Misplaced Pages

Papkovich–Neuber solution

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Papkovich–Neuber solution is a technique for generating analytic solutions to the Newtonian incompressible Stokes equations, though it was originally developed to solve the equations of linear elasticity.

It can be shown that any Stokes flow with body force f = 0 {\displaystyle \mathbf {f} =0} can be written in the form:

u = 1 2 μ [ ( x Φ + χ ) 2 Φ ] {\displaystyle \mathbf {u} ={1 \over {2\mu }}\left}
p = Φ {\displaystyle p=\nabla \cdot \mathbf {\Phi } }

where Φ {\displaystyle \mathbf {\Phi } } is a harmonic vector potential and χ {\displaystyle \chi } is a harmonic scalar potential. The properties and ease of construction of harmonic functions makes the Papkovich–Neuber solution a powerful technique for solving the Stokes Equations in a variety of domains.

Further reading


Stub icon

This fluid dynamics–related article is a stub. You can help Misplaced Pages by expanding it.

Categories: