Misplaced Pages

Thom's first isotopy lemma

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Thom–Mather isotopy theorem) Theorem

In mathematics, especially in differential topology, Thom's first isotopy lemma states: given a smooth map f : M N {\displaystyle f:M\to N} between smooth manifolds and S M {\displaystyle S\subset M} a closed Whitney stratified subset, if f | S {\displaystyle f|_{S}} is proper and f | A {\displaystyle f|_{A}} is a submersion for each stratum A {\displaystyle A} of S {\displaystyle S} , then f | S {\displaystyle f|_{S}} is a locally trivial fibration. The lemma was originally introduced by René Thom who considered the case when N = R {\displaystyle N=\mathbb {R} } . In that case, the lemma constructs an isotopy from the fiber f 1 ( a ) {\displaystyle f^{-1}(a)} to f 1 ( b ) {\displaystyle f^{-1}(b)} ; whence the name "isotopy lemma".

The local trivializations that the lemma provide preserve the strata. However, they are generally not smooth (not even C 1 {\displaystyle C^{1}} ). On the other hand, it is possible that local trivializations are semialgebraic if the input data is semialgebraic.

The lemma is also valid for a more general stratified space such as a stratified space in the sense of Mather but still with the Whitney conditions (or some other conditions). The lemma is also valid for the stratification that satisfies Bekka's condition (C), which is weaker than Whitney's condition (B). (The significance of this is that the consequences of the first isotopy lemma cannot imply Whitney’s condition (B).)

Thom's second isotopy lemma is a family version of the first isotopy lemma.

Proof

The proof is based on the notion of a controlled vector field. Let { ( T A , π A , ρ A ) A } {\displaystyle \{(T_{A},\pi _{A},\rho _{A})\mid A\}} be a system of tubular neighborhoods T A {\displaystyle T_{A}} in M {\displaystyle M} of strata A {\displaystyle A} in S {\displaystyle S} where π A : T A A {\displaystyle \pi _{A}:T_{A}\to A} is the associated projection and ρ A : T A [ 0 , ) {\displaystyle \rho _{A}:T_{A}\to [0,\infty )} given by the square norm on each fiber of π A {\displaystyle \pi _{A}} . (The construction of such a system relies on the Whitney conditions or something weaker.) By definition, a controlled vector field is a family of vector fields (smooth of some class) η A {\displaystyle \eta _{A}} on the strata A {\displaystyle A} such that: for each stratum A, there exists a neighborhood T A {\displaystyle T'_{A}} of A {\displaystyle A} in T A {\displaystyle T_{A}} such that for any B > A {\displaystyle B>A} ,

η B ρ A = 0 , {\displaystyle \eta _{B}\circ \rho _{A}=0,}
( π A ) η B = η A π A {\displaystyle (\pi _{A})_{*}\eta _{B}=\eta _{A}\circ \pi _{A}}

on T A B {\displaystyle T_{A}'\cap B} .

Assume the system T A {\displaystyle T_{A}} is compatible with the map f : M N {\displaystyle f:M\to N} (such a system exists). Then there are two key results due to Thom:

  1. Given a vector field ζ {\displaystyle \zeta } on N, there exists a controlled vector field η {\displaystyle \eta } on S that is a lift of it: f ( η ) = ζ f {\displaystyle f_{*}(\eta )=\zeta \circ f} .
  2. A controlled vector field has a continuous flow (despite the fact that a controlled vector field is discontinuous).

The lemma now follows in a straightforward fashion. Since the statement is local, assume N = R n {\displaystyle N=\mathbb {R} ^{n}} and i {\displaystyle \partial _{i}} the coordinate vector fields on R n {\displaystyle \mathbb {R} ^{n}} . Then, by the lifting result, we find controlled vector fields i ~ {\displaystyle {\widetilde {\partial _{i}}}} on S {\displaystyle S} such that f ( i ~ ) = i f {\displaystyle f_{*}({\widetilde {\partial _{i}}})=\partial _{i}\circ f} . Let φ i : R × S S {\displaystyle \varphi _{i}:\mathbb {R} \times S\to S} be the flows associated to them. Then define

H : f | S 1 ( 0 ) × R n S {\displaystyle H:f|_{S}^{-1}(0)\times \mathbb {R} ^{n}\to S}

by

H ( y , t ) = φ n ( t n , ϕ n 1 ( t n 1 , , φ 1 ( t 1 , y ) ) ) . {\displaystyle H(y,t)=\varphi _{n}(t_{n},\phi _{n-1}(t_{n-1},\cdots ,\varphi _{1}(t_{1},y)\cdots )).}

It is a map over R n {\displaystyle \mathbb {R} ^{n}} and is a homeomorphism since G ( x ) = ( φ 1 ( t 1 , , φ n ( t n , x ) ) , t ) , t = f ( x ) {\displaystyle G(x)=(\varphi _{1}(-t_{1},\cdots ,\varphi _{n}(-t_{n},x)\cdots ),t),t=f(x)} is the inverse. Since the flows φ i {\displaystyle \varphi _{i}} preserve the strata, H {\displaystyle H} also preserves the strata. {\displaystyle \square }

See also

Note

  1. ^ Mather 2012, Proposition 11.1.
  2. Thom 1969
  3. Broglia, Fabrizio; Galbiati, Margherita; Tognoli, Alberto (11 July 2011). Real Analytic and Algebraic Geometry: Proceedings of the International Conference, Trento (Italy), September 21-25th, 1992. Walter de Gruyter. ISBN 9783110881271.
  4. Editorial note: in fact, local trivializations can be definable if the input date is definable, according to https://ncatlab.org/toddtrimble/published/Surface+diagrams
  5. § 3 of Bekka, K. (1991). "C-Régularité et trivialité topologique". Singularity Theory and its Applications. Lecture Notes in Mathematics. Vol. 1462. Springer. pp. 42–62. doi:10.1007/BFb0086373. ISBN 978-3-540-53737-3.
  6. Mather 2012, $ 9.
  7. Mather 2012, Proposition 9.1.
  8. Mather 2012, Proposition 10.1.

References

External links

Stub icon

This topology-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: