Misplaced Pages

Tetrakis(triphenylphosphine)palladium(0)

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Tetrakis(triphenylphosphine)­palladium(0)
3D model of the tetrakis(triphenylphosphine)palladium(0) molecule
Tetrakis(triphenylphosphine)palladium(0)
Names
IUPAC name Tetrakis(triphenylphosphane)palladium(0)
Other names TPP palladium(0)
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.034.609 Edit this at Wikidata
EC Number
  • 238-086-9
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/4C18H15P.Pd/c4*1-4-10-16(11-5-1)19(17-12-6-2-7-13-17)18-14-8-3-9-15-18;/h4*1-15H;Key: NFHFRUOZVGFOOS-UHFFFAOYSA-N
SMILES
  • ((c1ccccc1)(c1ccccc1)c1ccccc1)((c1ccccc1)(c1ccccc1)c1ccccc1)((c1ccccc1)(c1ccccc1)c1ccccc1)(c1ccccc1)(c1ccccc1)c1ccccc1
Properties
Chemical formula C72H60P4Pd
Molar mass 1155.59 g·mol
Appearance Bright yellow to chartreuse crystals
Melting point decomposes around 115 °C
Solubility in water Insoluble
Structure
Coordination geometry four triphenylphosphine monodentate
ligands attached to a central Pd(0)
atom in a tetrahedral geometry
Molecular shape tetrahedral
Dipole moment 0 D
Hazards
GHS labelling:
Pictograms GHS07: Exclamation mark
Signal word Warning
Hazard statements H302, H317, H413
Precautionary statements P261, P264, P270, P272, P273, P280, P301+P312, P302+P352, P330, P333+P313, P363, P501
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability (yellow): no hazard codeSpecial hazards (white): no code
2 1
Related compounds
Related complexes chlorotris(triphenylphosphine)rhodium(I)
tris(dibenzylideneacetone)dipalladium(0)

Tetrakis(triphenylphosphine)platinum(0)
Tetrakis(triphenylphosphine)nickel(0)

Related compounds triphenylphosphine
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). checkverify (what is  ?) Infobox references
Chemical compound

Tetrakis(triphenylphosphine)palladium(0) (sometimes called quatrotriphenylphosphine palladium) is the chemical compound , often abbreviated Pd(PPh3)4, or rarely PdP4. It is a bright yellow crystalline solid that becomes brown upon decomposition in air.

Structure and properties

The four phosphorus atoms are at the corners of a tetrahedron surrounding the palladium(0) center. This structure is typical for four-coordinate 18 e complexes. The corresponding complexes Ni(PPh3)4 and Pt(PPh3)4 are also well known. Such complexes reversibly dissociate PPh3 ligands in solution, so reactions attributed to Pd(PPh3)4 often in fact arise from Pd(PPh3)3 or even Pd(PPh3)2.

Preparation

Tetrakis(triphenylphosphine)palladium(0) was first prepared by Lamberto Malatesta et al. in the 1950s by reduction of sodium chloropalladate with hydrazine in the presence of the phosphine. It is commercially available, but can be prepared in two steps from Pd(II) precursors:

PdCl2 + 2 PPh3 → PdCl2(PPh3)2
PdCl2(PPh3)2 + 2 PPh3 + 5⁄2 N2H4 → Pd(PPh3)4 + 1⁄2 N2 + 2 N2H5Cl

Both steps may be carried out in a one-pot reaction, without isolating and purifying the PdCl2(PPh3)2 intermediate. Reductants other than hydrazine can be employed, including ascorbic acid. The compound is sensitive to air, but can be purified by washing with methanol to give the desired yellow powder. It is usually stored cold under argon.

Applications

Pd(PPh3)4 is widely used as a catalyst for palladium-catalyzed coupling reactions. Prominent applications include the Heck reaction, Suzuki coupling, Stille coupling, Sonogashira coupling, and Negishi coupling. These processes begin with two successive ligand dissociations followed by the oxidative addition of an aryl halide to the Pd(0) center:

Pd(PPh3)4 + ArBr → PdBr(Ar)(PPh3)2 + 2 PPh3

References

  1. "Tetrakis(triphenylphosphine)palladium". pubchem.ncbi.nlm.nih.gov.
  2. Elschenbroich, C.; Salzer, A. (1992). Organometallics: A Concise Introduction (2nd ed.). Weinheim: Wiley-VCH. ISBN 3-527-28165-7.
  3. Scott, Neil W. J.; Ford, Mark J.; Schotes, Christoph; Parker, Rachel R.; Whitwood, Adrian C.; Fairlamb, Ian J. S. (2019). "The Ubiquitous Cross-Coupling Catalyst System 'Pd(OAc)2'/2PPh3 Forms a Unique Dinuclear Pd Complex: An Important Entry Point into Catalytically Competent Cyclic Pd3 Clusters". Chemical Science. 10 (34): 7898–7906. doi:10.1039/C9SC01847F.
  4. Malatesta, L.; Angoletta, M. (1957). "Palladium(0) compounds. Part II. Compounds with triarylphosphines, triaryl phosphites, and triarylarsines". J. Chem. Soc. 1957: 1186. doi:10.1039/JR9570001186.
  5. Coulson, D. R.; Satek, L. C.; Grim, S. O. (1972). "Tetrakis(triphenylphosphine)palladium(0)". Inorganic Syntheses. Vol. 13. pp. 121–124. doi:10.1002/9780470132449.ch23. ISBN 978-0-470-13244-9.
  6. Carrasco, Sergio; Martín-Matute, Belén (16 April 2019). "Hydrazine-Free Facile Synthesis of Palladium-Tetrakis(Triphenylphosphine)". European Journal of Inorganic Chemistry. 2019 (14): 1951–1955. doi:10.1002/ejic.201900060. S2CID 107314949. Retrieved 26 November 2023.
  7. Van Leeuwen, P. W. (2005). Homogeneous Catalysis: Understanding the Art. Springer. ISBN 1-4020-3176-9.
Palladium compounds
Pd(0)
Organopalladium(0) compounds
  • Pd2((C6H5C2H2)2CO)3
  • Pd(II)
    Organopalladium(II) compounds
  • ((CH2)2CHPdCl)2
  • (C5H5)Pd(C3H5)
  • Pd(II,IV)
    Pd(IV)
    Pd(VI)
    Categories: