Misplaced Pages

Pronormal subgroup

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, especially in the field of group theory, a pronormal subgroup is a subgroup that is embedded in a nice way. Pronormality is a simultaneous generalization of both normal subgroups and abnormal subgroups such as Sylow subgroups, (Doerk & Hawkes 1992, I.§6).

A subgroup is pronormal if each of its conjugates is conjugate to it already in the subgroup generated by it and its conjugate. That is, H is pronormal in G if for every g in G, there is some k in the subgroup generated by H and H such that H = H. (Here H denotes the conjugate subgroup gHg.)

Here are some relations with other subgroup properties:

References


Stub icon

This group theory-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: