Misplaced Pages

Saccharomycotina

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Saccharomyces beticus) Subdivision of fungi

Saccharomycotina
Candida albicans
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Fungi
Division: Ascomycota
(unranked): Saccharomyceta
Subdivision: Saccharomycotina
O.E. Erikss. & Winka 1997
Classes
Synonyms
  • Hemiascomycotina (Brefeldt 1891) Cavalier-Smith 1998

Saccharomycotina is a subdivision (subphylum) of the division (phylum) Ascomycota in the kingdom Fungi. It comprises most of the ascomycete yeasts. The members of Saccharomycotina reproduce by budding and they do not produce ascocarps (fruiting bodies).

The subdivision includes a single class: Saccharomycetes, which again contains a single order: Saccharomycetales.

Notable members of Saccharomycotina are the baker's yeast Saccharomyces cerevisiae and the genus Candida that includes several human pathogens.

Etymology

The name comes from the Greek word σάκχαρον (sákkharon), meaning "sugar" and μύκης (mukēs) meaning "fungus".

History and economic importance

Historical records from ancient Egypt and China describe the processes of brewing and baking from 10,000 to 8,000 years ago, and the production of fermented beverages and foods seems to have paralleled the beginning of agriculture. In the 1850s, Louis Pasteur demonstrated that yeasts are responsible for the fermentation of grape juice to wine.

Saccharomycotina include some of the economically most important fungi known. Members include species of industrial and agricultural importance (e.g. brewing, baking, fermentation of food products, production of citric acid, production of recombinant proteins, biofuel production, biological pest control of crops). Other species cause economic losses worldwide (plant pathogens, contaminants of foods and beverages). Yet others are animal and human pathogens.

Morphology

Saccharomycete yeasts usually grow as single cells. Their cellular morphology is fairly simple, although their growth form is highly adapted. Asci are naked and ascospores can have several forms. No species produce ascocarps (fruiting bodies). Saccharomycete genomes are often smaller than those of filamentous fungi.

Some species (e.g. Metschnikowia species) tend to form chains of budding cells that are termed pseudohyphae. Yet other species are able to produce true septate hyphae. Such species (e.g. Candida albicans) are termed dimorphic, which means they can propagate both as budding yeasts and as filamentous hyphae.

Reproduction

Asexual reproduction

Asexual reproduction occurs mainly vegetatively by mitosis and budding. Saccharomycotina is characterized by holoblastic budding, which means all layers of the parent cell wall are involved in the budding event. This leaves a scar through which no further budding occurs.

Asexual cells may vary in shape. The shape of the cell may be informative in terms of detecting mode of reproduction or taxonomic placement to genera or species.

Although not commonly known, some species form endospores (e.g.Candida species). These are asexual spores that are formed within their mother cell (hyphal or single cell). Strains of Candida and Metschnikowia may also form asexual resting spores called chlamydospores.

Sexual reproduction

Sexual reproduction is not known for all species of Saccharomycotina, but may happen in certain species if environmental conditions favour it (e.g. deficiency in nitrogen and carbohydrate). Sexual reproduction is well known in Saccharomyces cerevisiae. Here, the life cycle involves alternation between a haploid and a diploid phase. The life cycle proceeds as follows: Two cells of different mating type fuse and the nuclei undergo karyogamy. This results in a daughter cell with a diploid nucleus, functioning as an ascus, where meiosis occurs to produce haploid ascospores. When ascospores germinate, the haploid phase is established, and is maintained by further mitosis and budding. In most natural populations this phase is fairly short since ascospores fuse almost immediately after meiosis has occurred. This results in most yeast populations being diploid for most part of their life cycle.

In Saccharomycotina there are two mating types present. The mating types specify peptide hormones called pheromones and corresponding receptors for each type. These pheromones organize the mating. The pheromones do not affect the same mating type or diploids, but bind to receptors of different mating type. Interaction between pheromone and receptor results in altered metabolism to allow for fusion between cells of different mating type.

Distribution and ecology

Saccharomycete yeasts are found in nearly all regions of the world, including hot deserts, polar areas, in freshwater, in salt water, and in the atmosphere. Their growth is mainly saprotrophic, but some members are important pathogens of plants and animals, including humans. They are often found in specialized habitats, e.g. small volumes of organic carbon rich liquid (e.g. flower nectar).

Examples of ecological modes in Saccharomycotina:

Although yeasts are commonly isolated from soil, few are believed to have soil as a primary habitat.

Accurate identification of species is important for understanding yeast ecology, something that is now possible with the increased use of DNA-based methods. Before molecular methods were available, identification was mainly based on morphology, something that resulted in misclassifications and further prevented reliable results of ecological research.

Taxonomy

Saccharomycotina is a subdivision (subphylum) of the division (phylum) Ascomycota. It is a sister group to Pezizomycotina.

Yeasts were traditionally classified as a separate group of the fungal kingdom, but in recent years DNA-based methods have changed the understanding of phylogenetic relationships among fungi. Yeasts are considered to be a polyphyletic group, consisting of members of Basidiomycota, Taphrinomycotina, as well as Saccharomycotina. This realization has led to major changes in the phylogeny and taxonomy of Saccharomycotina.

In addition, the recent changes in the International Code of Nomenclature for algae, fungi and plants have had a major impact on the classification of fungi, including Saccharomycotina. The changes imply that a fungus can only bear one correct name, i.e. separate names for anamorphs and teleomorphs are no longer allowed. This involves major changes in Saccharomycotina taxonomy, as many species are currently described from both anamorphic and teleomorphic stages. The genus Candida is an example of a genus that is undergoing large-scale revisions.

Molecular identification methods are important tools for discovery of new species and subsequently give better understanding of biodiversity in this group. Much of the future classification of Saccharomycotina will rest on phylogenetic analysis of DNA sequences rather than on the morphological and developmental characters.

Phylogeny

Phylogeny by Groenewald et al. 2023

Saccharomycotina
Lipomycetes
Lipomycetales

Lipomycetaceae Novák & Zsolt 1961

Trigonopsidomycetes
Trigonopsidales

Trigonopsidaceae Lachance & Kurtzman 2013

Dipodascomycetes
Dipodascales

Dipodascaceae

Trichomonascaceae

Alloascoideomycetes
Alloascoideales

Alloascoideaceae Kurtzman & Robnett 2013

Sporopachydermiomycetes
Sporopachydermiales

Sporopachydermiaceae Groenewald et al. 2023

Pichiomycetes
Alaninales

Pachysolenaceae Groenewald et al. 2023

Pichiales

Pichiaceae Zender 1925

Serinales

Cephaloascaceae Batra 1973

Metschnikowiaceae Kamienski 1899 ex Doweld 2013

Debaryomycetaceae Kurtzman & Suzuki 2010

Saccharomycetes
Ascoideales

Ascoideaceae Engl. 1892

Saccharomycopsidaceae Arx & Van der Walt 1987

Phaffomycetales

Wickerhamomycetaceae Kurtzman, Robnett & Bas.-Powers 2008

Phaffomycetaceae Yamada et al. 1999

Saccharomycodales

Saccharomycodaceae Kudrjanzev 1960

Saccharomycetales

Endomycetaceae Schröter 1893

Saccharomycetaceae Winter 1881

See also

References

  1. Eriksson, O.E. & K. Winka (1997). "Supraordinal taxa of Ascomycota". Myconet. 1: 1–16.
  2. ^ Kurtzman, C. P., and Sugiyama, J. (2015). "9 Subcellular Structure and Biochemical Characters in Fungal Phylogeny". Systematics and Evolution (2nd ed.). Berlin, Germany: Springer. pp. 3–27. doi:10.1007/978-3-662-46011-5_9. ISBN 978-3-662-46010-8.{{cite book}}: CS1 maint: multiple names: authors list (link)
  3. ^ Eriksson, O. E., and Winka, K (1997). "Supraordinal taxa of Ascomycota". Myconet.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. ^ Moore. D., Robson, G.D., and Trinci, A. P. J. (2011). 21st Century Guidebook to Fungi (2nd ed.). Cambridge, UK: Cambridge University Press. pp. 200–202.{{cite book}}: CS1 maint: multiple names: authors list (link)
  5. John P. Arnold (2005) . Origin and History of Beer and Brewing: From Prehistoric Times to the Beginning of Brewing Science and Technology. Cleveland, Ohio: BeerBooks. p. 34. ISBN 978-0-9662084-1-2. OCLC 71834130.
  6. Pasteur, L. (1858). "Nouveaux faits concernant l'histoire de la fermentation alcoolique". Annales de Chimie et de Physique. 3: 404–414.
  7. Manchester, K.L. (2007). "Louis Pasteur, fermentation, and a rival". South African Journal of Science. 103 (9–10): 377–380.
  8. ^ Martins, N., Ferreira, I.C., Barros, L., Silva, S., Henriques, M (June 2014). "Candidiasis: predisposing factors, prevention, diagnosis and alternative treatment". Mycopathologia. 177 (5–6): 223–240. doi:10.1007/s11046-014-9749-1. hdl:1822/31482. PMID 24789109. S2CID 795450.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. ^ Erdogan, A., and Rao, S.S. (April 2015). "Small intestinal fungal overgrowth". Curr Gastroenterol Rep. 17 (4): 16. doi:10.1007/s11894-015-0436-2. PMID 25786900. S2CID 3098136.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  10. Martin, F. (2014). The Ecological Genomics of Fungi (1st ed.). USA: John Wiley & Sons, Inc.
  11. ^ Kurtzman, C., Fell, J. W., and Boekhout, T. (2011). The yeasts: a taxonomic study (5th ed.). Amsterdam, Netherlands: Elsevier.{{cite book}}: CS1 maint: multiple names: authors list (link)
  12. von Arx, J.A., and van der Walt, J.P. (1987). Ophiostomatales and endomycetales. In: de Hoog GS, Smith MT, Weijman ACM (eds) The expanding realm of yeast-like fungi. Amsterdam, Netherlands: Elsevier.{{cite book}}: CS1 maint: multiple names: authors list (link)
  13. Kirk, P.M., Cannon, P.F., Minter, D.W., Stalpers, J.A. (2008). Ainsworth & Bisby's dictionary of the fungi (10th ed.). Wallingford: CAB International.{{cite book}}: CS1 maint: multiple names: authors list (link)
  14. Vega, F.E., and Blackwell, M. (2005). Insect–fungal associations: ecology and evolution. Oxford, UK: Oxford University Press.{{cite book}}: CS1 maint: multiple names: authors list (link)
  15. Mortimer, R., and Polsinelli, M. (1999). "On the origins of wine yeast". Res Microbiol. 150 (3): 199–204. doi:10.1016/s0923-2508(99)80036-9. PMID 10229949.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  16. de Koning, W., and Harder, W. (1992). Methanol-utilizing yeasts. In: Murell JC, Dalton H (eds) Methane and methanol utilizers. New York, USA: Plenum. pp. 207–244.{{cite book}}: CS1 maint: multiple names: authors list (link)
  17. McNeill, J.; et al. (2012). "International Code of Nomenclature for algae, fungi and plants". Regnum Vegetabile. 154.
  18. ^ Hawksworth, D. L. (2011). "A new dawn for the naming of fungi: impacts of decisions made in Melbourne in July 2011 on the future publication and regulation of fungal names". IMA Fungus. 2 (2): 155–162. doi:10.5598/imafungus.2011.02.02.06. PMC 3359813. PMID 22679600.
  19. Groenewald, M.; Hittinger, CT.; Bensch, K.; Opulente, D.A.; Shen, X.-X.; Li, Y.; Liu, C.; LaBella, A.L.; Zhou, X.; Limtong, S.; Jindamorakot, S.; Robert, V.; Wolfe, KH; Rosa, CA; Boekhout, T.; Čadež, N.; Péter, G.; Sampaio, JP.; Lachance, M-A.; Yurkov, AM.; Daniel, H-M.; Takashima, M.; Boundy-Mills, K.; Libkind, D.; Aoki, K.; Sugita, T.; Rokas, A. (2023). "A genome-informed higher rank classification of the biotechnologically important fungal subphylum Saccharomycotina" (PDF). Studies in Mycology. 105: 1–22. doi:10.3114/sim.2023.105.01.

External links

Opisthokont: True fungi classification, fungal orders
Domain
Archaea
Bacteria
Eukaryota
(major groups
Excavata
Diaphoretickes
Hacrobia
Cryptista
Rhizaria
Alveolata
Stramenopiles
Plants
Amorphea
Amoebozoa
Opisthokonta
Animals
Fungi
Mesomycetozoea)
Rozellomyceta
Rozellomycota
Microsporidiomycota
  • Morellosporales
  • Nucleophagales
  • Paramicrosporidiales
Microsporidia
Aphelidiomyceta
Aphelidiomycota
Eumycota
Zoosporic fungi
(paraphyletic)
Neocallimastigomycota
Monoblepharomycota
Chytridiomycota
Blastocladiomycota
Zygomycota
(paraphyletic)
Olpidiomycota
Basidiobolomycota
Entomophthoromycota
Kickxellomycota
Mortierellomycota
Calcarisporiellomycota
Mucoromycota
Glomeromycota
Dikarya
Entorrhizomycota
Ascomycota
(sac fungi)
Taphrinomycotina
Saccharomycotina
Pezizomycotina
Other
Dothideomyceta
Sordariomyceta
Basidiomycota
(with basidia)
Pucciniomycotina
Ustilaginomycotina
Agaricomycotina
See also: fungi imperfecti (polyphyletic group).
Taxon identifiers
Saccharomycotina
Categories: