(Redirected from Pollaczek polynomial )
Not to be confused with Meixner polynomials .
In mathematics, the Meixner–Pollaczek polynomials are a family of orthogonal polynomials P n (x ,φ) introduced by Meixner (1934 ), which up to elementary changes of variables are the same as the Pollaczek polynomials P n (x ,a ,b ) rediscovered by Pollaczek (1949 ) in the case λ=1/2, and later generalized by him.
They are defined by
P
n
(
λ
)
(
x
;
ϕ
)
=
(
2
λ
)
n
n
!
e
i
n
ϕ
2
F
1
(
−
n
,
λ
+
i
x
2
λ
;
1
−
e
−
2
i
ϕ
)
{\displaystyle P_{n}^{(\lambda )}(x;\phi )={\frac {(2\lambda )_{n}}{n!}}e^{in\phi }{}_{2}F_{1}\left({\begin{array}{c}-n,~\lambda +ix\\2\lambda \end{array}};1-e^{-2i\phi }\right)}
P
n
λ
(
cos
ϕ
;
a
,
b
)
=
(
2
λ
)
n
n
!
e
i
n
ϕ
2
F
1
(
−
n
,
λ
+
i
(
a
cos
ϕ
+
b
)
/
sin
ϕ
2
λ
;
1
−
e
−
2
i
ϕ
)
{\displaystyle P_{n}^{\lambda }(\cos \phi ;a,b)={\frac {(2\lambda )_{n}}{n!}}e^{in\phi }{}_{2}F_{1}\left({\begin{array}{c}-n,~\lambda +i(a\cos \phi +b)/\sin \phi \\2\lambda \end{array}};1-e^{-2i\phi }\right)}
Examples
The first few Meixner–Pollaczek polynomials are
P
0
(
λ
)
(
x
;
ϕ
)
=
1
{\displaystyle P_{0}^{(\lambda )}(x;\phi )=1}
P
1
(
λ
)
(
x
;
ϕ
)
=
2
(
λ
cos
ϕ
+
x
sin
ϕ
)
{\displaystyle P_{1}^{(\lambda )}(x;\phi )=2(\lambda \cos \phi +x\sin \phi )}
P
2
(
λ
)
(
x
;
ϕ
)
=
x
2
+
λ
2
+
(
λ
2
+
λ
−
x
2
)
cos
(
2
ϕ
)
+
(
1
+
2
λ
)
x
sin
(
2
ϕ
)
.
{\displaystyle P_{2}^{(\lambda )}(x;\phi )=x^{2}+\lambda ^{2}+(\lambda ^{2}+\lambda -x^{2})\cos(2\phi )+(1+2\lambda )x\sin(2\phi ).}
Properties
Orthogonality
The Meixner–Pollaczek polynomials P m (x ;φ) are orthogonal on the real line with respect to the weight function
w
(
x
;
λ
,
ϕ
)
=
|
Γ
(
λ
+
i
x
)
|
2
e
(
2
ϕ
−
π
)
x
{\displaystyle w(x;\lambda ,\phi )=|\Gamma (\lambda +ix)|^{2}e^{(2\phi -\pi )x}}
and the orthogonality relation is given by
∫
−
∞
∞
P
n
(
λ
)
(
x
;
ϕ
)
P
m
(
λ
)
(
x
;
ϕ
)
w
(
x
;
λ
,
ϕ
)
d
x
=
2
π
Γ
(
n
+
2
λ
)
(
2
sin
ϕ
)
2
λ
n
!
δ
m
n
,
λ
>
0
,
0
<
ϕ
<
π
.
{\displaystyle \int _{-\infty }^{\infty }P_{n}^{(\lambda )}(x;\phi )P_{m}^{(\lambda )}(x;\phi )w(x;\lambda ,\phi )dx={\frac {2\pi \Gamma (n+2\lambda )}{(2\sin \phi )^{2\lambda }n!}}\delta _{mn},\quad \lambda >0,\quad 0<\phi <\pi .}
Recurrence relation
The sequence of Meixner–Pollaczek polynomials satisfies the recurrence relation
(
n
+
1
)
P
n
+
1
(
λ
)
(
x
;
ϕ
)
=
2
(
x
sin
ϕ
+
(
n
+
λ
)
cos
ϕ
)
P
n
(
λ
)
(
x
;
ϕ
)
−
(
n
+
2
λ
−
1
)
P
n
−
1
(
x
;
ϕ
)
.
{\displaystyle (n+1)P_{n+1}^{(\lambda )}(x;\phi )=2{\bigl (}x\sin \phi +(n+\lambda )\cos \phi {\bigr )}P_{n}^{(\lambda )}(x;\phi )-(n+2\lambda -1)P_{n-1}(x;\phi ).}
Rodrigues formula
The Meixner–Pollaczek polynomials are given by the Rodrigues-like formula
P
n
(
λ
)
(
x
;
ϕ
)
=
(
−
1
)
n
n
!
w
(
x
;
λ
,
ϕ
)
d
n
d
x
n
w
(
x
;
λ
+
1
2
n
,
ϕ
)
,
{\displaystyle P_{n}^{(\lambda )}(x;\phi )={\frac {(-1)^{n}}{n!\,w(x;\lambda ,\phi )}}{\frac {d^{n}}{dx^{n}}}w\left(x;\lambda +{\tfrac {1}{2}}n,\phi \right),}
where w (x ;λ,φ) is the weight function given above.
Generating function
The Meixner–Pollaczek polynomials have the generating function
∑
n
=
0
∞
t
n
P
n
(
λ
)
(
x
;
ϕ
)
=
(
1
−
e
i
ϕ
t
)
−
λ
+
i
x
(
1
−
e
−
i
ϕ
t
)
−
λ
−
i
x
.
{\displaystyle \sum _{n=0}^{\infty }t^{n}P_{n}^{(\lambda )}(x;\phi )=(1-e^{i\phi }t)^{-\lambda +ix}(1-e^{-i\phi }t)^{-\lambda -ix}.}
See also
References
Koekoek, Lesky, & Swarttouw (2010), p. 213.
Koekoek, Lesky, & Swarttouw (2010), p. 213.
Koekoek, Lesky, & Swarttouw (2010), p. 214.
Koekoek, Lesky, & Swarttouw (2010), p. 215.
Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues , Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag , doi :10.1007/978-3-642-05014-5 , ISBN 978-3-642-05013-8 , MR 2656096
Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Pollaczek Polynomials" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248 .
Meixner, J. (1934), "Orthogonale Polynomsysteme Mit Einer Besonderen Gestalt Der Erzeugenden Funktion", J. London Math. Soc. , s1-9 : 6–13, doi :10.1112/jlms/s1-9.1.6
Pollaczek, Félix (1949), "Sur une généralisation des polynomes de Legendre" , Les Comptes rendus de l'Académie des sciences , 228 : 1363–1365, MR 0030037
Category :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑