Misplaced Pages

Ostrowski–Hadamard gap theorem

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, the Ostrowski–Hadamard gap theorem is a result about the analytic continuation of complex power series whose non-zero terms are of orders that have a suitable "gap" between them. Such a power series is "badly behaved" in the sense that it cannot be extended to be an analytic function anywhere on the boundary of its disc of convergence. The result is named after the mathematicians Alexander Ostrowski and Jacques Hadamard.

Statement of the theorem

Let 0 < p1 < p2 < ... be a sequence of integers such that, for some λ > 1 and all j ∈ N,

p j + 1 p j > λ . {\displaystyle {\frac {p_{j+1}}{p_{j}}}>\lambda .}

Let (αj)jN be a sequence of complex numbers such that the power series

f ( z ) = j N α j z p j {\displaystyle f(z)=\sum _{j\in \mathbf {N} }\alpha _{j}z^{p_{j}}}

has radius of convergence 1. Then no point z with |z| = 1 is a regular point for f; i.e. f cannot be analytically extended from the open unit disc D to any larger open set—not even to a single point on the boundary of D.

See also

References

External links


Stub icon

This mathematical analysis–related article is a stub. You can help Misplaced Pages by expanding it.

Categories: