Misplaced Pages

Sudan function

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In the theory of computation, the Sudan function is an example of a function that is recursive, but not primitive recursive. This is also true of the better-known Ackermann function.

In 1926, David Hilbert conjectured that every computable function was primitive recursive. This was refuted by Gabriel Sudan and Wilhelm Ackermann — both his students — using different functions that were published in quick succession: Sudan in 1927, Ackermann in 1928.

The Sudan function is the earliest published example of a recursive function that is not primitive recursive.

Definition

F 0 ( x , y ) = x + y F n + 1 ( x , 0 ) = x if  n 0 F n + 1 ( x , y + 1 ) = F n ( F n + 1 ( x , y ) , F n + 1 ( x , y ) + y + 1 ) if  n 0 {\displaystyle {\begin{array}{lll}F_{0}(x,y)&=x+y\\F_{n+1}(x,0)&=x&{\text{if }}n\geq 0\\F_{n+1}(x,y+1)&=F_{n}(F_{n+1}(x,y),F_{n+1}(x,y)+y+1)&{\text{if }}n\geq 0\\\end{array}}}

The last equation can be equivalently written as

F n + 1 ( x , y + 1 ) = F n ( F n + 1 ( x , y ) , F 0 ( F n + 1 ( x , y ) , y + 1 ) ) {\displaystyle {\begin{array}{lll}F_{n+1}(x,y+1)&=F_{n}(F_{n+1}(x,y),F_{0}(F_{n+1}(x,y),y+1))\\\end{array}}} .

Computation

These equations can be used as rules of a term rewriting system (TRS).

The generalized function F ( x , y , n ) = d e f F n ( x , y ) {\displaystyle F(x,y,n){\stackrel {\mathrm {def} }{=}}F_{n}(x,y)} leads to the rewrite rules

(r1) F ( x , y , 0 ) x + y (r2) F ( x , 0 , n + 1 ) x (r3) F ( x , y + 1 , n + 1 ) F ( F ( x , y , n + 1 ) , F ( F ( x , y , n + 1 ) , y + 1 , 0 ) , n ) {\displaystyle {\begin{array}{lll}{\text{(r1)}}&F(x,y,0)&\rightarrow x+y\\{\text{(r2)}}&F(x,0,n+1)&\rightarrow x\\{\text{(r3)}}&F(x,y+1,n+1)&\rightarrow F(F(x,y,n+1),F(F(x,y,n+1),y+1,0),n)\\\end{array}}}

At each reduction step the rightmost innermost occurrence of F is rewritten, by application of one of the rules (r1) - (r3).

Calude (1988) gives an example: compute F ( 2 , 2 , 1 ) 12 {\displaystyle F(2,2,1)\rightarrow _{*}12} .

The reduction sequence is

F ( 2 , 2 , 1 ) _ {\displaystyle {\underline {F(2,2,1)}}}
     r 3 F ( F ( 2 , 1 , 1 ) , F ( F ( 2 , 1 , 1 ) _ , 2 , 0 ) , 0 ) {\displaystyle \rightarrow _{r3}F(F(2,1,1),F({\underline {F(2,1,1)}},2,0),0)}
     r 3 F ( F ( 2 , 1 , 1 ) , F ( F ( F ( 2 , 0 , 1 ) , F ( F ( 2 , 0 , 1 ) _ , 1 , 0 ) , 0 ) , 2 , 0 ) , 0 ) {\displaystyle \rightarrow _{r3}F(F(2,1,1),F(F(F(2,0,1),F({\underline {F(2,0,1)}},1,0),0),2,0),0)}
     r 2 F ( F ( 2 , 1 , 1 ) , F ( F ( F ( 2 , 0 , 1 ) , F ( 2 , 1 , 0 ) _ , 0 ) , 2 , 0 ) , 0 ) {\displaystyle \rightarrow _{r2}F(F(2,1,1),F(F(F(2,0,1),{\underline {F(2,1,0)}},0),2,0),0)}
     r 1 F ( F ( 2 , 1 , 1 ) , F ( F ( F ( 2 , 0 , 1 ) _ , 3 , 0 ) , 2 , 0 ) , 0 ) {\displaystyle \rightarrow _{r1}F(F(2,1,1),F(F({\underline {F(2,0,1)}},3,0),2,0),0)}
     r 2 F ( F ( 2 , 1 , 1 ) , F ( F ( 2 , 3 , 0 ) _ , 2 , 0 ) , 0 ) {\displaystyle \rightarrow _{r2}F(F(2,1,1),F({\underline {F(2,3,0)}},2,0),0)}
     r 1 F ( F ( 2 , 1 , 1 ) , F ( 5 , 2 , 0 ) _ , 0 ) {\displaystyle \rightarrow _{r1}F(F(2,1,1),{\underline {F(5,2,0)}},0)}
     r 1 F ( F ( 2 , 1 , 1 ) _ , 7 , 0 ) {\displaystyle \rightarrow _{r1}F({\underline {F(2,1,1)}},7,0)}
     r 3 F ( F ( F ( 2 , 0 , 1 ) , F ( F ( 2 , 0 , 1 ) _ , 1 , 0 ) , 0 ) , 7 , 0 ) {\displaystyle \rightarrow _{r3}F(F(F(2,0,1),F({\underline {F(2,0,1)}},1,0),0),7,0)}
     r 2 F ( F ( F ( 2 , 0 , 1 ) , F ( 2 , 1 , 0 ) _ , 0 ) , 7 , 0 ) {\displaystyle \rightarrow _{r2}F(F(F(2,0,1),{\underline {F(2,1,0)}},0),7,0)}
     r 1 F ( F ( F ( 2 , 0 , 1 ) _ , 3 , 0 ) , 7 , 0 ) {\displaystyle \rightarrow _{r1}F(F({\underline {F(2,0,1)}},3,0),7,0)}
     r 2 F ( F ( 2 , 3 , 0 ) _ , 7 , 0 ) {\displaystyle \rightarrow _{r2}F({\underline {F(2,3,0)}},7,0)}
     r 1 F ( 5 , 7 , 0 ) _ {\displaystyle \rightarrow _{r1}{\underline {F(5,7,0)}}}
     r 1 12 {\displaystyle \rightarrow _{r1}12}

Value tables

Values of F0

F0(xy) = x + y

y \  0 1 2 3 4 5 6 7 8 9 10
0 0 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10 11
2 2 3 4 5 6 7 8 9 10 11 12
3 3 4 5 6 7 8 9 10 11 12 13
4 4 5 6 7 8 9 10 11 12 13 14
5 5 6 7 8 9 10 11 12 13 14 15
6 6 7 8 9 10 11 12 13 14 15 16
7 7 8 9 10 11 12 13 14 15 16 17
8 8 9 10 11 12 13 14 15 16 17 18
9 9 10 11 12 13 14 15 16 17 18 19
10 10 11 12 13 14 15 16 17 18 19 20

Values of F1

F1(xy) = 2 · (x + 2) − y − 2

y \  0 1 2 3 4 5 6 7 8 9 10
0 0 1 2 3 4 5 6 7 8 9 10
1 1 3 5 7 9 11 13 15 17 19 21
2 4 8 12 16 20 24 28 32 36 40 44
3 11 19 27 35 43 51 59 67 75 83 91
4 26 42 58 74 90 106 122 138 154 170 186
5 57 89 121 153 185 217 249 281 313 345 377
6 120 184 248 312 376 440 504 568 632 696 760
7 247 375 503 631 759 887 1015 1143 1271 1399 1527
8 502 758 1014 1270 1526 1782 2038 2294 2550 2806 3062
9 1013 1525 2037 2549 3061 3573 4085 4597 5109 5621 6133
10 2036 3060 4084 5108 6132 7156 8180 9204 10228 11252 12276

Values of F2

y \  0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
x
1 F1 (F2(0, 0),  
F2(0, 0)+1)
F1 (F2(1, 0),  
F2(1, 0)+1)
F1 (F2(2, 0),  
F2(2, 0)+1)
F1 (F2(3, 0),  
F2(3, 0)+1)
F1 (F2(4, 0),  
F2(4, 0)+1)
F1 (F2(5, 0),  
F2(5, 0)+1)
F1 (F2(6, 0),  
F2(6, 0)+1)
F1 (F2(7, 0),  
F2(7, 0)+1)
F1(0, 1) F1(1, 2) F1(2, 3) F1(3, 4) F1(4, 5) F1(5, 6) F1(6, 7) F1(7, 8)
1 8 27 74 185 440 1015 2294
2 · (x + 2) − x − 3
≈ 10
2 F1 (F2(0, 1),  
F2(0, 1)+2)
F1 (F2(1, 1),  
F2(1, 1)+2)
F1 (F2(2, 1),  
F2(2, 1)+2)
F1 (F2(3, 1),  
F2(3, 1)+2)
F1 (F2(4, 1),  
F2(4, 1)+2)
F1 (F2(5, 1),  
F2(5, 1)+2)
F1 (F2(6, 1),  
F2(6, 1)+2)
F1 (F2(7, 1),  
F2(7, 1)+2)
F1(1, 3) F1(8, 10) F1(27, 29) F1(74, 76) F1(185, 187) F1(440, 442) F1(1015, 1017) F1(2294, 2296)
19 10228 15569256417 ≈ 5,742397643 · 10 ≈ 3,668181327 · 10 ≈ 5,019729940 · 10 ≈ 1,428323374 · 10 ≈ 3,356154368 · 10
2 · (2·(x+2) − x − 1) − (2·(x+2) − x + 1)
≈ 10 ≈ 10 ≈ 10 = 10 ≈ 10
3 F1 (F2(0, 2),  
F2(0, 2)+3)
F1 (F2(1, 2),  
F2(1, 2)+3)
F1 (F2(2, 2),  
F2(2, 2)+3)
F1 (F2(3, 2),  
F2(3, 2)+3)
F1 (F2(4, 2),  
F2(4, 2)+3)
F1 (F2(5, 2),  
F2(5, 2)+3)
F1 (F2(6, 2),  
F2(6, 2)+3)
F1 (F2(7, 2),  
F2(7, 2)+3)
F1(F1(1,3),  
F1(1,3)+3)
F1(F1(8,10),  
F1(8,10)+3)
F1(F1(27,29),  
F1(27,29)+3)
F1(F1(74,76),  
F1(74,76)+3)
F1(F1(185,187),  
F1(185,187)+3)
F1(F1(440,442),  
F1(440,442)+3)
F1(F1(1015,1017),  
F1(1015,1017)+3)
F1(F1(2294,2297),  
F1(2294,2297)+3)
F1(19, 22) F1(10228, 10231) F1(15569256417,
15569256420)
F1(≈6·10, ≈6·10) F1(≈4·10, ≈4·10) F1(≈5·10, ≈5·10) F1(≈10, ≈10) F1(≈3·10, ≈3·10)
88080360 ≈ 7,04 · 10 ≈ 7,82 · 10 ≈ 10 ≈ 10 ≈ 10 ≈ 10 ≈ 10
longer expression, starts with 2 an, ≈ 10
4 F1 (F2(0, 3),  
F2(0, 3)+4)
F1 (F2(1, 3),  
F2(1, 3)+4)
F1 (F2(2, 3),  
F2(2, 3)+4)
F1 (F2(3, 3),  
F2(3, 3)+4)
F1 (F2(4, 3),  
F2(4, 3)+4)
F1 (F2(5, 3),  
F2(5, 3)+4)
F1 (F2(6, 3),  
F2(6, 3)+4)
F1 (F2(7, 3),  
F2(7, 3)+4)
F1 (F1(19, 22),  
F1(19, 22)+4)
F1 (F1(10228,  
10231),  
F1(10228,  
10231)+4)
F1 (F1(15569256417,  
15569256420),  
F1(15569256417,  
15569256420)+4)
F1 (F1(≈5,74·10, ≈5,74·10),
F1(≈5,74·10, ≈5,74·10))
F1 (F1(≈3,67·10, ≈3,67·10),
F1(≈3,67·10, ≈3,67·10))
F1 (F1(≈5,02·10, ≈5,02·10),
F1(≈5,02·10, ≈5,02·10))
F1 (F1(≈1,43·10, ≈1,43·10),
F1(≈1,43·10, ≈1,43·10))
F1 (F1(≈3,36·10, ≈3,36·10),
F1(≈3,36·10, ≈3,36·10))
F1(88080360,
88080364)
F1(10230·2−10233,
10230·2−10229)
≈ 3,5 · 10
much longer expression, starts with 2 an, ≈ 10

Values of F3

y \  0 1 2 3 4
0 0 1 2 3 4
x
1 F2 (F3(0, 0),  
F3(0, 0)+1)
F2 (F3(1, 0),  
F3(1, 0)+1)
F2 (F3(2, 0),  
F3(2, 0)+1)
F2 (F3(3, 0),  
F3(3, 0)+1)
F2 (F3(4, 0),  
F3(4, 0)+1)
F2(0, 1) F2(1, 2) F2(2, 3) F2(3, 4) F2(4, 5)
1 10228 ≈ 7,82 · 10
No closed expressions possible within the framework of normal mathematical notation
2 F3 (F4(0, 1),  
F4(0, 1)+2)
F3 (F4(1, 1),  
F4(1, 1)+2)
F3 (F4(2, 1),  
F4(2, 1)+2)
F3 (F4(3, 1),  
F4(3, 1)+2)
F3 (F4(4, 1),  
F4(4, 1)+2)
F3 (1, 3) F3 (10228, 10230) F3 (≈10, 
≈10)
 
No closed expressions possible within the framework of normal mathematical notation

Notes and references

  1. Sudan 1927.
  2. Ackermann 1928.
  3. Calude, Marcus & Tevy 1979.
  4. Calude 1988, p. 92.
  5. Calude 1988, pp. 92–95.
  6. The rightmost innermost occurrences of F are underlined.

Bibliography

  • Sudan, Gabriel (1927). "Sur le nombre transfini ω". Bulletin mathématique de la Société Roumaine des Sciences. 30: 11–30. JFM 53.0171.01. JSTOR 43769875. Jbuch 53, 171

External links

Categories: