Squared deviations from the mean (SDM) result from squaring deviations. In probability theory and statistics, the definition of variance is either the expected value of the SDM (when considering a theoretical distribution) or its average value (for actual experimental data). Computations for analysis of variance involve the partitioning of a sum of SDM.
Background
An understanding of the computations involved is greatly enhanced by a study of the statistical value
- , where is the expected value operator.
For a random variable with mean and variance ,
(Its derivation is shown here.) Therefore,
From the above, the following can be derived:
Sample variance
Main article: Sample varianceThe sum of squared deviations needed to calculate sample variance (before deciding whether to divide by n or n − 1) is most easily calculated as
From the two derived expectations above the expected value of this sum is
which implies
This effectively proves the use of the divisor n − 1 in the calculation of an unbiased sample estimate of σ.
Partition — analysis of variance
Main article: Partition of sums of squaresIn the situation where data is available for k different treatment groups having size ni where i varies from 1 to k, then it is assumed that the expected mean of each group is
and the variance of each treatment group is unchanged from the population variance .
Under the Null Hypothesis that the treatments have no effect, then each of the will be zero.
It is now possible to calculate three sums of squares:
- Individual
- Treatments
Under the null hypothesis that the treatments cause no differences and all the are zero, the expectation simplifies to
- Combination
Sums of squared deviations
Under the null hypothesis, the difference of any pair of I, T, and C does not contain any dependency on , only .
- total squared deviations aka total sum of squares
- treatment squared deviations aka explained sum of squares
- residual squared deviations aka residual sum of squares
The constants (n − 1), (k − 1), and (n − k) are normally referred to as the number of degrees of freedom.
Example
In a very simple example, 5 observations arise from two treatments. The first treatment gives three values 1, 2, and 3, and the second treatment gives two values 4, and 6.
Giving
- Total squared deviations = 66 − 51.2 = 14.8 with 4 degrees of freedom.
- Treatment squared deviations = 62 − 51.2 = 10.8 with 1 degree of freedom.
- Residual squared deviations = 66 − 62 = 4 with 3 degrees of freedom.
Two-way analysis of variance
This section is an excerpt from Two-way analysis of variance. In statistics, the two-way analysis of variance (ANOVA) is an extension of the one-way ANOVA that examines the influence of two different categorical independent variables on one continuous dependent variable. The two-way ANOVA not only aims at assessing the main effect of each independent variable but also if there is any interaction between them.See also
- Absolute deviation
- Algorithms for calculating variance
- Errors and residuals
- Least squares
- Mean squared error
- Residual sum of squares
- Root-mean-square deviation
- Variance decomposition
References
- Mood & Graybill: An introduction to the Theory of Statistics (McGraw Hill)