shift formula
Γ
(
ν
−
μ
)
J
ν
(
z
)
=
Γ
(
μ
+
1
)
∑
n
=
0
Γ
(
ν
−
μ
+
n
)
n
!
Γ
(
ν
+
n
+
1
)
(
z
2
)
ν
−
μ
+
n
J
μ
+
n
(
z
)
,
{\displaystyle \Gamma (\nu -\mu )J_{\nu }(z)=\Gamma (\mu +1)\sum _{n=0}{\frac {\Gamma (\nu -\mu +n)}{n!\Gamma (\nu +n+1)}}\left({\frac {z}{2}}\right)^{\nu -\mu +n}J_{\mu +n}(z),}
the Taylor expansion (addition formula)
J
s
(
z
2
−
2
u
z
)
(
z
2
−
2
u
z
)
±
s
=
∑
k
=
0
(
±
u
)
k
k
!
J
s
±
k
(
z
)
z
±
s
,
{\displaystyle {\frac {J_{s}\left({\sqrt {z^{2}-2uz}}\right)}{\left({\sqrt {z^{2}-2uz}}\right)^{\pm s}}}=\sum _{k=0}{\frac {(\pm u)^{k}}{k!}}{\frac {J_{s\pm k}(z)}{z^{\pm s}}},}
(cf.) and the expansion of the integral of the Bessel function,
∫
J
s
(
z
)
d
z
=
2
∑
k
=
0
J
s
+
2
k
+
1
(
z
)
,
{\displaystyle \int J_{s}(z)dz=2\sum _{k=0}J_{s+2k+1}(z),}
are of the same type.
See also
Notes
Abramowitz and Stegun, p. 363, 9.1.82 ff.
Erdélyi et al. 1955 harvnb error: no target: CITEREFErdélyiMagnusOberhettingerTricomi1955 (help ) II.7.10.1, p.64
Gradshteyn, Izrail Solomonovich ; Ryzhik, Iosif Moiseevich ; Geronimus, Yuri Veniaminovich ; Tseytlin, Michail Yulyevich ; Jeffrey, Alan (2015) . "8.515.1.". In Zwillinger, Daniel; Moll, Victor Hugo (eds.). Table of Integrals, Series, and Products . Translated by Scripta Technica, Inc. (8 ed.). Academic Press, Inc. p. 944. ISBN 0-12-384933-0 . LCCN 2014010276 .
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑