Misplaced Pages

Popescu's theorem

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In commutative algebra and algebraic geometry, Popescu's theorem, introduced by Dorin Popescu, states:

Let A be a Noetherian ring and B a Noetherian algebra over it. Then, the structure map AB is a regular homomorphism if and only if B is a direct limit of smooth A-algebras.

For example, if A is a local G-ring (e.g., a local excellent ring) and B its completion, then the map AB is regular by definition and the theorem applies.

Another proof of Popescu's theorem was given by Tetsushi Ogoma, while an exposition of the result was provided by Richard Swan.

The usual proof of the Artin approximation theorem relies crucially on Popescu's theorem. Popescu's result was proved by an alternate method, and somewhat strengthened, by Mark Spivakovsky.

See also

References

  1. Popescu, Dorin (1985). "General Néron desingularization". Nagoya Mathematical Journal. 100: 97–126. doi:10.1017/S0027763000000246. MR 0818160.
  2. Popescu, Dorin (1986). "General Néron desingularization and approximation". Nagoya Mathematical Journal. 104: 85–115. doi:10.1017/S0027763000022698. MR 0868439.
  3. Conrad, Brian; de Jong, Aise Johan (2002). "Approximation of versal deformations" (PDF). Journal of Algebra. 255 (2): 489–515. doi:10.1016/S0021-8693(02)00144-8. MR 1935511., Theorem 1.3.
  4. Ogoma, Tetsushi (1994). "General Néron desingularization based on the idea of Popescu". Journal of Algebra. 167 (1): 57–84. doi:10.1006/jabr.1994.1175. MR 1282816.
  5. Swan, Richard G. (1998). "Néron–Popescu desingularization". Algebra and geometry (Taipei, 1995). Lect. Algebra Geom. Vol. 2. Cambridge, MA: International Press. pp. 135–192. MR 1697953.
  6. Spivakovsky, Mark (1999). "A new proof of D. Popescu's theorem on smoothing of ring homomorphisms". Journal of the American Mathematical Society. 12 (2): 381–444. doi:10.1090/s0894-0347-99-00294-5. MR 1647069.
  7. Cisinski, Denis-Charles; Déglise, Frédéric (2019). Triangulated Categories of Mixed Motives. Springer Monographs in Mathematics. arXiv:0912.2110. doi:10.1007/978-3-030-33242-6. ISBN 978-3-030-33241-9.

External links

Stub icon

This algebraic geometry–related article is a stub. You can help Misplaced Pages by expanding it.

Categories: