Misplaced Pages

Order-4 icosahedral honeycomb

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Order-4 icosahedral honeycomb
Type Regular honeycomb
Schläfli symbols {3,5,4}
Coxeter diagrams
Cells {3,5}
Faces {3}
Edge figure {4}
Vertex figure {5,4}
Dual {4,5,3}
Coxeter group
Properties Regular

In the geometry of hyperbolic 3-space, the order-4 icosahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,5,4}.

Geometry

It has four icosahedra {3,5} around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many icosahedra existing around each vertex in an order-4 pentagonal tiling vertex arrangement.


Poincaré disk model
(Cell centered)

Ideal surface

It has a second construction as a uniform honeycomb, Schläfli symbol {3,5}, Coxeter diagram, , with alternating types or colors of icosahedral cells. In Coxeter notation the half symmetry is = .

Related polytopes and honeycombs

It a part of a sequence of regular polychora and honeycombs with icosahedral cells: {3,5,p}

{3,5,p} polytopes
Space H
Form Compact Noncompact
Name {3,5,3}

 
{3,5,4}
{3,5,5}
{3,5,6}
{3,5,7}
{3,5,8}
... {3,5,∞}
Image
Vertex
figure

{5,3}

{5,4}

{5,5}

{5,6}

{5,7}

{5,8}

{5,∞}

Order-5 icosahedral honeycomb

Order-5 icosahedral honeycomb
Type Regular honeycomb
Schläfli symbols {3,5,5}
Coxeter diagrams
Cells {3,5}
Faces {3}
Edge figure {5}
Vertex figure {5,5}
Dual {5,5,3}
Coxeter group
Properties Regular

In the geometry of hyperbolic 3-space, the order-5 icosahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,5,5}. It has five icosahedra, {3,5}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many icosahedra existing around each vertex in an order-5 pentagonal tiling vertex arrangement.


Poincaré disk model
(Cell centered)

Ideal surface

Order-6 icosahedral honeycomb

Order-6 icosahedral honeycomb
Type Regular honeycomb
Schläfli symbols {3,5,6}
{3,(5,∞,5)}
Coxeter diagrams
=
Cells {3,5}
Faces {3}
Edge figure {6}
Vertex figure {5,6}
Dual {6,5,3}
Coxeter group
Properties Regular

In the geometry of hyperbolic 3-space, the order-6 icosahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,5,6}. It has six icosahedra, {3,5}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many icosahedra existing around each vertex in an order-6 pentagonal tiling vertex arrangement.


Poincaré disk model
(Cell centered)

Ideal surface

Order-7 icosahedral honeycomb

Order-7 icosahedral honeycomb
Type Regular honeycomb
Schläfli symbols {3,5,7}
Coxeter diagrams
Cells {3,5}
Faces {3}
Edge figure {7}
Vertex figure {5,7}
Dual {7,5,3}
Coxeter group
Properties Regular

In the geometry of hyperbolic 3-space, the order-7 icosahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,5,7}. It has seven icosahedra, {3,5}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many icosahedra existing around each vertex in an order-7 pentagonal tiling vertex arrangement.


Poincaré disk model
(Cell centered)

Ideal surface

Order-8 icosahedral honeycomb

Order-8 icosahedral honeycomb
Type Regular honeycomb
Schläfli symbols {3,5,8}
Coxeter diagrams
Cells {3,5}
Faces {3}
Edge figure {8}
Vertex figure {5,8}
Dual {8,5,3}
Coxeter group
Properties Regular

In the geometry of hyperbolic 3-space, the order-8 icosahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,5,8}. It has eight icosahedra, {3,5}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many icosahedra existing around each vertex in an order-8 pentagonal tiling vertex arrangement.


Poincaré disk model
(Cell centered)

Infinite-order icosahedral honeycomb

Infinite-order icosahedral honeycomb
Type Regular honeycomb
Schläfli symbols {3,5,∞}
{3,(5,∞,5)}
Coxeter diagrams
=
Cells {3,5}
Faces {3}
Edge figure {∞}
Vertex figure {5,∞}
{(5,∞,5)}
Dual {∞,5,3}
Coxeter group
Properties Regular

In the geometry of hyperbolic 3-space, the infinite-order icosahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,5,∞}. It has infinitely many icosahedra, {3,5}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many icosahedra existing around each vertex in an infinite-order triangular tiling vertex arrangement.


Poincaré disk model
(Cell centered)

Ideal surface

It has a second construction as a uniform honeycomb, Schläfli symbol {3,(5,∞,5)}, Coxeter diagram, = , with alternating types or colors of icosahedral cells. In Coxeter notation the half symmetry is = .

See also

References

External links

Category: