The Sobolev conjugate of p for
1
≤
p
<
n
{\displaystyle 1\leq p<n}
, where n is space dimensionality, is
p
∗
=
p
n
n
−
p
>
p
{\displaystyle p^{*}={\frac {pn}{n-p}}>p}
This is an important parameter in the Sobolev inequalities .
Motivation
A question arises whether u from the Sobolev space
W
1
,
p
(
R
n
)
{\displaystyle W^{1,p}(\mathbb {R} ^{n})}
belongs to
L
q
(
R
n
)
{\displaystyle L^{q}(\mathbb {R} ^{n})}
for some q > p . More specifically, when does
‖
D
u
‖
L
p
(
R
n
)
{\displaystyle \|Du\|_{L^{p}(\mathbb {R} ^{n})}}
control
‖
u
‖
L
q
(
R
n
)
{\displaystyle \|u\|_{L^{q}(\mathbb {R} ^{n})}}
? It is easy to check that the following inequality
‖
u
‖
L
q
(
R
n
)
≤
C
(
p
,
q
)
‖
D
u
‖
L
p
(
R
n
)
(
∗
)
{\displaystyle \|u\|_{L^{q}(\mathbb {R} ^{n})}\leq C(p,q)\|Du\|_{L^{p}(\mathbb {R} ^{n})}\qquad \qquad (*)}
can not be true for arbitrary q . Consider
u
(
x
)
∈
C
c
∞
(
R
n
)
{\displaystyle u(x)\in C_{c}^{\infty }(\mathbb {R} ^{n})}
, infinitely differentiable function with compact support. Introduce
u
λ
(
x
)
:=
u
(
λ
x
)
{\displaystyle u_{\lambda }(x):=u(\lambda x)}
. We have that:
‖
u
λ
‖
L
q
(
R
n
)
q
=
∫
R
n
|
u
(
λ
x
)
|
q
d
x
=
1
λ
n
∫
R
n
|
u
(
y
)
|
q
d
y
=
λ
−
n
‖
u
‖
L
q
(
R
n
)
q
‖
D
u
λ
‖
L
p
(
R
n
)
p
=
∫
R
n
|
λ
D
u
(
λ
x
)
|
p
d
x
=
λ
p
λ
n
∫
R
n
|
D
u
(
y
)
|
p
d
y
=
λ
p
−
n
‖
D
u
‖
L
p
(
R
n
)
p
{\displaystyle {\begin{aligned}\|u_{\lambda }\|_{L^{q}(\mathbb {R} ^{n})}^{q}&=\int _{\mathbb {R} ^{n}}|u(\lambda x)|^{q}dx={\frac {1}{\lambda ^{n}}}\int _{\mathbb {R} ^{n}}|u(y)|^{q}dy=\lambda ^{-n}\|u\|_{L^{q}(\mathbb {R} ^{n})}^{q}\\\|Du_{\lambda }\|_{L^{p}(\mathbb {R} ^{n})}^{p}&=\int _{\mathbb {R} ^{n}}|\lambda Du(\lambda x)|^{p}dx={\frac {\lambda ^{p}}{\lambda ^{n}}}\int _{\mathbb {R} ^{n}}|Du(y)|^{p}dy=\lambda ^{p-n}\|Du\|_{L^{p}(\mathbb {R} ^{n})}^{p}\end{aligned}}}
The inequality (*) for
u
λ
{\displaystyle u_{\lambda }}
results in the following inequality for
u
{\displaystyle u}
‖
u
‖
L
q
(
R
n
)
≤
λ
1
−
n
p
+
n
q
C
(
p
,
q
)
‖
D
u
‖
L
p
(
R
n
)
{\displaystyle \|u\|_{L^{q}(\mathbb {R} ^{n})}\leq \lambda ^{1-{\frac {n}{p}}+{\frac {n}{q}}}C(p,q)\|Du\|_{L^{p}(\mathbb {R} ^{n})}}
If
1
−
n
p
+
n
q
≠
0
,
{\displaystyle 1-{\frac {n}{p}}+{\frac {n}{q}}\neq 0,}
then by letting
λ
{\displaystyle \lambda }
going to zero or infinity we obtain a contradiction. Thus the inequality (*) could only be true for
q
=
p
n
n
−
p
{\displaystyle q={\frac {pn}{n-p}}}
,
which is the Sobolev conjugate.
See also
References
Category :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑