Misplaced Pages

Tree diagram (probability theory)

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Diagram to represent a probability space in probability theory
Tree diagram for events A {\displaystyle A} and B {\displaystyle B} .
Part of a series on statistics
Probability theory

In probability theory, a tree diagram may be used to represent a probability space.

A tree diagram may represent a series of independent events (such as a set of coin flips) or conditional probabilities (such as drawing cards from a deck, without replacing the cards). Each node on the diagram represents an event and is associated with the probability of that event. The root node represents the certain event and therefore has probability 1. Each set of sibling nodes represents an exclusive and exhaustive partition of the parent event.

The probability associated with a node is the chance of that event occurring after the parent event occurs. The probability that the series of events leading to a particular node will occur is equal to the product of that node and its parents' probabilities.

See also

Notes

  1. "Tree Diagrams". BBC GCSE Bitesize. BBC. p. 1,3. Retrieved 25 October 2013.

References

External links

Tree Diagrams


Stub icon

This probability-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: