Misplaced Pages

Snub triheptagonal tiling

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Snub heptagonal tiling)
Snub triheptagonal tiling
Snub triheptagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 3.3.3.3.7
Schläfli symbol sr{7,3} or s { 7 3 } {\displaystyle s{\begin{Bmatrix}7\\3\end{Bmatrix}}}
Wythoff symbol | 7 3 2
Coxeter diagram or
Symmetry group , (732)
Dual Order-7-3 floret pentagonal tiling
Properties Vertex-transitive Chiral

In geometry, the order-3 snub heptagonal tiling is a semiregular tiling of the hyperbolic plane. There are four triangles and one heptagon on each vertex. It has Schläfli symbol of sr{7,3}. The snub tetraheptagonal tiling is another related hyperbolic tiling with Schläfli symbol sr{7,4}.

Images

Drawn in chiral pairs, with edges missing between black triangles:

Dual tiling

The dual tiling is called an order-7-3 floret pentagonal tiling, and is related to the floret pentagonal tiling.

Related polyhedra and tilings

This semiregular tiling is a member of a sequence of snubbed polyhedra and tilings with vertex figure (3.3.3.3.n) and Coxeter–Dynkin diagram . These figures and their duals have (n32) rotational symmetry, being in the Euclidean plane for n=6, and hyperbolic plane for any higher n. The series can be considered to begin with n=2, with one set of faces degenerated into digons.

n32 symmetry mutations of snub tilings: 3.3.3.3.n
Symmetry
n32
Spherical Euclidean Compact hyperbolic Paracomp.
232 332 432 532 632 732 832 ∞32
Snub
figures
Config. 3.3.3.3.2 3.3.3.3.3 3.3.3.3.4 3.3.3.3.5 3.3.3.3.6 3.3.3.3.7 3.3.3.3.8 3.3.3.3.∞
Gyro
figures
Config. V3.3.3.3.2 V3.3.3.3.3 V3.3.3.3.4 V3.3.3.3.5 V3.3.3.3.6 V3.3.3.3.7 V3.3.3.3.8 V3.3.3.3.∞

From a Wythoff construction there are eight hyperbolic uniform tilings that can be based from the regular heptagonal tiling.

Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 8 forms.

Uniform heptagonal/triangular tilings
Symmetry: , (*732) , (732)
{7,3} t{7,3} r{7,3} t{3,7} {3,7} rr{7,3} tr{7,3} sr{7,3}
Uniform duals
V7 V3.14.14 V3.7.3.7 V6.6.7 V3 V3.4.7.4 V4.6.14 V3.3.3.3.7

References

See also

External links


Stub icon

This hyperbolic geometry-related article is a stub. You can help Misplaced Pages by expanding it.

Stub icon

This stereochemistry article is a stub. You can help Misplaced Pages by expanding it.

Categories: