Misplaced Pages

Segre surface

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In algebraic geometry, a Segre surface, studied by Corrado Segre (1884) and Beniamino Segre (1951), is an intersection of two quadrics in 4-dimensional projective space. They are rational surfaces isomorphic to a projective plane blown up in 5 points with no 3 on a line, and are del Pezzo surfaces of degree 4, and have 16 rational lines. The term "Segre surface" is also occasionally used for various other surfaces, such as a quadric in 3-dimensional projective space, or the hypersurface

x 1 x 2 x 3 + x 2 x 3 x 4 + x 3 x 4 x 5 + x 4 x 5 x 1 + x 5 x 1 x 2 = 0. {\displaystyle x_{1}x_{2}x_{3}+x_{2}x_{3}x_{4}+x_{3}x_{4}x_{5}+x_{4}x_{5}x_{1}+x_{5}x_{1}x_{2}=0.\,}

References

  • Segre, Corrado (1884), "Etude des différentes surfaces du 4 ordre à conique double ou cuspidale (générale ou décomposée) considérées comme des projections de l'intersection de deux variétés quadratiques de l'espace à quatre dimensions", Mathematische Annalen, 24, Springer Berlin / Heidelberg: 313–444, doi:10.1007/BF01443412, ISSN 0025-5831
  • Segre, Beniamino (1951), "On the inflexional curve of an algebraic surface in S4", The Quarterly Journal of Mathematics, Second Series, 2 (1): 216–220, doi:10.1093/qmath/2.1.216, ISSN 0033-5606, MR 0044861
Categories: