Variation of the Ricci tensor with respect to the metric.
In general relativity and tensor calculus , the Palatini identity is
δ
R
σ
ν
=
∇
ρ
δ
Γ
ν
σ
ρ
−
∇
ν
δ
Γ
ρ
σ
ρ
,
{\displaystyle \delta R_{\sigma \nu }=\nabla _{\rho }\delta \Gamma _{\nu \sigma }^{\rho }-\nabla _{\nu }\delta \Gamma _{\rho \sigma }^{\rho },}
where
δ
Γ
ν
σ
ρ
{\displaystyle \delta \Gamma _{\nu \sigma }^{\rho }}
denotes the variation of Christoffel symbols and
∇
ρ
{\displaystyle \nabla _{\rho }}
indicates covariant differentiation .
The "same" identity holds for the Lie derivative
L
ξ
R
σ
ν
{\displaystyle {\mathcal {L}}_{\xi }R_{\sigma \nu }}
. In fact, one has
L
ξ
R
σ
ν
=
∇
ρ
(
L
ξ
Γ
ν
σ
ρ
)
−
∇
ν
(
L
ξ
Γ
ρ
σ
ρ
)
,
{\displaystyle {\mathcal {L}}_{\xi }R_{\sigma \nu }=\nabla _{\rho }({\mathcal {L}}_{\xi }\Gamma _{\nu \sigma }^{\rho })-\nabla _{\nu }({\mathcal {L}}_{\xi }\Gamma _{\rho \sigma }^{\rho }),}
where
ξ
=
ξ
ρ
∂
ρ
{\displaystyle \xi =\xi ^{\rho }\partial _{\rho }}
denotes any vector field on the spacetime manifold
M
{\displaystyle M}
.
Proof
The Riemann curvature tensor is defined in terms of the Levi-Civita connection
Γ
μ
ν
λ
{\displaystyle \Gamma _{\mu \nu }^{\lambda }}
as
R
ρ
σ
μ
ν
=
∂
μ
Γ
ν
σ
ρ
−
∂
ν
Γ
μ
σ
ρ
+
Γ
μ
λ
ρ
Γ
ν
σ
λ
−
Γ
ν
λ
ρ
Γ
μ
σ
λ
{\displaystyle {R^{\rho }}_{\sigma \mu \nu }=\partial _{\mu }\Gamma _{\nu \sigma }^{\rho }-\partial _{\nu }\Gamma _{\mu \sigma }^{\rho }+\Gamma _{\mu \lambda }^{\rho }\Gamma _{\nu \sigma }^{\lambda }-\Gamma _{\nu \lambda }^{\rho }\Gamma _{\mu \sigma }^{\lambda }}
.
Its variation is
δ
R
ρ
σ
μ
ν
=
∂
μ
δ
Γ
ν
σ
ρ
−
∂
ν
δ
Γ
μ
σ
ρ
+
δ
Γ
μ
λ
ρ
Γ
ν
σ
λ
+
Γ
μ
λ
ρ
δ
Γ
ν
σ
λ
−
δ
Γ
ν
λ
ρ
Γ
μ
σ
λ
−
Γ
ν
λ
ρ
δ
Γ
μ
σ
λ
{\displaystyle \delta {R^{\rho }}_{\sigma \mu \nu }=\partial _{\mu }\delta \Gamma _{\nu \sigma }^{\rho }-\partial _{\nu }\delta \Gamma _{\mu \sigma }^{\rho }+\delta \Gamma _{\mu \lambda }^{\rho }\Gamma _{\nu \sigma }^{\lambda }+\Gamma _{\mu \lambda }^{\rho }\delta \Gamma _{\nu \sigma }^{\lambda }-\delta \Gamma _{\nu \lambda }^{\rho }\Gamma _{\mu \sigma }^{\lambda }-\Gamma _{\nu \lambda }^{\rho }\delta \Gamma _{\mu \sigma }^{\lambda }}
.
While the connection
Γ
ν
σ
ρ
{\displaystyle \Gamma _{\nu \sigma }^{\rho }}
is not a tensor, the difference
δ
Γ
ν
σ
ρ
{\displaystyle \delta \Gamma _{\nu \sigma }^{\rho }}
between two connections is , so we can take its covariant derivative
∇
μ
δ
Γ
ν
σ
ρ
=
∂
μ
δ
Γ
ν
σ
ρ
+
Γ
μ
λ
ρ
δ
Γ
ν
σ
λ
−
Γ
μ
ν
λ
δ
Γ
λ
σ
ρ
−
Γ
μ
σ
λ
δ
Γ
ν
λ
ρ
{\displaystyle \nabla _{\mu }\delta \Gamma _{\nu \sigma }^{\rho }=\partial _{\mu }\delta \Gamma _{\nu \sigma }^{\rho }+\Gamma _{\mu \lambda }^{\rho }\delta \Gamma _{\nu \sigma }^{\lambda }-\Gamma _{\mu \nu }^{\lambda }\delta \Gamma _{\lambda \sigma }^{\rho }-\Gamma _{\mu \sigma }^{\lambda }\delta \Gamma _{\nu \lambda }^{\rho }}
.
Solving this equation for
∂
μ
δ
Γ
ν
σ
ρ
{\displaystyle \partial _{\mu }\delta \Gamma _{\nu \sigma }^{\rho }}
and substituting the result in
δ
R
ρ
σ
μ
ν
{\displaystyle \delta {R^{\rho }}_{\sigma \mu \nu }}
, all the
Γ
δ
Γ
{\displaystyle \Gamma \delta \Gamma }
-like terms cancel, leaving only
δ
R
ρ
σ
μ
ν
=
∇
μ
δ
Γ
ν
σ
ρ
−
∇
ν
δ
Γ
μ
σ
ρ
{\displaystyle \delta {R^{\rho }}_{\sigma \mu \nu }=\nabla _{\mu }\delta \Gamma _{\nu \sigma }^{\rho }-\nabla _{\nu }\delta \Gamma _{\mu \sigma }^{\rho }}
.
Finally, the variation of the Ricci curvature tensor follows by contracting two indices, proving the identity
δ
R
σ
ν
=
δ
R
ρ
σ
ρ
ν
=
∇
ρ
δ
Γ
ν
σ
ρ
−
∇
ν
δ
Γ
ρ
σ
ρ
{\displaystyle \delta R_{\sigma \nu }=\delta {R^{\rho }}_{\sigma \rho \nu }=\nabla _{\rho }\delta \Gamma _{\nu \sigma }^{\rho }-\nabla _{\nu }\delta \Gamma _{\rho \sigma }^{\rho }}
.
See also
Notes
Christoffel, E.B. (1869), "Ueber die Transformation der homogenen Differentialausdrücke zweiten Grades" , Journal für die reine und angewandte Mathematik , B. 70: 46–70
References
Palatini, Attilio (1919), "Deduzione invariantiva delle equazioni gravitazionali dal principio di Hamilton" [Invariant deduction of the gravitanional equations from the principle of Hamilton], Rendiconti del Circolo Matematico di Palermo , 1 (in Italian), 43 : 203–212, doi :10.1007/BF03014670 , S2CID 121043319
Tsamparlis, Michael (1978), "On the Palatini method of Variation" , Journal of Mathematical Physics , 19 (3): 555–557, Bibcode :1978JMP....19..555T , doi :10.1063/1.523699
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑