Misplaced Pages

Palatini identity

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Variation of the Ricci tensor with respect to the metric.

In general relativity and tensor calculus, the Palatini identity is

δ R σ ν = ρ δ Γ ν σ ρ ν δ Γ ρ σ ρ , {\displaystyle \delta R_{\sigma \nu }=\nabla _{\rho }\delta \Gamma _{\nu \sigma }^{\rho }-\nabla _{\nu }\delta \Gamma _{\rho \sigma }^{\rho },}

where δ Γ ν σ ρ {\displaystyle \delta \Gamma _{\nu \sigma }^{\rho }} denotes the variation of Christoffel symbols and ρ {\displaystyle \nabla _{\rho }} indicates covariant differentiation.

The "same" identity holds for the Lie derivative L ξ R σ ν {\displaystyle {\mathcal {L}}_{\xi }R_{\sigma \nu }} . In fact, one has

L ξ R σ ν = ρ ( L ξ Γ ν σ ρ ) ν ( L ξ Γ ρ σ ρ ) , {\displaystyle {\mathcal {L}}_{\xi }R_{\sigma \nu }=\nabla _{\rho }({\mathcal {L}}_{\xi }\Gamma _{\nu \sigma }^{\rho })-\nabla _{\nu }({\mathcal {L}}_{\xi }\Gamma _{\rho \sigma }^{\rho }),}

where ξ = ξ ρ ρ {\displaystyle \xi =\xi ^{\rho }\partial _{\rho }} denotes any vector field on the spacetime manifold M {\displaystyle M} .

Proof

The Riemann curvature tensor is defined in terms of the Levi-Civita connection Γ μ ν λ {\displaystyle \Gamma _{\mu \nu }^{\lambda }} as

R ρ σ μ ν = μ Γ ν σ ρ ν Γ μ σ ρ + Γ μ λ ρ Γ ν σ λ Γ ν λ ρ Γ μ σ λ {\displaystyle {R^{\rho }}_{\sigma \mu \nu }=\partial _{\mu }\Gamma _{\nu \sigma }^{\rho }-\partial _{\nu }\Gamma _{\mu \sigma }^{\rho }+\Gamma _{\mu \lambda }^{\rho }\Gamma _{\nu \sigma }^{\lambda }-\Gamma _{\nu \lambda }^{\rho }\Gamma _{\mu \sigma }^{\lambda }} .

Its variation is

δ R ρ σ μ ν = μ δ Γ ν σ ρ ν δ Γ μ σ ρ + δ Γ μ λ ρ Γ ν σ λ + Γ μ λ ρ δ Γ ν σ λ δ Γ ν λ ρ Γ μ σ λ Γ ν λ ρ δ Γ μ σ λ {\displaystyle \delta {R^{\rho }}_{\sigma \mu \nu }=\partial _{\mu }\delta \Gamma _{\nu \sigma }^{\rho }-\partial _{\nu }\delta \Gamma _{\mu \sigma }^{\rho }+\delta \Gamma _{\mu \lambda }^{\rho }\Gamma _{\nu \sigma }^{\lambda }+\Gamma _{\mu \lambda }^{\rho }\delta \Gamma _{\nu \sigma }^{\lambda }-\delta \Gamma _{\nu \lambda }^{\rho }\Gamma _{\mu \sigma }^{\lambda }-\Gamma _{\nu \lambda }^{\rho }\delta \Gamma _{\mu \sigma }^{\lambda }} .

While the connection Γ ν σ ρ {\displaystyle \Gamma _{\nu \sigma }^{\rho }} is not a tensor, the difference δ Γ ν σ ρ {\displaystyle \delta \Gamma _{\nu \sigma }^{\rho }} between two connections is, so we can take its covariant derivative

μ δ Γ ν σ ρ = μ δ Γ ν σ ρ + Γ μ λ ρ δ Γ ν σ λ Γ μ ν λ δ Γ λ σ ρ Γ μ σ λ δ Γ ν λ ρ {\displaystyle \nabla _{\mu }\delta \Gamma _{\nu \sigma }^{\rho }=\partial _{\mu }\delta \Gamma _{\nu \sigma }^{\rho }+\Gamma _{\mu \lambda }^{\rho }\delta \Gamma _{\nu \sigma }^{\lambda }-\Gamma _{\mu \nu }^{\lambda }\delta \Gamma _{\lambda \sigma }^{\rho }-\Gamma _{\mu \sigma }^{\lambda }\delta \Gamma _{\nu \lambda }^{\rho }} .

Solving this equation for μ δ Γ ν σ ρ {\displaystyle \partial _{\mu }\delta \Gamma _{\nu \sigma }^{\rho }} and substituting the result in δ R ρ σ μ ν {\displaystyle \delta {R^{\rho }}_{\sigma \mu \nu }} , all the Γ δ Γ {\displaystyle \Gamma \delta \Gamma } -like terms cancel, leaving only

δ R ρ σ μ ν = μ δ Γ ν σ ρ ν δ Γ μ σ ρ {\displaystyle \delta {R^{\rho }}_{\sigma \mu \nu }=\nabla _{\mu }\delta \Gamma _{\nu \sigma }^{\rho }-\nabla _{\nu }\delta \Gamma _{\mu \sigma }^{\rho }} .

Finally, the variation of the Ricci curvature tensor follows by contracting two indices, proving the identity

δ R σ ν = δ R ρ σ ρ ν = ρ δ Γ ν σ ρ ν δ Γ ρ σ ρ {\displaystyle \delta R_{\sigma \nu }=\delta {R^{\rho }}_{\sigma \rho \nu }=\nabla _{\rho }\delta \Gamma _{\nu \sigma }^{\rho }-\nabla _{\nu }\delta \Gamma _{\rho \sigma }^{\rho }} .

See also

Notes

  1. Christoffel, E.B. (1869), "Ueber die Transformation der homogenen Differentialausdrücke zweiten Grades", Journal für die reine und angewandte Mathematik, B. 70: 46–70

References

Categories: