Misplaced Pages

Power-voltage curve

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Electrical engineering term "Nose curve" redirects here. For a quartic curve, see Bullet-nose curve.
Normalized P-V curve

Power-voltage curve (also P-V curve) describes the relationship between the active power delivered to the electrical load and the voltage at the load terminals in an electric power system under a constant power factor. When plotted with power as a horizontal axis, the curve resembles a human nose, thus it is sometimes called a nose curve. The overall shape of the curve (similar to a parabola placed on its side) is defined by the basic electrical equations and does not change much when the characteristics of the system vary: leading power factor lead stretches the "nose" further to the right and upwards, while the lagging one shrinks the curve. The curve is important for voltage stability analysis, as the coordinate of the tip of the nose defines the maximum power that can be delivered by the system.

As the load increases from zero, the power-voltage point travels from the top left part of the curve to the tip of the "nose" (power increases, but the voltage drops). The tip corresponds to the maximum power that can be delivered to the load (as long as sufficient reactive power reserves are available). Past this "collapse" point additional loads cause drop in both voltage and power, as the power-voltage point travels to the bottom left corner of the plot. Intuitively this result can be explained when a load that consists entirely of resistors is considered: as the load increases (its resistance thus lowers), more and more of the generator power dissipates inside the generator itself (that has it own fixed resistance connected sequentially with the load). Operation on the bottom part of the curve (where the same power is delivered with lower voltage – and thus higher current and losses) is not practical, as it corresponds to the "uncontrollability" region.

If sufficient reactive power is not available, the limit of the load power will be reached prior to the power-voltage point getting to the tip of the "nose". The operator shall maintain a sufficient margin between the operating point on the P-V curve and this maximum loading condition, otherwise, a voltage collapse can occur.

A similar curve for the reactive power is called Q-V curve.

References

  1. ^ Van Cutsem & Vournas 2006, p. 95.
  2. ^ Padiyar & Kulkarni 2018, p. 286.
  3. Machowski, Bialek & Bumby 2011, p. 384.
  4. Tang 2021, pp. 32–33.
  5. Milano 2010, p. 106.

Sources

Stub icon

This electricity-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: