Misplaced Pages

Timeline of volcanism on Earth

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

2011 Puyehue-Cordón Caulle eruption1980 eruption of Mount St. Helens1912 eruption of NovaruptaYellowstone CalderaAD 79 Eruption of Mount Vesuvius1902 eruption of Santa María1280 eruption of Quilotoa1600 eruption of Huaynaputina2010 eruptions of EyjafjallajökullYellowstone Caldera1783 eruption of Laki1477 eruption of Bárðarbunga1650 eruption of KolumboVolcanic activity at SantoriniToba catastrophe theoryKuril IslandsBaekdu MountainKikai Caldera1991 eruption of Mount PinatuboLong Island (Papua New Guinea)1815 eruption of Mount Tambora1883 eruption of Krakatoa2010 eruptions of Mount MerapiBilly Mitchell (volcano)Taupō VolcanoTaupō VolcanoTaupō VolcanoCrater Lake
Clickable imagemap of notable volcanic eruptions. The apparent volume of each bubble is linearly proportional to the volume of tephra ejected, colour-coded by time of eruption as in the legend. Pink lines denote convergent boundaries, blue lines denote divergent boundaries and yellow spots denote hotspots.

This timeline of volcanism on Earth includes a list of major volcanic eruptions of approximately at least magnitude 6 on the Volcanic explosivity index (VEI) or equivalent sulfur dioxide emission during the Quaternary period (from 2.58 Mya to the present). Other volcanic eruptions are also listed.

Some eruptions cooled the global climate—inducing a volcanic winter—depending on the amount of sulfur dioxide emitted and the magnitude of the eruption. Before the present Holocene epoch, the criteria are less strict because of scarce data availability, partly since later eruptions have destroyed the evidence. Only some eruptions before the Neogene period (from 23 Mya to 2.58 Mya) are listed. Known large eruptions after the Paleogene period (from 66 Mya to 23 Mya) are listed, especially those relating to the Yellowstone hotspot, Santorini caldera, and the Taupō Volcanic Zone.

Active volcanoes such as Stromboli, Mount Etna and Kīlauea do not appear on this list, but some back-arc basin volcanoes that generated calderas do appear. Some dangerous volcanoes in "populated areas" appear many times: Santorini six times, and Yellowstone hotspot 21 times. The Bismarck volcanic arc, New Britain, and the Taupō Volcanic Zone, New Zealand, appear often too.

In addition to the events listed below, there are many examples of eruptions in the Holocene on the Kamchatka Peninsula, which are described in a supplemental table by Peter Ward.

Large Quaternary eruptions

Main article: List of Quaternary volcanic eruptions

The Holocene epoch begins 11,700 years BP (10,000 C years ago).

1000–2000 AD

  • Pinatubo, island of Luzon, Philippines; 1991, June 15; VEI 6; 6 to 16 km (1.4 to 3.8 cu mi) of tephra; an estimated 20,000,000 tonnes (22,000,000 short tons) of SO
    2
    were emitted
  • Novarupta, Alaska Peninsula; 1912, June 6; VEI 6; 13 to 15 km (3.1 to 3.6 cu mi) of lava
  • Santa Maria, Guatemala; 1903, October 24; VEI 6; 20 km (4.8 cu mi) of tephra
  • Krakatoa, Indonesia; 1883, August 26–27; VEI 6; 21 km (5.0 cu mi) of tephra
  • Mount Tambora, Lesser Sunda Islands, Indonesia; 1815, Apr 10; VEI 7; 160–213 km (38–51 cu mi) of tephra; an estimated 200,000,000 t (220,000,000 short tons) of SO
    2 were emitted, produced the "Year Without a Summer"
  • 1808 mystery eruption, VEI 6–7; discovered from ice cores in the 1980s.
  • Grímsvötn, Northeastern Iceland; 1783–1785; Laki; 1783–1784; VEI 2; 14 km (3.4 cu mi) of lava, an estimated 120,000,000 t (130,000,000 short tons) of SO
    2 were emitted, produced a Volcanic winter, 1783, on the North Hemisphere.
  • Long Island (Papua New Guinea), Northeast of New Guinea; 1660 ±20; VEI 6; 30 km (7.2 cu mi) of tephra
  • Huaynaputina, Peru; 1600, February 19; VEI 6; 30 km (7.2 cu mi) of tephra
  • Billy Mitchell, Bougainville Island, Papua New Guinea; 1580 ±20; VEI 6; 14 km (3.4 cu mi) of tephra
  • Bárðarbunga, Northeastern Iceland; 1477; VEI 6; 10 cubic kilometres (2.4 cu mi) of tephra
  • 1465 mystery eruption "the location of this eruption is uncertain, as it has only been identified from distant ice core records and atmospheric events around the time of King Alfonso II of Naples's wedding; it is believed to have been VEI 7 and possibly even larger than Mount Tambora's in 1815.
  • 1452/1453 mystery eruption in the New Hebrides arc, Vanuatu; the location of this eruption in the South Pacific is uncertain, as it has been identified from distant ice core records; the only pyroclastic flows are found at Kuwae; 36 to 96 km (8.6 to 23.0 cu mi) of tephra; 175,000,000–700,000,000 t (193,000,000–772,000,000 short tons) of sulfuric acid
  • 1280(?) in Quilotoa, Ecuador; VEI 6; 21 km (5.0 cu mi) of tephra
  • 1257 Samalas eruption, Rinjani volcanic complex, Lombok Island, Indonesia; 40 km (dense-rock equivalent) of tephra, Arctic and Antarctic Ice cores provide compelling evidence to link the ice core sulfate spike of 1258/1259 A.D. to this volcano.

Overview of Common Era

Main article: List of large volcanic eruptions

This is a sortable summary of 27 major eruptions in the last 2000 years with VEI ≥6, implying an average of about 1.3 per century. The count does not include the notable VEI 5 eruptions of Mount St. Helens and Mount Vesuvius. Date uncertainties, tephra volumes, and references are also not included.

Caldera/ Eruption name Volcanic arc/ belt
or Subregion or Hotspot
VEI Date Known/proposed consequences
Mount Pinatubo Luzon Volcanic Arc 6 15 Jun 1991 Global temperature fell by 0.4 °C
Novarupta Aleutian Range 6 6 Jun 1912
Santa María Central America Volcanic Arc 6 24 Oct 1902
Krakatoa Sunda Arc 6 26-28 Aug 1883 At least 30,000 dead
Mount Tambora Lesser Sunda Islands 7 10 Apr 1815 Year Without a Summer (1816)
1808 mystery eruption Southwestern Pacific Ocean 6 Dec 1808 A sulfate spike in ice cores
Long Island (Papua New Guinea) Bismarck Volcanic Arc 6 1660
Huaynaputina Andes, Central Volcanic Zone 6 19 Feb 1600 Russian famine of 1601–1603
Billy Mitchell Bougainville & Solomon Is. 6 1580
Bárðarbunga Iceland 6 1477
1458 mystery eruption Unknown 6-7 1458 Possibly larger than Mount Tambora's
1452/1453 mystery eruption Unknown 6-7 1452–53 2nd pulse of Little Ice Age?
Quilotoa Andes, Northern Volcanic Zone 6 1280
Samalas (Mount Rinjani) Lombok, Lesser Sunda Islands 7 1257 1257 Samalas eruption, 1st pulse of Little Ice Age? (c.1250)
Baekdu Mountain/Tianchi eruption China/North Korea border 7 946, Nov-947 Limited regional climatic effects.
Ceboruco Trans-Mexican Volcanic Belt 6 930
Dakataua Bismarck Volcanic Arc 6 800
Pago Bismarck Volcanic Arc 6 710
Mount Churchill eastern Alaska, USA 6 700
Rabaul caldera Bismarck Volcanic Arc 6 683 (est.)
Volcanic winter of 536 Krakatoa 6-7 535
Ilopango Central America Volcanic Arc 6 450
Ksudach Kamchatka Peninsula 6 240
Taupō Caldera/Hatepe eruption Taupō Volcano 7 180 or 230 Affected skies over Rome and China
Mount Churchill eastern Alaska, USA 6 60
Ambrym New Hebrides Arc 6 50
Apoyeque Central America Volcanic Arc 6 50 BC (±100)

Note: Caldera names tend to change over time. For example, Ōkataina Caldera, Haroharo Caldera, Haroharo volcanic complex, and Tarawera volcanic complex all had the same magma source in the Taupō Volcanic Zone. Yellowstone Caldera, Henry's Fork Caldera, Island Park Caldera, Heise Volcanic Field all had Yellowstone hotspot as magma source.

Earlier Quaternary eruptions

See also: List of Quaternary volcanic eruptions

2.588 ± 0.005 million years BP, the Quaternary period and Pleistocene epoch begin.

  • Eifel hotspot, Laacher See, Vulkan Eifel, Germany; 12.9 ka; VEI 6; 6 cubic kilometers (1.4 cu mi) of tephra.
  • Emmons Lake Caldera (size: 11 x 18 km), Aleutian Range, 17 ka ±5; more than 50 km (12 cu mi) of tephra.
  • Lake Barrine, Atherton Tableland, North Queensland, Australia; was formed over 17 ka.
  • Menengai, East African Rift, Kenya; 29 ka
  • Morne Diablotins, Commonwealth of Dominica; VEI 6; 30 ka (Grand Savanne Ignimbrite).
  • Phlegraean Fields, Italy; VEI 7; 40 ka (Campanian Ignimbrite eruption).
  • Kurile Lake, Kamchatka Peninsula, Russia; Golygin eruption; about 41.5 ka; VEI 7
  • Maninjau Caldera (size: 20 x 8 km), West Sumatra; VEI 7; around 52 ka; 220 to 250 cubic kilometers (52.8 to 60.0 cu mi) of tephra.
  • Lake Toba (size: 100 x 30 km), Sumatra, Indonesia; VEI 8; 73 ka ±4; 2,500 to 3,000 cubic kilometers (599.8 to 719.7 cu mi) of tephra; probably six gigatons of sulfur dioxide were emitted (Youngest Toba Tuff).
  • Atitlán Caldera (size: 17 x 20 km), Guatemalan Highlands; Los Chocoyos eruption; formed in an eruption 84 ka; VEI 7; 300 km (72 cu mi) of tephra.
  • Mount Aso (size: 24 km wide), island of Kyūshū, Japan; 90 ka; last eruption was more than 600 cubic kilometers (144 cu mi) of tephra.
  • Sierra la Primavera volcanic complex (size: 11 km wide), Guadalajara, Jalisco, Mexico; 95 ka; 20 cubic kilometers (5 cu mi) of Tala Tuff.
  • Mount Aso (size: 24 km wide), island of Kyūshū, Japan; 120 ka; 80 km (19 cu mi) of tephra.
  • Mount Aso (size: 24 km wide), island of Kyūshū, Japan; 140 ka; 80 km (19 cu mi) of tephra.
  • Puy de Sancy, Massif Central, central France; it is part of an ancient stratovolcano which has been inactive for about 220,000 years.
  • Emmons Lake Caldera (size: 11 x 18 km), Aleutian Range, 233 ka; more than 50 km (12 cu mi) of tephra.
  • Mount Aso (size: 24 km wide), island of Kyūshū, Japan; caldera formed as a result of four huge caldera eruptions; 270 ka; 80 cubic kilometers (19 cu mi) of tephra.
  • Uzon-Geyzernaya calderas (size: 9 x 18 km), Kamchatka Peninsula, Russia; 325–175 ka 20 km (4.8 cu mi) of ignimbrite deposits.
  • Diamante Caldera–Maipo volcano complex (size: 20 x 16 km), Argentina-Chile; 450 ka; 450 cubic kilometers (108 cu mi) of tephra.
  • Yellowstone hotspot; Yellowstone Caldera (size: 45 x 85 km); 640 ka; VEI 8; more than 1,000 cubic kilometers (240 cu mi) of tephra (Lava Creek Tuff)
  • Three Sisters (Oregon), USA; Tumalo volcanic center; with eruptions from 600–700 to 170 ka years ago
  • Uinkaret volcanic field, Arizona, USA; the Colorado River was dammed by lava flows multiple times from 725 to 100 ka.
  • Mono County, California, USA; Long Valley Caldera; 758.9 ka ±1.8; VEI 7; 600 cubic kilometers (144 cu mi) of Bishop Tuff.
  • Valles Caldera, New Mexico, USA; 1.25 Ma; VEI 7; around 600 cubic kilometers (144 cu mi) of the Tshirege Member (Upper Bandelier Tuff) eruption.
  • Sutter Buttes, Central Valley of California, USA; were formed over 1.5 Ma by a now-extinct volcano.
  • Valles Caldera, New Mexico, USA; 1.61 Ma; VEI 7; over 500 cubic kilometers (120 cu mi) of the Otowi Member (Lower Bandelier Tuff) eruption.
  • Ebisutoge-Fukuda tephras, Japan; 1.75 Ma; 380 to 490 cubic kilometers (91.2 to 117.6 cu mi) of tephra.
  • Yellowstone hotspot; Island Park Caldera (size: 100 x 50 km); 2.1 Ma; VEI 8; 2,450 cubic kilometers (588 cu mi) of Huckleberry Ridge Tuff.
  • Cerro Galán (size: 32 km wide), Catamarca Province, northwestern Argentina; 2.2 Ma; VEI 8; 1,050 cubic kilometers (252 cu mi) of Cerro Galán Ignimbrite.

Large Neogene eruptions

Pliocene eruptions

See also: List of large volume volcanic eruptions in the Basin and Range Province

Approximately 5.332 million years BP, the Pliocene epoch begins. Most eruptions before the Quaternary period have an unknown VEI.

Timeline of volcanism on Earth is located in NevadaSanta Rosa-CalicoSanta Rosa-CalicoVirgin ValleyVirgin ValleyMcDermittMcDermittBlack MountainBlack MountainSilent CanyonSilent CanyonTimber MountainTimber MountainStonewallStonewallLong ValleyLong ValleyLunar CraterLunar Craterclass=notpageimage| Nevada/ California:
Volcanism locations. Timeline of volcanism on Earth is located in ColoradoCochetopaCochetopaLa GaritaLa GaritaLake CityLake CityPlatoroPlatoroDotseroDotseroclass=notpageimage| Colorado volcanism. Links: La Garita, Cochetopa and North Pass (North Pass), Lake City, and Dotsero.Timeline of volcanism on Earth is located in New MexicoVallesVallesSocorroSocorroPotrilloPotrilloZuni-BanderaZuni-BanderaCarizzozoCarizzozoclass=notpageimage| New Mexico volcanism. Links: Valles, Socorro, Potrillo, Carrizozo, and Zuni-Bandera.

Miocene eruptions

The final eruptions in the creation of Banks Peninsula in New Zealand occurred about 9 million years ago.
A major eruption of Gran Canaria took place around 14 million years ago.

Approximately 23.03 million years BP, the Neogene period and Miocene epoch begin.

  • Cerro Guacha, Bolivia; 5.6–5.8 Ma (Guacha ignimbrite).
  • Lord Howe Island, Australia; Mount Lidgbird and Mount Gower are both made of basalt rock, remnants of lava flows that once filled a large volcanic caldera 6.4 Ma.
  • Yellowstone hotspot, Heise volcanic field, Idaho; 5.51 Ma ±0.13 (Conant Creek Tuff).
  • Yellowstone hotspot, Heise volcanic field, Idaho; 5.6 Ma; 500 cubic kilometers (120 cu mi) of Blue Creek Tuff.
  • Cerro Panizos (size: 18 km wide), Altiplano-Puna Volcanic Complex, Bolivia; 6.1 Ma; 652 cubic kilometers (156 cu mi) of Panizos Ignimbrite.
  • Yellowstone hotspot, Heise volcanic field, Idaho; 6.27 Ma ±0.04 (Walcott Tuff).
  • Yellowstone hotspot, Heise volcanic field, Idaho; Blacktail Caldera (size: 100 x 60 km), Idaho; 6.62 Ma ±0.03; 1,500 cubic kilometers (360 cu mi) of Blacktail Tuff.
  • Pastos Grandes Caldera (size: 40 x 50 km), Altiplano-Puna Volcanic Complex, Bolivia; 8.3 Ma; 652 cubic kilometers (156 cu mi) of Sifon Ignimbrite.
  • Manus Island, Admiralty Islands, northern Papua New Guinea; 8–10 Ma
  • Banks Peninsula, New Zealand; Akaroa erupted 9 Ma, Lyttelton erupted 12 Ma.
  • Mascarene Islands were formed in a series of undersea volcanic eruptions 8–10 Ma, as the African plate drifted over the Réunion hotspot.
  • Yellowstone hotspot, Twin Fall volcanic field, Idaho; 8.6 to 10 Ma.
  • Yellowstone hotspot, Grey's Landing Supereruption, Idaho; 8.72 Ma, 2,800 cubic kilometers (672 cu mi) of Grey's Landing Ignimbrite.
  • Yellowstone hotspot, McMullen Supereruption, Idaho; 8.99 Ma, 1,700 cubic kilometers (408 cu mi) of volcanic material
  • Yellowstone hotspot, Picabo volcanic field, Idaho; 10.21 Ma ± 0.03 (Arbon Valley Tuff).
  • Mount Cargill, New Zealand; the last eruptive phase ended some 10 Ma. The center of the caldera is about Port Chalmers, the main port of the city of Dunedin. Much of the caldera is filled by Otago Harbour.
  • Yellowstone hotspot, Idaho; Bruneau-Jarbidge volcanic field; 10.0 to 12.5 Ma (Ashfall Fossil Beds eruption).
  • Anahim hotspot, British Columbia, Canada; has generated the Anahim Volcanic Belt over the last 13 million years.
  • Yellowstone hotspot, Owyhee-Humboldt volcanic field, Nevada/ Oregon; around 12.8 to 13.9 Ma.
  • Tejeda Caldera, Gran Canaria, Spain; 13.9 Ma; the 80 km3 eruption produced a composite ignimbrite (P1) of rhyolite, trachyte and basaltic materials, with a thickness of 30 metres at 10 km from the caldera center
  • Gran Canaria shield basalt eruption, Spain; 14.5 to 14 Ma; 1,000 km3 of tholeiitic to alkali basalts
  • Campi Flegrei, Naples, Italy; 14.9 Ma; 79 cubic kilometers (19 cu mi) of Neapolitan Yellow Tuff.
  • Huaylillas Ignimbrite, Bolivia, southern Peru, northern Chile; 15 Ma ±1; 1,100 cubic kilometers (264 cu mi) of tephra.
  • Yellowstone hotspot, McDermitt volcanic field (North), Trout Creek Mountains, Whitehorse Caldera (size: 15 km wide), Oregon; 15 Ma; 40 cubic kilometers (10 cu mi) of Whitehorse Creek Tuff.
  • Yellowstone hotspot (?), Lake Owyhee volcanic field; 15.0 to 15.5 Ma.
  • Yellowstone hotspot, McDermitt volcanic field (South), Jordan Meadow Caldera, (size: 10–15 km wide), Nevada/ Oregon; 15.6 Ma; 350 cubic kilometers (84 cu mi) Longridge Tuff member 2–3.
  • Yellowstone hotspot, McDermitt volcanic field (South), Longridge Caldera, (size: 33 km wide), Nevada/ Oregon; 15.6 Ma; 400 cubic kilometers (96 cu mi) Longridge Tuff member 5.
  • Yellowstone hotspot, McDermitt volcanic field (South), Calavera Caldera, (size: 17 km wide), Nevada/ Oregon; 15.7 Ma; 300 cubic kilometers (72 cu mi) of Double H Tuff.
  • Yellowstone hotspot, McDermitt volcanic field (South), Hoppin Peaks Caldera, 16 Ma; Hoppin Peaks Tuff.
  • Yellowstone hotspot, McDermitt volcanic field (North), Trout Creek Mountains, Pueblo Caldera (size: 20 x 10 km), Oregon; 15.8 Ma; 40 cubic kilometers (10 cu mi) of Trout Creek Mountains Tuff.
  • Yellowstone hotspot, McDermitt volcanic field (South), Washburn Caldera, (size: 30 x 25 km wide), Nevada/ Oregon; 16.548 Ma; 250 cubic kilometers (60 cu mi) of Oregon Canyon Tuff.
  • Yellowstone hotspot (?), Northwest Nevada volcanic field (NWNV), Virgin Valley, High Rock, Hog Ranch, and unnamed calderas; West of Pine Forest Range, Nevada; 15.5 to 16.5 Ma.
  • Yellowstone hotspot, Steens and Columbia River flood basalts, Pueblo, Steens, and Malheur Gorge-region, Pueblo Mountains, Steens Mountain, Washington, Oregon, and Idaho, USA; most vigorous eruptions were from 14 to 17 Ma; 180,000 cubic kilometers (43,184 cu mi) of lava.
  • Mount Lindesay (New South Wales), Australia; is part of the remnants of the Nandewar extinct volcano that ceased activity about 17 Ma after 4 million years of activity.
  • Oxaya Ignimbrites, northern Chile (around 18°S); 19 Ma; 3,000 cubic kilometers (720 cu mi) of tephra.
  • Pemberton Volcanic Belt was erupting about 21 to 22 Ma.

Volcanism before the Neogene

See also: List of large volume volcanic eruptions in the Basin and Range Province
Distribution of selected hotspots. The numbers in the figure are related to the listed hotspots on Hotspot (geology).

Notes

Volcanic explosivity index (VEI)

Main article: Volcanic explosivity index
VEI and ejecta volume correlation
VEI Tephra Volume
(cubic kilometers)
Example
0 Effusive Masaya Volcano, Nicaragua, 1570
1 >0.00001 Poás Volcano, Costa Rica, 1991
2 >0.001 Mount Ruapehu, New Zealand, 1971
3 >0.01 Nevado del Ruiz, Colombia, 1985
4 >0.1 Eyjafjallajökull, Iceland, 2010
5 >1 Mount St. Helens, United States, 1980
6 >10 Mount Pinatubo, Philippines, 1991
7 >100 Mount Tambora, Indonesia, 1815
8 >1000 Yellowstone Caldera, United States, Pleistocene

       

Volcanic dimming

Main article: Global dimming

The global dimming through volcanism (ash aerosol and sulfur dioxide) is quite independent of the eruption VEI. When sulfur dioxide (boiling point at standard state: -10 °C) reacts with water vapor, it creates sulfate ions (the precursors to sulfuric acid), which are very reflective; ash aerosol on the other hand absorbs ultraviolet. Global cooling through volcanism is the sum of the influence of the global dimming and the influence of the high albedo of the deposited ash layer. The lower snow line and its higher albedo might prolong this cooling period. Bipolar comparison showed six sulfate events: Tambora (1815), Cosigüina (1835), Krakatoa (1883), Agung (1963), and El Chichón (1982), and the 1808 mystery eruption. And the atmospheric transmission of direct solar radiation data from the Mauna Loa Observatory (MLO), Hawaii (19°32'N) detected only five eruptions:

 

But very large sulfur dioxide emissions overdrive the oxidizing capacity of the atmosphere. Carbon monoxide's and methane's concentration goes up (greenhouse gases), global temperature goes up, ocean's temperature goes up, and ocean's carbon dioxide solubility goes down.

  • Location of Mount Pinatubo, showing area over which ash from the 1991 eruption fell. Location of Mount Pinatubo, showing area over which ash from the 1991 eruption fell.
  • Satellite measurements of ash and aerosol emissions from Mount Pinatubo. Satellite measurements of ash and aerosol emissions from Mount Pinatubo.
  • MLO transmission ratio - Solar radiation reduction due to volcanic eruptions MLO transmission ratio - Solar radiation reduction due to volcanic eruptions
  • NASA, Global Dimming - El Chichon, VEI 5; Pinatubo, VEI 6. NASA, Global Dimming - El Chichon, VEI 5; Pinatubo, VEI 6.
  • Sulfur dioxide emissions by volcanoes. Mount Pinatubo: 20 million tons of sulfur dioxide. Sulfur dioxide emissions by volcanoes. Mount Pinatubo: 20 million tons of sulfur dioxide.
  • TOMS sulfur dioxide from the June 15, 1991 eruption of Mount Pinatubo. TOMS sulfur dioxide from the June 15, 1991 eruption of Mount Pinatubo.
  • Sarychev Peak: the sulphur dioxide cloud generated by the eruption on June 12, 2009 (in Dobson units). Sarychev Peak: the sulphur dioxide cloud generated by the eruption on June 12, 2009 (in Dobson units).

Map gallery

See also

References

  1. ^ Ward, Peter L. (2 April 2009). "Sulfur Dioxide Initiates Global Climate Change in Four Ways". Thin Solid Films. 517 (11): 3188–3203. Bibcode:2009TSF...517.3188W. doi:10.1016/j.tsf.2009.01.005.
  2. ^ Robock, A.; C.M. Ammann; L. Oman; D. Shindell; S. Levis; G. Stenchikov (2009). "Did the Toba volcanic eruption of ~74k BP produce widespread glaciation?". Journal of Geophysical Research. 114 (D10): D10107. Bibcode:2009JGRD..11410107R. doi:10.1029/2008JD011652.
  3. "Holocene Kamchatka volcanoes". Institute of Volcanology and Seismology, Far Eastern Branch of the Russian Academy of Sciences. Retrieved 2018-04-30.
  4. ^ "Supplementary Table to P.L. Ward, Thin Solid Films (2009) Major volcanic eruptions and provinces" (PDF). Teton Tectonics. Archived from the original (PDF) on 2010-01-20. Retrieved 2010-03-16.
  5. "International Stratigraphic Chart" (PDF). International Commission on Stratigraphy. Archived from the original (PDF) on 2009-12-29. Retrieved 2009-12-23.
  6. ^ "Large Holocene Eruptions". Archived from the original on 2012-01-17. Large Holocene Eruptions
  7. Brantley, Steven R. (1999-01-04). Volcanoes of the United States. Online Version 1.1. United States Geological Survey. p. 30. ISBN 978-0-16-045054-9. OCLC 156941033. Retrieved 2008-09-12.
  8. Fierstein, Judy; Hildreth, Wes; James W. Hendley II; Peter H. Stauffer (1998). "Can Another Great Volcanic Eruption Happen in Alaska? - U.S. Geological Survey Fact Sheet 075-98". Version 1.0. United States Geological Survey. Retrieved 2008-09-10.
  9. Fierstein, Judy; Hildreth, Wes (2004-12-11). "The plinian eruptions of 1912 at Novarupta, Katmai National Park, Alaska". Bulletin of Volcanology. 54 (8). Springer: 646–684. Bibcode:1992BVol...54..646F. doi:10.1007/BF00430778. S2CID 86862398.
  10. "Santa Maria". Global Volcanism Program. Smithsonian Institution. Retrieved 2010-03-19.
  11. Hopkinson, Deborah (January 2004). "The Volcano That Shook the world: Krakatoa 1883". Storyworks. Vol. 11, no. 4. New York. p. 8 – via Scholastic.com.
  12. Ponomareva, V.V.; Kyle, P.R.; Melekestsev, I.V.; Rinkleff, P.G.; Dirksen, O.V.; Sulerzhitsky, L.D.; Zaretskaia, N.E.; Rourke, R. (2004). "The 7600 (14 C) year BP Kurile Lake caldera-forming eruption, Kamchatka, Russia: stratigraphy and field relationships" (PDF). Journal of Volcanology and Geothermal Research. 136 (3–4). Elsevier: 199–222. doi:10.1016/j.jvolgeores.2004.05.013. Archived from the original (PDF) on 2023-03-15.
  13. "Tambora". www.earlham.edu. Archived from the original on 2010-12-28. Retrieved 2010-01-26.
  14. University of Bristol (19 September 2014). "First eyewitness accounts of mystery volcanic eruption" (Press release). Archived from the original on 10 December 2014.
  15. "Undocumented volcano contributed to extremely cold decade from 1810-1819". ScienceDaily.
  16. Guevara-Murua, A.; Williams, C. A.; Hendy, E. J.; Rust, A. C.; Cashman, K. V. (2014). "Observations of a stratospheric aerosol veil from a tropical volcanic eruption in December 1808: is this the "Unknown" ~1809 eruption?" (PDF). Climate of the Past Discussions. 10 (2): 1901–1932. Bibcode:2014CliPa..10.1707G. doi:10.5194/cpd-10-1901-2014. ISSN 1814-9359.
  17. "BBC Two - Timewatch". BBC.
  18. "Global Volcanism Program | Grímsvötn".
  19. "Huaynaputina". Global Volcanism Program. Smithsonian Institution. Retrieved 2008-12-29.
  20. "The massive volcano that scientists can't find".
  21. Bauch, Martin (2017). "The day the sun turned blue. A volcanic eruption in the early 1460s and its putative climatic impact – a globally perceived volcanic disaster in the Late Middle Ages?". Transcultural Research – Heidelberg Studies on Asia and Europe in a Global Context: 107. doi:10.1007/978-3-319-49163-9_6.
  22. Nemeth, Karoly; Shane J. Cronin; James D.L. White (2007). "Kuwae caldera and climate confusion". The Open Geology Journal. 1 (5): 7–11. Bibcode:2007OGJ.....1....7N. doi:10.2174/1874262900701010007.
  23. Gao, Chaochao; A. Robock; S. Self; J. B. Witter; J. P. Steffenson; H. B. Clausen; M.-L. Siggaard-Andersen; S. Johnsen; P. A. Mayewski; C. Ammann (27 June 2006). "The 1452 or 1453 A.D. Kuwae eruption signal derived from multiple ice core records: Greatest volcanic sulfate event of the past 700 years". Journal of Geophysical Research. 111 (D12): D12107. Bibcode:2006JGRD..11112107G. doi:10.1029/2005JD006710.
  24. Witter, J.B.; Self S. (January 2007). "The Kuwae (Vanuatu) eruption of AD 1452: potential magnitude and volatile release". Bulletin of Volcanology. 69 (3): 301–318. Bibcode:2007BVol...69..301W. doi:10.1007/s00445-006-0075-4. S2CID 129403009.
  25. Lavigne, Franck (4 September 2013). "Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia". Proceedings of the National Academy of Sciences of the United States of America. 110 (42): 16742–7. Bibcode:2013PNAS..11016742L. doi:10.1073/pnas.1307520110. PMC 3801080. PMID 24082132.
  26. "Mystery 13th Century eruption traced to Lombok, Indonesia". BBC News. 30 September 2013. Retrieved 1 October 2013.
  27. Miller et al.. 2012. "Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks" Geophysical Research Letters 39, January 31
  28. Lavigne, Franck; et al. (2013). "Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia". PNAS. 110 (42): 16742–16747. Bibcode:2013PNAS..11016742L. doi:10.1073/pnas.1307520110. PMC 3801080. PMID 24082132.
  29. Was the Little Ice Age Triggered by Massive Volcanic Eruptions? ScienceDaily, 30 January 2012 (accessed 21 May 2012)
  30. Jiandong Xu (2013). "Climatic impact of the Millennium eruption of Changbaishan volcano in China: New insights from high-precision radiocarbon wiggle-match dating" (PDF). Geophysical Research Letters. 40 (1): 54. Bibcode:2013GeoRL..40...54X. doi:10.1029/2012GL054246.
  31. van den Bogaard, P (1995). Ar/(Ar) ages of sanidine phenocrysts from Laacher See Tephra (12,900 yr BP): Chronostratigraphic and petrological significance
  32. De Klerk, Pim; Janke, Wolfgang; Kühn, Peter; Theuerkauf, Martin (2008). "Environmental impact of the Laacher See eruption at a large distance from the volcano: Integrated palaeoecological studies from Vorpommern (NE Germany)". Palaeogeography, Palaeoclimatology, Palaeoecology. 270 (1–2): 196–214. Bibcode:2008PPP...270..196D. doi:10.1016/j.palaeo.2008.09.013.
  33. Baales, Michael; Jöris, Olaf; Street, Martin; Bittmann, Felix; Weninger, Bernhard; Wiethold, Julian (November 2002). "Impact of the Late Glacial Eruption of the Laacher See Volcano, Central Rhineland, Germany". Quaternary Research. 58 (3): 273–288. Bibcode:2002QuRes..58..273B. doi:10.1006/qres.2002.2379. S2CID 53973827.
  34. Forscher warnen vor Vulkan-Gefahr in der Eifel. Spiegel Online, 13. February 2007. Retrieved January 11, 2008
  35. Carey, Steven N.; Sigurdsson, Haraldur (1980). "The Roseau Ash: Deep-sea Tephra Deposits from a Major Eruption on Dominica, Lesser Antilles Arc". Journal of Volcanology and Geothermal Research. 7 (1–2): 67–86. Bibcode:1980JVGR....7...67C. doi:10.1016/0377-0273(80)90020-7.
  36. Alloway, Brent V.; Agung Pribadi; John A. Westgate; Michael Bird; L. Keith Fifield; Alan Hogg; Ian Smith (30 October 2004). "Correspondence between glass-FT and 14C ages of silicic pyroclastic flow deposits sourced from Maninjau caldera, west-central Sumatra". Earth and Planetary Science Letters. 227 (1–2). Elsevier: 121–133. Bibcode:2004E&PSL.227..121A. doi:10.1016/j.epsl.2004.08.014.
  37. Twickler and K. Taylor, G. A.; Mayewski, P. A.; Meeker, L. D.; Whitlow, S.; Twickler, M. S.; Taylor, K. (1996). "Potential Atmospheric impact of the Toba mega-eruption ~71'000 years ago". Geophysical Research Letters. 23 (8). American Geophysical Union: 837–840. Bibcode:1996GeoRL..23..837Z. doi:10.1029/96GL00706.
  38. Jones, S.C. (2007) The Toba supervolcanic eruption: Tephra-fall deposits in India and Paleoanthropological implications; in The evolution and history of human populations in South Asia (eds.) M D Petraglia and B Allchin (New York: Springer Press) pp. 173–200
  39. ^ Chesner, C.A.; Westgate, J.A.; Rose, W.I.; Drake, R.; Deino, A. (March 1991). "Eruptive History of Earth's Largest Quaternary caldera (Toba, Indonesia) Clarified" (PDF). Geology. 19 (3): 200–203. Bibcode:1991Geo....19..200C. doi:10.1130/0091-7613(1991)019<0200:EHOESL>2.3.CO;2. Retrieved 2010-01-20.
  40. Ninkovich, D.; N.J. Shackleton; A.A. Abdel-Monem; J.D. Obradovich; G. Izett (7 December 1978). "K−Ar age of the late Pleistocene eruption of Toba, north Sumatra". Nature. 276 (5688). Nature Publishing Group: 574–577. Bibcode:1978Natur.276..574N. doi:10.1038/276574a0. S2CID 4364788.
  41. "Guatemala Volcanoes and Volcanics". USGS - CVO. Retrieved 2010-03-13.
  42. "Cities on Volcanoes 5". www.eri.u-tokyo.ac.jp.
  43. "Sierra la Primavera". Global Volcanism Program. Smithsonian Institution. Retrieved 2010-03-24.
  44. "GEOLOGIC SETTING OF THE UZON CALDERA, KAMCHATKA, FAR EAST RUSSIA". gsa.confex.com. Archived from the original on 2008-06-03. Retrieved 2010-08-06.
  45. Uzon, Global Volcanism Program, Smithsonian Institution
  46. Sruoga, Patricia; Eduardo J. Llambías; Luis Fauqué; David Schonwandt; David G. Repol (September 2005). "Volcanological and geochemical evolution of the Diamante Caldera–Maipo volcano complex in the southern Andes of Argentina (34°10′S)". Journal of South American Earth Sciences. 19 (4): 399–414. Bibcode:2005JSAES..19..399S. doi:10.1016/j.jsames.2005.06.003. hdl:11336/75928.
  47. Karlstrom, K.; Crow, R.; Peters, L.; McIntosh, W.; Raucci, J.; Crossey, L.; Umhoefer, P. (2007). "40Ar/39Ar and field studies of Quaternary basalts in Grand Canyon and model for carving Grand Canyon: Quantifying the interaction of river incision and normal faulting across the western edge of the Colorado Plateau". GSA Bulletin. 119 (11/12): 1283–1312. Bibcode:2007GSAB..119.1283K. doi:10.1130/0016-7606(2007)119[1283:AAFSOQ]2.0.CO;2.
  48. Hildreth, W. (1979), Sarna-Wojcicki et al. (2000).
  49. Izett, Glen A. (1981).
  50. Heiken et al. (1990).
  51. ^ Wolff, J. A.; Ramos, F. C. (2013-12-18). "Processes in Caldera-Forming High-Silica Rhyolite Magma: Rb-Sr and Pb Isotope Systematics of the Otowi Member of the Bandelier Tuff, Valles Caldera, New Mexico, USA". Journal of Petrology. 55 (2): 345–375. doi:10.1093/petrology/egt070. ISSN 0022-3530.
  52. ^ Ben G. Mason; David M. Pyle; Clive Oppenheimer (2004). "The size and frequency of the largest explosive eruptions on Earth". Bulletin of Volcanology. 66 (8): 735–748. Bibcode:2004BVol...66..735M. doi:10.1007/s00445-004-0355-9. S2CID 129680497.
  53. Wood, Charles A.; Jűrgen Kienle (1990). Volcanoes of North America. Cambridge University Press. pp. 170–172.
  54. Geological origins Archived 2008-09-07 at the Wayback Machine, Norfolk Island Tourism. Accessed 2007-04-13.
  55. Ort, M. H.; de Silva, S.; Jiminez, N.; Salisbury, M.; Jicha, B. R. and Singer, B. S. (2009). Two new supereruptions in the Altiplano-Puna Volcanic Complex of the Central Andes Archived 2009-10-20 at the Wayback Machine.
  56. Lindsay, Jan M.; Tim J. Worthington; Ian E. M. Smith; Philippa M. Black (June 1999). "Geology, petrology, and petrogenesis of Little Barrier Island, Hauraki Gulf, New Zealand" (PDF). New Zealand Journal of Geology and Geophysics. 42 (2): 155–168. Bibcode:1999NZJGG..42..155L. doi:10.1080/00288306.1999.9514837. Archived from the original (PDF) on November 1, 2004. Retrieved 2007-12-03.
  57. Philippe Nonnotte. "Étude volcano-tectonique de la zone de divergence Nord-Tanzanienne (terminaison sud du rift kenyan) – Caractérisation pétrologique et géochimique du volcanisme récent (8 Ma – Actuel) et du manteau source – Contraintes de mise en place thèse de doctorat de l'université de Bretagne occidentale, spécialité : géosciences marines" (PDF).
  58. Lindsay J. M.; de Silva S.; Trumbull R.; Emmermann R.; Wemmer K. (2001). "La Pacana caldera, N. Chile: a re-evaluation of the stratigraphy and volcanology of one of the world's largest resurgent calderas". Journal of Volcanology and Geothermal Research. 106 (1–2): 145–173. Bibcode:2001JVGR..106..145L. doi:10.1016/S0377-0273(00)00270-5.
  59. "Frailes Plateau".
  60. ^ Morgan, Lisa A. Morgan; William C. McIntosh (March 2005). "Timing and development of the Heise volcanic field, Snake River Plain, Idaho, western USA" (PDF). GSA Bulletin. 117 (3–4): 288–306. Bibcode:2005GSAB..117..288M. doi:10.1130/B25519.1. Archived from the original (PDF) on 2011-10-03. Retrieved 2010-03-16.
  61. Salisbury, M. J.; Jicha, B. R.; de Silva, S. L.; Singer, B. S.; Jimenez, N. C.; Ort, M. H. (21 December 2010). "40Ar/39Ar chronostratigraphy of Altiplano-Puna volcanic complex ignimbrites reveals the development of a major magmatic province". Geological Society of America Bulletin. 123 (5–6): 821–840. Bibcode:2011GSAB..123..821S. doi:10.1130/B30280.1.
  62. Geography and Geology Archived 2014-09-12 at the Wayback Machine, Lord Howe Island Tourism Association. Retrieved on 2009-04-20.
  63. "Cerro Panizos". Volcano World. Retrieved 2010-03-15.
  64. "New Zealand reborn – Te Ara Encyclopedia of New Zealand".
  65. ^ "Mark Anders: Yellowstone hotspot track". Columbia University, Lamont–Doherty Earth Observatory (LDEO). Retrieved 2010-03-16.
  66. ^ Knott, Thomas; Branney, M.; Reichow, Marc; Finn, David; Tapster, Simon; Coe, Robert (June 2020). "Discovery of two new super-eruptions from the Yellowstone hotspot track (USA): Is the Yellowstone hotspot waning?". Geology. 48 (9): 934–938. Bibcode:2020Geo....48..934K. doi:10.1130/G47384.1. Retrieved 21 June 2022.
  67. Coombs, D. S., Dunedin Volcano, Misc. Publ. 37B, pp. 2–28, Geol. Soc. of N. Z., Dunedin, 1987.
  68. Coombs, D. S., R. A. Cas, Y. Kawachi, C. A. Landis, W. F. Mc-Donough, and A. Reay, Cenozoic volcanism in north, east and central Otago, Bull. R. Soc. N. Z., 23, 278–312, 1986.
  69. Bishop, D.G., and Turnbull, I.M. (compilers) (1996). Geology of the Dunedin Area. Lower Hutt, NZ: Institute of Geological & Nuclear Sciences. ISBN 0-478-09521-X.
  70. Sawyer, David A.; R. J. Fleck; M. A. Lanphere; R. G. Warren; D. E. Broxton; Mark R. Hudson (October 1994). "Episodic caldera volcanism in the Miocene southwestern Nevada volcanic field: Revised stratigraphic framework, 40Ar/39Ar geochronology, and implications for magmatism and extension". Geological Society of America Bulletin. 106 (10): 1304–1318. Bibcode:1994GSAB..106.1304S. doi:10.1130/0016-7606(1994)106<1304:ECVITM>2.3.CO;2.
  71. "Emplacement of ash layers related to high-grade ignimbrite P1 in the sea around Gran Canaria" (PDF). Archived from the original (PDF) on 2012-04-20.
  72. Troll, Valentin R.; Carracedo, Juan Carlos (26 May 2016). The Geology of the Canary Islands - 1st Edition. Elsevier Science. ISBN 978-0-12-809663-5. Retrieved 2021-09-21. {{cite book}}: |website= ignored (help)
  73. ^ Lipman, P.W. (September 30, 1984). "The Roots of Ash Flow Calderas in Western North America: Windows Into the Tops of Granitic Batholiths". Journal of Geophysical Research. 89 (B10): 8801–8841. Bibcode:1984JGR....89.8801L. doi:10.1029/JB089iB10p08801.
  74. Rytuba, James J.; John, David A.; McKee, Edwin H. Volcanism Associated with Eruption of the Steens Basalt and Inception of the Yellowstone Hotspot. Rocky Mountain (56th Annual) and Cordilleran (100th Annual) Joint Meeting (May 3–5, 2004). Paper No. 44-2. Archived from the original on 2010-12-23. Retrieved 2010-03-26.
  75. ^ Steve Ludington; Dennis P. Cox; Kenneth W. Leonard & Barry C. Moring (1996). "Chapter 5, Cenozoic Volcanic Geology in Nevada" (PDF). In Donald A. Singer (ed.). An Analysis of Nevada's Metal-Bearing Mineral Resources. Nevada Bureau of Mines and Geology, University of Nevada. Archived from the original (PDF) on 2006-02-04.
  76. ^ Rytuba, J.J.; McKee, E.H. (1984). "Peralkaline ash flow tuffs and calderas of the McDermitt Volcanic Field, southwest Oregon and north central Nevada". Journal of Geophysical Research. 89 (B10): 8616–8628. Bibcode:1984JGR....89.8616R. doi:10.1029/JB089iB10p08616. Archived from the original on 2012-09-27. Retrieved 2010-03-23.
  77. Matthew A. Coble & Gail A. Mahood (2008). New geologic evidence for additional 16.5–15.5 Ma silicic calderas in northwest Nevada related to initial impingement of the Yellowstone hot spot. Earth and Environmental Science. Vol. 3. Collapse Calderas Workshop, IOP Conf. Series. p. 012002. Bibcode:2008E&ES....3a2002C. doi:10.1088/1755-1307/3/1/012002.
  78. Carson, Robert J.; Pogue, Kevin R. (1996). Flood Basalts and Glacier Floods:Roadside Geology of Parts of Walla Walla, Franklin, and Columbia Counties, Washington. Washington State Department of Natural Resources (Washington Division of Geology and Earth Resources Information Circular 90).
  79. Reidel, Stephen P. (2005). "A Lava Flow without a Source: The Cohasset Flow and Its Compositional Members". The Journal of Geology. 113 (1): 1–21. Bibcode:2005JG....113....1R. doi:10.1086/425966. S2CID 12587046.
  80. Brueseke, M.E.; Heizler, M.T.; Hart, W.K.; S.A. Mertzman (15 March 2007). "Distribution and geochronology of Oregon Plateau (U.S.A.) flood basalt volcanism: The Steens Basalt revisited". Journal of Volcanology and Geothermal Research. 161 (3): 187–214. Bibcode:2007JVGR..161..187B. doi:10.1016/j.jvolgeores.2006.12.004.
  81. "Southeast Oregon Basin and Range : Climbing, Hiking & Mountaineering : SummitPost". www.summitpost.org.
  82. "Andesitic and basaltic rocks on Steens Mountain (ORTbas;0)". mrdata.usgs.gov.
  83. ^ http://bulletin.geoscienceworld.org/cgi/content/abstract/115/1/105. {{cite web}}: Missing or empty |title= (help)
  84. "Oregon: A Geologic History. 8. Columbia River Basalt: the Yellowstone hot spot arrives in a flood of fire". Oregon Department of Geology and Mineral Industries. Archived from the original on 2012-03-05. Retrieved 2010-03-26.
  85. Madsen, J.K.; Thorkelson, D.J.; Friedman, R.M.; Marshall, D.D. (6 May 2018). "Cenozoic to Recent plate configurations in the Pacific Basin: Ridge subduction and slab window magmatism in western North America". Geosphere. 2 (1): 11. Bibcode:2006Geosp...2...11M. doi:10.1130/ges00020.1.
  86. "Largest explosive eruptions: New results for the 27.8 Ma Fish Canyon Tuff and the La Garita caldera, San Juan volcanic field, Colorado". Archived from the original on May 19, 2011.
  87. Olivier Bachmann; Michael A. Dungan; Peter W. Lipman (2002). "The Fish Canyon Magma Body, San Juan Volcanic Field, Colorado: Rejuvenation and Eruption of an Upper-Crustal Batholith". Journal of Petrology. 43 (8): 1469–1503. Bibcode:2002JPet...43.1469B. doi:10.1093/petrology/43.8.1469. Retrieved 2010-03-16.
  88. ^ Ingrid Ukstins Peate; Joel A. Baker; Mohamed Al-Kadasi; Abdulkarim Al-Subbary; Kim B. Knight; Peter Riisager; Matthew F. Thirlwall; David W. Peate; Paul R. Renne; Martin A. Menzies (2005). "Volcanic stratigraphy of large-volume silicic pyroclastic eruptions during Oligocene Afro-Arabian flood volcanism in Yemen". Bulletin of Volcanology. 68 (2): 135–156. Bibcode:2005BVol...68..135P. doi:10.1007/s00445-005-0428-4. S2CID 140160158..
  89. George A. Morris & Robert A. Creaser (2003). "Crustal recycling during subduction at the Eocene Cordilleran margin of North America: a petrogenetic study from the southwestern Yukon". Canadian Journal of Earth Sciences. 40 (12): 1805–1821. Bibcode:2003CaJES..40.1805M. doi:10.1139/e03-063.
  90. Sur l'âge des trapps basaltiques (On the ages of flood basalt events); Vincent E. Courtillot & Paul R. Renneb; Comptes Rendus Geoscience; Vol: 335 Issue: 1, January, 2003; pp: 113–140
  91. "Stratigraphic Chart 2022" (PDF). International Stratigraphic Commission. February 2022. Retrieved 25 April 2022.
  92. ASH FALL: Newsletter of the Volcanology and Igneous Petrology Division Geological Association of Canada Retrieved on 2007-09-21
  93. "Muskox Property - The Muskox Intrusion". Archived from the original on 2009-04-08.
  94. "September 2008 LIP of the Month | Large Igneous Provinces Commission".
  95. "Westward Migrating Ignimbrite Calderas and a Large Radiating Mafic Dike Swarm of Oligocene Age, Central Rio Grande Rift, New Mexico: Surface Expression of an Upper Mantle Diapir?" (PDF). New Mexico Tech. Retrieved 2010-03-21.
  96. Fialko, Y., and M. Simons, Evidence for on-going inflation of the Socorro magma body, New Mexico, from interferometric synthetic aperture radar imaging Geop. Res. Lett., 28, 3549–3552, 2001.
  97. "Socorro Magma Body". New Mexico Tech. Archived from the original on 2010-06-15. Retrieved 2010-03-21.
  98. "Figure: Calderas within southwestern Nevada volcanic field". Los Alamos National Laboratory. Archived from the original on 2011-07-21. Retrieved 2010-03-16.
  99. Smith, E.I. & D.L. Keenan (30 August 2005). "Yucca Mountain Could Face Greater Volcanic Threat" (PDF). Eos, Transactions, American Geophysical Union. 86 (35): 317. Bibcode:2005EOSTr..86..317S. CiteSeerX 10.1.1.371.6505. doi:10.1029/2005eo350001. Retrieved 5 April 2016.
  100. Geologic Provinces of the United States: Basin and Range Province on USGS.gov website Archived 2009-01-25 at the Wayback Machine Retrieved 9 November 2009
  101. Doell, R.R., Dalrymple, G.B., Smith, R.L., and Bailey, R.A., 1986, Paleomagnetism, potassium-argon ages, and geology of rhyolite and associated rocks of the Valles Caldera, New Mexico: Geological Society of America Memoir 116, p. 211-248.
  102. Izett, G.A., Obradovich, J.D., Naeser, C.W., and Cebula, G.T., 1981, Potassium-argon and fission-track ages of Cerro Toledo rhyolite tephra in the Jemez Mountains, New Mexico, in Shorter contributions to isotope research in the western United States: U.S. Geological Survey Professional Paper 1199-D, p. 37-43.
  103. Christiansen, R.L., and Blank, H.R., 1972, Volcanic stratigraphy of the Quaternary rhyolite plateau in Yellowstone National Park: U.S. Geological Survey Professional Paper 729-B, p. 18.
  104. Salzer, Matthew W.; Malcolm K. Hughes (2007). "Bristlecone pine tree rings and volcanic eruptions over the last 5000 yr" (PDF). Quaternary Research. 67 (1): 57–68. Bibcode:2007QuRes..67...57S. doi:10.1016/j.yqres.2006.07.004. S2CID 14654597. Retrieved 2010-03-18.
  105. "VEI glossary entry". USGS. Retrieved 2010-03-30.
  106. "Volcanic Sulfur Aerosols Affect Climate and the Earth's Ozone Layer - Volcanic ash vs sulfur aerosols". U.S. Geological Survey. Archived from the original on 2015-11-14. Retrieved 2010-04-21.
  107. NASA.gov Earth Observatory - Sarychev Eruption
  108. Jones, M.T., Sparks, R.S.J., and Valdes, P.J. (2007). "The climatic impact of supervolcanis ash blankets". Climate Dynamics. 29 (6): 553–564. Bibcode:2007ClDy...29..553J. doi:10.1007/s00382-007-0248-7. S2CID 55600409.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  109. Jones, G.S., Gregory, J.M., Scott, P.A., Tett, S.F.B., Thorpe, R.B., 2005. An AOGCM model of the climate response to a volcanic super-eruption. Climate Dynamics 25, 725–738
  110. Dai, Jihong; Ellen Mosley-Thompson; Lonnie G. Thompson (1991). "Ice core evidence for an explosive tropical volcanic eruption six years preceding Tambora". Journal of Geophysical Research: Atmospheres. 96 (D9): 17, 361–17, 366. Bibcode:1991JGR....9617361D. doi:10.1029/91jd01634. Archived from the original on 2012-09-27. Retrieved 2010-03-26.
  111. "Atmospheric transmission of direct solar radiation (Preliminary) at Mauna Loa, Hawaii". Retrieved 2024-08-14.
  112. "Mt. Pinatubo's cloud shades global climate". Science News. Retrieved 2010-03-07.
  113. Jones, P.D., Wigley, T.M.I, and Kelly, P.M. (1982), Variations in surface air temperatures: Part I. Northern Hemisphere, 1881–1980: Monthly Weather Review, v.110, p. 59-70.

Further reading

External links

Volcano topics
Topics
Lists
Categories: