Photoaffinity labeling is a chemoproteomics technique used to attach "labels" to the active site of a large molecule, especially a protein. The "label" attaches to the molecule loosely and reversibly, and has an inactive site which can be converted using photolysis into a highly reactive form, which causes the label to bind more permanently to the large molecule via a covalent bond. The technique was first described in the 1970s. Molecules that have been used as labels in this process are often analogs of complex molecules, in which certain functional groups are replaced with a photoreactive group, such as an azide, a diazirine or a benzophenone.
References
- Photoaffinity labeling
- Photoaffinity labeling, Gold Book
- Ruoho, A. E.; Kiefer, H.; Roeder, P. E.; Singer, S. J. (1973). "The mechanism of photoaffinity labeling". Proceedings of the National Academy of Sciences of the United States of America. 70 (9): 2567–2571. Bibcode:1973PNAS...70.2567R. doi:10.1073/pnas.70.9.2567. PMC 427057. PMID 4517671.
- Bush, J. T.; Walport, L. J.; McGouran, J. F.; Leung, I. K. H.; Berridge, G. (2013). "The Ugi four-component reaction enables expedient synthesis and comparison of photoaffinity probes". Chemical Science. 4 (12): 4115–4120. doi:10.1039/C3SC51708J.
- Panov, M. S.; Voskresenska, V. D.; Ryazantsev, M. N.; Tarnovsky, A. N.; Wilson, R. M. (2013). "5-Azido-2-aminopyridine, a New Nitrene/Nitrenium Ion Photoaffinity Labeling Agent That Exhibits Reversible Intersystem Crossing between Singlet and Triplet Nitrenes". Journal of the American Chemical Society. 135 (51): 19167–19179. Bibcode:2013JAChS.13519167P. doi:10.1021/ja405637b. PMID 24219134.
- Akiyama, S.; Cornwell, M. M.; Kuwano, M.; Pastan, I.; Gottesman, M. M. (1988). "Most drugs that reverse multidrug resistance also inhibit photoaffinity labeling of P-glycoprotein by a vinblastine analog". Molecular Pharmacology. 33 (2): 144–147. PMID 2893251.