Misplaced Pages

Parabolic Hausdorff dimension

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (September 2024) (Learn how and when to remove this message)
A certain fractal dimension

In fractal geometry, the parabolic Hausdorff dimension is a restricted version of the genuine Hausdorff dimension. Only parabolic cylinders, i. e. rectangles with a distinct non-linear scaling between time and space are permitted as covering sets. It is useful to determine the Hausdorff dimension of self-similar stochastic processes, such as the geometric Brownian motion or stable Lévy processes plus Borel measurable drift function f {\displaystyle f} .

Definitions

We define the α {\displaystyle \alpha } -parabolic β {\displaystyle \beta } -Hausdorff outer measure for any set A R d + 1 {\displaystyle A\subseteq \mathbb {R} ^{d+1}} as

P α H β ( A ) := lim δ 0 inf { k = 1 | P k | β : A k = 1 P k , P k P α , | P k | δ } . {\displaystyle {\mathcal {P}}^{\alpha }-{\mathcal {H}}^{\beta }(A):=\lim _{\delta \downarrow 0}\inf \left\{\sum _{k=1}^{\infty }\left|P_{k}\right|^{\beta }:A\subseteq \bigcup _{k=1}^{\infty }P_{k},P_{k}\in {\mathcal {P}}^{\alpha },\left|P_{k}\right|\leq \delta \right\}.}

where the α {\displaystyle \alpha } -parabolic cylinders ( P k ) k N {\displaystyle \left(P_{k}\right)_{k\in \mathbb {N} }} are contained in

P α := { [ t , t + c ] × i = 1 d [ x i , x i + c 1 / α ] ; t , x i R , c ( 0 , 1 ] } . {\displaystyle {\mathcal {P}}^{\alpha }:=\left\{\times \prod _{i=1}^{d}\left;t,x_{i}\in \mathbb {R} ,c\in (0,1]\right\}.}

We define the α {\displaystyle \alpha } -parabolic Hausdorff dimension of A {\displaystyle A} as

P α dim A := inf { β 0 : P α H β ( A ) = 0 } . {\displaystyle {\mathcal {P}}^{\alpha }-\dim A:=\inf \left\{\beta \geq 0:{\mathcal {P}}^{\alpha }-{\mathcal {H}}^{\beta }(A)=0\right\}.}

The case α = 1 {\displaystyle \alpha =1} equals the genuine Hausdorff dimension dim {\displaystyle \dim } .

Application

Let φ α := P α dim G T ( f ) {\displaystyle \varphi _{\alpha }:={\mathcal {P}}^{\alpha }-\dim {\mathcal {G}}_{T}(f)} . We can calculate the Hausdorff dimension of the fractional Brownian motion B H {\displaystyle B^{H}} of Hurst index 1 / α = H ( 0 , 1 ] {\displaystyle 1/\alpha =H\in (0,1]} plus some measurable drift function f {\displaystyle f} . We get

dim G T ( B H + f ) = φ α 1 α φ α + ( 1 1 α ) d {\displaystyle \dim {\mathcal {G}}_{T}\left(B^{H}+f\right)=\varphi _{\alpha }\wedge {\frac {1}{\alpha }}\cdot \varphi _{\alpha }+\left(1-{\frac {1}{\alpha }}\right)\cdot d}

and

dim R T ( B H + f ) = φ α d . {\displaystyle \dim {\mathcal {R}}_{T}\left(B^{H}+f\right)=\varphi _{\alpha }\wedge d.}

For an isotropic α {\displaystyle \alpha } -stable Lévy process X {\displaystyle X} for α ( 0 , 2 ] {\displaystyle \alpha \in (0,2]} plus some measurable drift function f {\displaystyle f} we get

dim G T ( X + f ) = { φ 1 , α ( 0 , 1 ] , φ α 1 α φ α + ( 1 1 α ) d , α [ 1 , 2 ] {\displaystyle \dim {\mathcal {G}}_{T}(X+f)={\begin{cases}\varphi _{1},&\alpha \in (0,1],\\\varphi _{\alpha }\wedge {\frac {1}{\alpha }}\cdot \varphi _{\alpha }+\left(1-{\frac {1}{\alpha }}\right)\cdot d,&\alpha \in \end{cases}}}

and

dim R T ( X + f ) = { α φ α d , α ( 0 , 1 ] , φ α d , α [ 1 , 2 ] . {\displaystyle \dim {\mathcal {R}}_{T}\left(X+f\right)={\begin{cases}\alpha \cdot \varphi _{\alpha }\wedge d,&\alpha \in (0,1],\\\varphi _{\alpha }\wedge d,&\alpha \in .\end{cases}}}

Inequalities and identities

For ϕ α := P α dim A {\displaystyle \phi _{\alpha }:={\mathcal {P}}^{\alpha }-\dim A} one has

dim A { ϕ α α ϕ α + 1 α , α ( 0 , 1 ] , ϕ α 1 α α + ( 1 1 α ) d , α [ 1 , ) {\displaystyle \dim A\leq {\begin{cases}\phi _{\alpha }\wedge \alpha \cdot \phi _{\alpha }+1-\alpha ,&\alpha \in (0,1],\\\phi _{\alpha }\wedge {\frac {1}{\alpha }}\cdot \alpha +\left(1-{\frac {1}{\alpha }}\right)\cdot d,&\alpha \in [1,\infty )\end{cases}}}

and

dim A { α ϕ α ϕ α + ( 1 1 α ) d , α ( 0 , 1 ] , ϕ α + 1 α , α [ 1 , ) . {\displaystyle \dim A\geq {\begin{cases}\alpha \cdot \phi _{\alpha }\vee \phi _{\alpha }+\left(1-{\frac {1}{\alpha }}\right)\cdot d,&\alpha \in (0,1],\\\phi _{\alpha }+1-\alpha ,&\alpha \in [1,\infty ).\end{cases}}}

Further, for the fractional Brownian motion B H {\displaystyle B^{H}} of Hurst index 1 / α = H ( 0 , 1 ] {\displaystyle 1/\alpha =H\in (0,1]} one has

P α dim G T ( B H ) = α dim T {\displaystyle {\mathcal {P}}^{\alpha }-\dim {\mathcal {G}}_{T}\left(B^{H}\right)=\alpha \cdot \dim T}

and for an isotropic α {\displaystyle \alpha } -stable Lévy process X {\displaystyle X} for α ( 0 , 2 ] {\displaystyle \alpha \in (0,2]} one has

P α dim G T ( X ) = ( α 1 ) dim T {\displaystyle {\mathcal {P}}^{\alpha }-\dim {\mathcal {G}}_{T}\left(X\right)=(\alpha \vee 1)\cdot \dim T}

and

dim R T ( X ) = α dim T d . {\displaystyle \dim {\mathcal {R}}_{T}(X)=\alpha \cdot \dim T\wedge d.}

For constant functions f C {\displaystyle f_{C}} we get

P α dim G T ( f C ) = ( α 1 ) dim T . {\displaystyle {\mathcal {P}}^{\alpha }-\dim {\mathcal {G}}_{T}\left(f_{C}\right)=(\alpha \vee 1)\cdot \dim T.}

If f C β ( T , R d ) {\displaystyle f\in C^{\beta }(T,\mathbb {R} ^{d})} , i. e. f {\displaystyle f} is β {\displaystyle \beta } -Hölder continuous, for φ α = P α dim G T ( f ) {\displaystyle \varphi _{\alpha }={\mathcal {P}}^{\alpha }-\dim {\mathcal {G}}_{T}(f)} the estimates

φ α { dim T + ( 1 α β ) d dim T α β d + 1 , α ( 0 , 1 ] , α dim T + ( 1 α β ) d dim T β d + 1 , α [ 1 , 1 β ] , α dim T + 1 β ( dim T 1 ) + α d + 1 , α [ 1 β , ) ] {\displaystyle \varphi _{\alpha }\leq {\begin{cases}\dim T+\left({\frac {1}{\alpha }}-\beta \right)\cdot d\wedge {\frac {\dim T}{\alpha \cdot \beta }}\wedge d+1,&\alpha \in (0,1],\\\alpha \cdot \dim T+(1-\alpha \cdot \beta )\cdot d\wedge {\frac {\dim T}{\beta }}\wedge d+1,&\alpha \in \left,\\\alpha \cdot \dim T+{\frac {1}{\beta }}(\dim T-1)+\alpha \wedge d+1,&\alpha \in \left\end{cases}}}

hold.

Finally, for the Brownian motion B {\displaystyle B} and f C β ( T , R d ) {\displaystyle f\in C^{\beta }\left(T,\mathbb {R} ^{d}\right)} we get

dim G T ( B + f ) { d + 1 2 , β dim T d 1 2 d , dim T + ( 1 β ) d , dim T d 1 2 d β dim T d 1 2 , dim T β , dim T d β 1 2 , 2 dim T dim T + d 2 ,  else {\displaystyle \dim {\mathcal {G}}_{T}(B+f)\leq {\begin{cases}d+{\frac {1}{2}},&\beta \leq {\frac {\dim T}{d}}-{\frac {1}{2d}},\\\dim T+(1-\beta )\cdot d,&{\frac {\dim T}{d}}-{\frac {1}{2d}}\leq \beta \leq {\frac {\dim T}{d}}\wedge {\frac {1}{2}},\\{\frac {\dim T}{\beta }},&{\frac {\dim T}{d}}\leq \beta \leq {\frac {1}{2}},\\2\cdot \dim T\wedge \dim T+{\frac {d}{2}},&{\text{ else}}\end{cases}}}

and

dim R T ( B + f ) { dim T β , dim T d β 1 2 , 2 dim T d , dim T d 1 2 β , d ,  else . {\displaystyle \dim {\mathcal {R}}_{T}(B+f)\leq {\begin{cases}{\frac {\dim T}{\beta }},&{\frac {\dim T}{d}}\leq \beta \leq {\frac {1}{2}},\\2\cdot \dim T\wedge d,&{\frac {\dim T}{d}}\leq {\frac {1}{2}}\leq \beta ,\\d,&{\text{ else}}.\end{cases}}}

References

  1. Taylor & Watson 1985.
  2. Peres & Sousi 2016.
  3. Kern & Pleschberger 2024.

Sources

Categories: