Misplaced Pages

Pratt & Whitney J75

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Pratt & Whitney JT4A) Turbojet engine "J75" redirects here. For the locomotive class classified J75 by the LNER, see H&BR Class G3.
J75 / JT4A
Two JT4As installed on a KLM DC-8
Type Turbojet
National origin United States
Manufacturer Pratt & Whitney
First run 1955
Major applications Boeing 707
Convair F-106 Delta Dart
Douglas DC-8
Lockheed U-2
Republic F-105 Thunderchief
Developed from Pratt & Whitney J57
Developed into Pratt & Whitney GG4/FT4

The Pratt & Whitney J75 (civilian designation: JT4A) is an axial-flow turbojet engine first flown in 1955. A two-spool design in the 17,000 lbf (76 kN) thrust class, the J75 was essentially the bigger brother of the Pratt & Whitney J57 (JT3C). It was known in civilian service as the JT4A, and in a variety of stationary roles as the GG4 and FT4.

Design and development

In military use, the J75 was used on the Convair F-106 Delta Dart, Lockheed U-2, and Republic F-105 Thunderchief. It was also utilized in the prototype and experimental Avro Canada CF-105 Arrow, Lockheed A-12, Martin P6M-2 SeaMaster, North American YF-107, and Vought XF8U-3 Crusader III.

Before the arrival of the Pratt & Whitney JT3D turbofan engine, the JT4A was used to power certain Boeing 707 and Douglas DC-8 models, bringing improved field performance in the medium-range Boeing 707-220 and Douglas DC-8-20, and intercontinental range in the Boeing 707-320 and the Douglas DC-8-30. By late 1959, P&W had considered introducing a turbofan version of the J75, which was to have tentatively been named the TF75 or JT4D. Apparently, little interest was shown by the aircraft industry, so the variant was dropped.

Marine & power generation

After its relatively short lifetime in the aircraft role, the JT4A found more enduring use in the naval role, where the FT4 was produced in a variety of models between 18,000 and 22,000 hp (13 and 16 MW). Well-known uses include the first all-turbine warships, the Canadian Iroquois-class destroyers, as well as the United States Coast Guard's Hamilton-class cutters, the 1970s-built icebreakers Polar Sea and Polar Star (each 3 engines in CODOG configuration), and it was considered for the US Navy's Asheville-class gunboat. The same basic powerplant saw much wider use as a peak demand power turbine running on natural gas. From its introduction in 1960 over 1,000 FT4s have been sold, with many of them still in operation for electrical generation. Outdated by modern standards, refits are available that add catalytic converters to lower their emissions.

Variants

J75-P-1
J75-P-3
16,470 lbf (73.26 kN) thrust
J75-P-5
17,200 lbf (76.51 kN) thrust
J75-P-9
J75-P-11
J75-P-13B
17,000 lbf (75.62 kN) thrust
J75-P-15W
24,500 lbf (108.98 kN) afterburning thrust
J75-P-17
24,500 lbf (108.98 kN) afterburning thrust
J75-P-19
24,500 lbf (108.98 kN) afterburning thrust
J75-P-19W
26,500 lbf (117.88 kN) afterburning thrust with water injection
JT4A-3
15,800 lbf (70.28 kN)
JT4A-4
15,800 lbf (70.28 kN)
JT4A-9
16,800 lbf (74.73 kN)
JT4A-11
17,500 lbf (77.84 kN) thrust
JT4A-29
(J75-P-19W) 26,500 lbf (117.88 kN) afterburning thrust with water injection

Applications

A US Navy J75 used in the P6M-2 Seamaster
J75
JT4A

Specifications (JT4A-11)

Data from Jane's All the World's Aircraft 1962-63, Aircraft engines of the World 1966/67, Flight:Aero Engines 1960

General characteristics

  • Type: turbojet
  • Length: 144.1 in (3,660 mm)
  • Diameter: 43 in (1,092 mm)
  • Dry weight: 5,100 lb (2,313.3 kg)

Components

  • Compressor: 2-spool axial compressor
    • LP compressor: 8-stage axial (4 stages titanium, 4 stages steel)
    • HP compressor: 7-stage axial compressor
  • Combustors: cannular with 8 burner cans in an annular combustion chamber
  • Turbine: 2-spool axial turbine
    • HP turbine: 1-stage axial
    • LP turbine: 2-stage axial
  • Fuel type: Jet A-1 / ASTM A-1 / MIL-J-5624 / JP-1 / JP-4
  • Oil system: return pressure spray system at 45 psi (310 kPa)

Performance

See also

Related development

Comparable engines

Related lists

Notes

  1. "page 458". Flight. October 30, 1959.
  2. ^ Taylor, John W.R. FRHistS. ARAeS (1962). Jane's All the World's Aircraft 1962-63. London: Sampson, Low, Marston & Co Ltd.
  3. Wilkinson, Paul H. (1966). Aircraft engines of the World 1966/67 (21st ed.). London: Sir Isaac Pitman & Sons Ltd.
  4. "Aero Engines 1960". Flight International: 367–387. 18 March 1960. Retrieved 1 January 2018.

References

  • Taylor, John W.R. FRHistS. ARAeS (1962). Jane's All the World's Aircraft 1962-63. London: Sampson, Low, Marston & Co Ltd.

External links

Pratt & Whitney aircraft engines
Radial engines
H piston engines
Free-piston gas turbines
Turbojets
Turbofans
Turboprops/Turboshafts
Propfans
Rocket engines
Aeroderivative gas
turbine engines
Subsidiaries
Key people
Joint development aeroengines
See also: Pratt & Whitney Canada aeroengines
United States military gas turbine aircraft engine designation system
Turbojets
Turboprops/
Turboshafts
Turbofans
Adaptive cycle engines
United States Air Force system numbers
100–199
200–299
300–399
400–499
500–599
600–699
700–799
800–899
900–999
Unknown or not assigned
Categories: