This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
In applied mathematics, the sliding discrete Fourier transform is a recursive algorithm to compute successive STFTs of input data frames that are a single sample apart (hopsize − 1). The calculation for the sliding DFT is closely related to Goertzel algorithm.
Definition
Assuming that the hopsize between two consecutive DFTs is 1 sample, then
From this definition above, the DFT can be computed recursively thereafter. However, implementing the window function on a sliding DFT is difficult due to its recursive nature, therefore it is done exclusively in a frequency domain.
Sliding windowed infinite Fourier transform
It is not possible to implement asymmetric window functions into sliding DFT. However, the IIR version called sliding windowed infinite Fourier transform (SWIFT) provides an exponential window and the αSWIFT calculates two sDFTs in parallel where slow-decaying one is subtracted by fast-decaying one, therefore a window function of .
References
- Bradford, Russell (2005). "SLIDING IS SMOOTHER THAN JUMPING" (PDF). Proceedings ICMC 2005.
- Lazzarini, Victor (2021). Spectral Music Design. Oxford Univ. Press.
- Rafii, Zafar (14 November 2018). "Sliding Discrete Fourier Transform with Kernel Windowing". IEEE Signal Processing Magazine. 35 (6). doi:10.1109/MSP.2018.2855727.
- Grado, Logen L.; Johnson, Matthew D.; Netoff, Theoden I. (6 September 2017). "The Sliding Windowed Infinite Fourier Transform": 2. doi:10.1109/MSP.2017.2718039. Retrieved 3 February 2023.
{{cite journal}}
: Cite journal requires|journal=
(help)
This signal processing-related article is a stub. You can help Misplaced Pages by expanding it. |