Misplaced Pages

Nonelementary problem

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In computational complexity theory, a nonelementary problem is a problem that is not a member of the class ELEMENTARY. As a class it is sometimes denoted as NONELEMENTARY.

Examples of nonelementary problems that are nevertheless decidable include:

References

  1. Vorobyov, Sergei; Voronkov, Andrei (1998), "Complexity of Nonrecursive Logic Programs with Complex Values", Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS '98), New York, NY, USA: ACM, pp. 244–253, CiteSeerX 10.1.1.39.8822, doi:10.1145/275487.275515, ISBN 978-0-89791-996-8, S2CID 15631793.
  2. Stockmeyer, Larry J. (1974), The Complexity of Decision Problems in Automata Theory and Logic (PDF), Ph.D. dissertation, Massachusetts Institute of Technology
  3. Libkin, Leonid (2006), "Logics for unranked trees: an overview", Logical Methods in Computer Science, 2 (3): 3:2, 31, arXiv:cs.LO/0606062, doi:10.2168/LMCS-2(3:2)2006, MR 2295773.
  4. Vorobyov, Sergei (1996), "An improved lower bound for the elementary theories of trees", Automated Deduction — CADE-13: 13th International Conference on Automated Deduction New Brunswick, NJ, USA, July 30 – August 3, 1996, Proceedings, Lecture Notes in Computer Science, vol. 1104, Springer, pp. 275–287, CiteSeerX 10.1.1.39.1499, doi:10.1007/3-540-61511-3_91, ISBN 978-3-540-61511-8.
  5. Pratt-Hartmann, Ian; Szwast, Wieslaw; Tendera, Lidia (2016), "Quine's fluted fragment is non-elementary", in Talbot, Jean-Marc; Regnier, Laurent (eds.), 25th EACSL Annual Conference on Computer Science Logic, CSL 2016, August 29 - September 1, 2016, Marseille, France, LIPIcs, vol. 62, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 39:1–39:21, doi:10.4230/LIPIcs.CSL.2016.39
  6. Statman, Richard (1979), "The typed λ-calculus is not elementary recursive", Theoretical Computer Science, 9: 73–81, doi:10.1016/0304-3975(79)90007-0, hdl:2027.42/23535.
  7. Czerwiński, Wojciech; Orlikowski, Łukasz (2021). Reachability in Vector Addition Systems is Ackermann-complete. 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS). arXiv:2104.13866.
  8. ^ Brubaker, Ben (4 December 2023). "An Easy-Sounding Problem Yields Numbers Too Big for Our Universe". Quanta Magazine.
  9. Leroux, Jerome (February 2022). "The Reachability Problem for Petri Nets is Not Primitive Recursive". 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS). IEEE. pp. 1241–1252. arXiv:2104.12695. doi:10.1109/FOCS52979.2021.00121. ISBN 978-1-6654-2055-6.


P ≟ NP 

This theoretical computer science–related article is a stub. You can help Misplaced Pages by expanding it.

Categories: