Misplaced Pages

Ultra-high temperature ceramic matrix composite

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Ultra high temperature ceramic matrix composite)

Ultra-high temperature ceramic matrix composites (UHTCMC) are a class of refractory ceramic matrix composites (CMCs) with melting points significantly higher than that of typical CMCs. Among other applications, they are the subject of extensive research in the aerospace engineering field for their ability to withstand extreme heat for extended periods of time, a crucial property in applications such as thermal protection systems (TPS) for high heat fluxes (> 10 MW/m2) and rocket nozzles. Carbon fiber-reinforced carbon (C/C) maintains its structural integrity up to 2000 °C; however, C/C is mainly used as an ablative material, designed to purposefully erode under extreme temperatures in order to dissipate energy. Carbon fiber reinforced silicon carbide matrix composites (C/SiC) and Silicon carbide fiber reinforced silicon carbide matrix composites (SiC/SiC) are considered reusable materials because silicon carbide is a hard material with a low erosion and it forms a silica glass layer during oxidation which prevents further oxidation of inner material. However, above a certain temperature (which depends on the environmental conditions, such as the partial pressure of oxygen), the active oxidation of the silicon carbide matrix begins, resulting in the formation of gaseous silicon monoxide (SiO(g)). This leads to a loss of protection against further oxidation, causing the material to undergo uncontrolled and rapid erosion. For this reason C/SiC and SiC/SiC are used in the range of temperature between 1200 °C - 1400 °C. The oxidation resistance and the thermo-mechanical properties of these materials can be improved by incorporating a fraction of about 20-30% of UHTC phases, e.g., ZrB2, into the matrix.

On the one hand CMCs are lightweight materials with high strength-to-weight ratio even at high temperature, high thermal shock resistance and toughness but suffer of erosion during service. On the other side bulk ceramics made of ultra-high temperature ceramics (e.g. ZrB2, HfB2, or their composites) are hard materials which show low erosion even above 2000 °C but are heavy and suffer of catastrophic fracture and low thermal shock resistance compared to CMCs. Failure is easily under mechanical or thermo-mechanical loads because of cracks initiated by small defects or scratches. current research is focused on combining several reinforcing elements (e.g short carbon fibers, PAN or pitch based continuous carbon fibers, ceramic fibers, graphite sheets, etc) with UHTC phases to reduce the brittleness of these materials.

The European Commission funded a research project, CHARME, under the NMP-19-2015 call of Framework Programmes for Research and Technological Development in 2016-2020 for the design, manufacturing and testing of a new class of ultra-refractory ceramic matrix composites reinforced with carbon fibers suitable for applications in severe aerospace environments as possible near-zero ablation thermal protection system (TPS) materials (e.g. heat shield) and for propulsion (e.g. rocket nozzle). The demand for reusable advanced materials with temperature capability over 2000 °C has been growing. Recently carbon fiber reinforced zirconium boride-based composites obtained by powder slurry impregnation (SI) and sintering has been investigated. With these promising properties, these materials can be also considered for other applications including as friction materials for braking systems.

Breakthroughs in research

The European Commission funded a research project, CHARME, under the NMP-19-2015 call of Framework Programmes for Research and Technological Development in 2016-2020 for the design, manufacturing and testing of a new class of ultra-refractory ceramic matrix composites reinforced with silicon carbide fibers and Carbon fibers suitable for applications in severe aerospace environments.

Challenges in manufacturing and machining

The manufacturing and machining of UHTCMCs present new challenges due to the unique properties of these advanced materials. Traditional manufacturing techniques such as casting and molding may not be suitable for UHTCMCs, requiring the development of specific methods like chemical vapor infiltration (CVI), polymer infiltration and pyrolysis (PIP), reactive melt infiltration (RMI), slurry impregnation and sintering (SIS) or by combining multiple processes in sequence. CVI involves the infiltration of a porous preform, typically made of fibers, with a gas-phase precursor that decomposes at high temperatures to form a ceramic matrix. The process begins by placing the fiber preform in a reaction chamber, where it is exposed to a gaseous precursor, such as silicon-containing compounds (e.g., CH4, SiCl4 or SiH4) in the presence of heat. At elevated temperatures, the precursor gases react and deposit a solid ceramic material onto the fibers, forming a dense matrix.

The process also ensures and adequate bonding between the matrix and the reinforcing fibers, enhancing the mechanical properties and thermal stability of the composite. However, CVI is relatively slow due to the need for long infiltration times. The method is also sensitive to process conditions, requiring careful control of temperature, pressure, and precursor concentration to avoid defects like porosity or incomplete infiltration.

PIP involves multiple cycles polymer infiltration followed by pyrolysis, leading to high material performance but is time-consuming and costly due to the need for several infiltration and pyrolysis steps. RMI is faster, as molten metal or ceramic infiltrates the preform, forming a strong composite. However, it requires precise control of the high-temperature process and can be expensive depending on the materials used. SIS is the fastest process ensuring also the largest fraction of UHTC phases in the matrix, but it may face issues with uniformity, bonding between fibers and the matrix. Moreover, sintering occurs via hot pressing (HP) or spark plasma sintering (SPS) furnaces wich required mechanical prussere to produce a low porosity material, so the process allow to produce simple shape and scalability could be an issue.In addition, the consolidation of these materials is done combining a strong mechanical pressing during the sintering process at very high temperature. These furnaces allow simple shapes to be produced, and currently the largest furnaces to date on the market allow side plate sizes around half a meter. Scalability of the process is therefore limited by the ability of these special furnaces with mechanical pressing to exert and control high forces over large areas uniformly at very high temperature (usually graphite pistons and molds).

The choice of process depends on the desired material properties, cost constraints, and production scale. A comparison of mechanical properties and ablation resistance of similar UHTCMC materials obtained by different technologies is reported in ref

Machining these materials is particularly challenging due to their high hardness and low fracture toughness (comparared to metals), which demand advanced tools and techniques to avoid cracking or delamination. Additionally, the anisotropic nature of fiber reinforced materials, arising from the directional arrangement of fibers, adds complexity to achieving precise shapes and finishes. Furthermore, maintaining the integrity of the fiber-matrix interface during processing is critical to preserving the material's mechanical properties. As a result, ongoing research is focused on optimizing manufacturing processes, improving tool materials, and developing novel machining strategies to meet the increasing demand for CMCs and UHTCMCs in industries such as aerospace, automotive, radioisotope formation and rinnovable energies. Their compatibility with cells was studied for possible application in biomedical fields.

References

  1. Marumo, Tomoki; Koide, Noriatsu; Arai, Yutaro; Nishimura, Toshiyuki; Hasegawa, Makoto; Inoue, Ryo (October 2022). "Characterization of carbon fiber-reinforced ultra-high temperature ceramic matrix composites fabricated via Zr-Ti alloy melt infiltration". Journal of the European Ceramic Society. 42 (13): 5208–5219. doi:10.1016/j.jeurceramsoc.2022.06.040. S2CID 249838869. Retrieved 12 December 2023.
  2. Mungiguerra, S.; Silvestroni, L.; Savino, R.; Zoli, L.; Esser, B.; Lagos, M.; Sciti, D. (2022-02-01). "Qualification and reusability of long and short fibre-reinforced ultra-refractory composites for aerospace thermal protection systems". Corrosion Science. 195: 109955. Bibcode:2022Corro.19509955M. doi:10.1016/j.corsci.2021.109955. ISSN 0010-938X.
  3. Cheng, Tianbao; Zhang, Rubing; Pei, Yongmao; He, Rujie; Fang, Daining; Yang, Yazheng (12 June 2019). "Flexural properties of carbon-carbon composites at temperatures up to 2600 °C". Materials Research Express. 6 (8). Bibcode:2019MRE.....6h5629C. doi:10.1088/2053-1591/ab23c9. S2CID 181325974. Retrieved 12 December 2023.
  4. Sciti, D.; Vinci, A.; Zoli, L.; Galizia, P.; Mor, M.; Fahrenholtz, W.; Mungiguerra, S.; Savino, R.; Caporale, A. M.; Airoldi, A. (2024-12-19). "Elevated temperature performance: Arc-Jet testing of carbon fiber reinforced ZrB₂ bars up to 2200 °C for strength retention assessment". Journal of Advanced Ceramics. doi:10.26599/JAC.2024.9221022. ISSN 2226-4108.
  5. Galizia, Pietro; Vinci, Antonio; Zoli, Luca; Monteverde, Frederic; Binner, Jon; Venkatachalam, Vinothini; Lagos, Miguel.A.; Reimer, Thomas; Jain, Neraj; Sciti, Diletta (October 2021). "Retained strength of UHTCMCs after oxidation at 2278 K". Composites Part A: Applied Science and Manufacturing. 149: 106523. doi:10.1016/j.compositesa.2021.106523. ISSN 1359-835X.
  6. Vinci, Antonio; Reimer, Thomas; Zoli, Luca; Sciti, Diletta (May 2021). "Influence of pressure on the oxidation resistance of carbon fiber reinforced ZrB2/SiC composites at 2000 and 2200 °C". Corrosion Science. 184: 109377. doi:10.1016/j.corsci.2021.109377. ISSN 0010-938X.
  7. Vinci, Antonio; Zoli, Luca; Galizia, Pietro; Sciti, Diletta (December 2020). "Influence of Y2O3 addition on the mechanical and oxidation behaviour of carbon fibre reinforced ZrB2/SiC composites". Journal of the European Ceramic Society. 40 (15): 5067–5075. doi:10.1016/j.jeurceramsoc.2020.06.043. ISSN 0955-2219.
  8. Servadei, Francesca; Zoli, Luca; Vinci, Antonio; Galizia, Pietro; Sciti, Diletta (2021-08-15). "Significant improvement of the self-protection capability of ultra-high temperature ceramic matrix composites". Corrosion Science. 189: 109575. Bibcode:2021Corro.18909575S. doi:10.1016/j.corsci.2021.109575. ISSN 0010-938X.
  9. Servadei, Francesca; Zoli, Luca; Vinci, Antonio; Galizia, Pietro; Sciti, Diletta (2021-08-15). "Significant improvement of the self-protection capability of ultra-high temperature ceramic matrix composites". Corrosion Science. 189: 109575. Bibcode:2021Corro.18909575S. doi:10.1016/j.corsci.2021.109575. ISSN 0010-938X.
  10. Mor, Matteo; Vinci, Antonio; Failla, Simone; Galizia, Pietro; Zoli, Luca; Sciti, Diletta (2023-01-05). "A novel approach for manufacturing of layered, ultra-refractory composites using pliable, short fibre-reinforced ceramic sheets". Journal of Advanced Ceramics. 12 (1): 155–168. doi:10.26599/JAC.2023.9220674. ISSN 2226-4108.
  11. Sciti, D.; Zoli, L.; Vinci, A.; Silvestroni, L.; Mungiguerra, S.; Galizia, P. (May 2021). "Effect of PAN-based and pitch-based carbon fibres on microstructure and properties of continuous Cf/ZrB2-SiC UHTCMCs". Journal of the European Ceramic Society. 41 (5): 3045–3050. doi:10.1016/j.jeurceramsoc.2020.05.032. ISSN 0955-2219.
  12. Zoli, L.; Medri, V.; Melandri, C.; Sciti, D. (2015-12-01). "Continuous SiC fibers-ZrB2 composites". Journal of the European Ceramic Society. 35 (16): 4371–4376. doi:10.1016/j.jeurceramsoc.2015.08.008. ISSN 0955-2219.
  13. Zoli, Luca; Servadei, Francesca; Failla, Simone; Mor, Matteo; Vinci, Antonio; Galizia, Pietro; Sciti, Diletta (2024-02-01). "ZrB2–SiC ceramics toughened with oriented paper-derived graphite for a sustainable approach". Journal of Advanced Ceramics. 13 (2): 207–219. doi:10.26599/JAC.2024.9220842. ISSN 2226-4108.
  14. "c³harme". www.c3harme.eu.
  15. Sciti, Diletta; Silvestroni, Laura; Monteverde, Frédéric; Vinci, Antonio; Zoli, Luca (2018-10-17). "Introduction to H2020 project C3HARME – next generation ceramic composites for combustion harsh environment and space". Advances in Applied Ceramics. 117 (sup1): s70 – s75. Bibcode:2018AdApC.117S..70S. doi:10.1080/17436753.2018.1509822. ISSN 1743-6753.
  16. Mungiguerra, Stefano; Di Martino, Giuseppe D.; Cecere, Anselmo; Savino, Raffaele; Zoli, Luca; Silvestroni, Laura; Sciti, Diletta (August 2020). "Ultra-high-temperature testing of sintered ZrB2-based ceramic composites in atmospheric re-entry environment". International Journal of Heat and Mass Transfer. 156: 119910. Bibcode:2020IJHMT.15619910M. doi:10.1016/j.ijheatmasstransfer.2020.119910. ISSN 0017-9310.
  17. Baker, B.; Venkatachalam, V.; Zoli, L.; Vinci, A.; Failla, S.; Sciti, D.; Binner, J. (December 2021). "Ablation behaviour of carbon fibre ultra-high temperature composites at oblique angles of attack". Materials & Design. 212: 110199. doi:10.1016/j.matdes.2021.110199. ISSN 0264-1275.
  18. Sciti, D.; Zoli, L.; Silvestroni, L.; Cecere, A.; Martino, G.D. Di; Savino, R. (2016). "Design, fabrication and high velocity oxy-fuel torch tests of a C f -ZrB 2 - fiber nozzle to evaluate its potential in rocket motors". Materials & Design. 109: 709–717. doi:10.1016/j.matdes.2016.07.090.
  19. Mungiguerra, Stefano; Di Martino, Giuseppe D.; Savino, Raffaele; Zoli, Luca; Silvestroni, Laura; Sciti, Diletta (December 2020). "Characterization of novel ceramic composites for rocket nozzles in high-temperature harsh environments". International Journal of Heat and Mass Transfer. 163: 120492. Bibcode:2020IJHMT.16320492M. doi:10.1016/j.ijheatmasstransfer.2020.120492. ISSN 0017-9310.
  20. Sciti, Diletta; Vinci, Antonio; Zoli, Luca; Galizia, Pietro; Failla, Simone; Mungiguerra, Stefano; Martino, Giuseppe D. Di; Cecere, Anselmo; Savino, Raffaele (2023-07-05). "Propulsion tests on ultra-high-temperature ceramic matrix composites for reusable rocket nozzles". Journal of Advanced Ceramics. 12 (7): 1345–1360. doi:10.26599/JAC.2023.9220759. ISSN 2226-4108.
  21. Mungiguerra, Stefano; Di Martino, Giuseppe D.; Savino, Raffaele; Zoli, Luca; Sciti, Diletta; Lagos, Miguel A. (2018-07-08). "Ultra-High-Temperature Ceramic Matrix Composites in Hybrid Rocket Propulsion Environment". 2018 International Energy Conversion Engineering Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics. doi:10.2514/6.2018-4694. ISBN 9781624105715.
  22. Sziroczak, D.; Smith, H. (2016). "A review of design issues specific to hypersonic flight vehicles". Progress in Aerospace Sciences. 84: 1–28. Bibcode:2016PrAeS..84....1S. doi:10.1016/j.paerosci.2016.04.001. hdl:1826/10119.
  23. Vinci, Antonio; Zoli, Luca; Sciti, Diletta; Watts, Jeremy; Hilmas, Greg E.; Fahrenholtz, William G. (April 2019). "Mechanical behaviour of carbon fibre reinforced TaC/SiC and ZrC/SiC composites up to 2100°C". Journal of the European Ceramic Society. 39 (4): 780–787. doi:10.1016/j.jeurceramsoc.2018.11.017. ISSN 0955-2219. S2CID 139993345.
  24. Mungiguerra, S.; Di Martino, G.D.; Cecere, A.; Savino, R.; Silvestroni, L.; Vinci, A.; Zoli, L.; Sciti, D. (April 2019). "Arc-jet wind tunnel characterization of ultra-high-temperature ceramic matrix composites". Corrosion Science. 149: 18–28. Bibcode:2019Corro.149...18M. doi:10.1016/j.corsci.2018.12.039. ISSN 0010-938X. S2CID 139421458.
  25. Vinci, Antonio; Zoli, Luca; Sciti, Diletta; Watts, Jeremy; Hilmas, Greg E.; Fahrenholtz, William G. (October 2019). "Influence of fibre content on the strength of carbon fibre reinforced HfC/SiC composites up to 2100 °C". Journal of the European Ceramic Society. 39 (13): 3594–3603. doi:10.1016/j.jeurceramsoc.2019.04.049. ISSN 0955-2219.
  26. Zoli, L.; Sciti, D. (2017). "Efficacy of a ZrB2 –SiC matrix in protecting C fibres from oxidation in novel UHTCMC materials". Materials & Design. 113: 207–213. doi:10.1016/j.matdes.2016.09.104.
  27. Zoli, L.; Vinci, A.; Silvestroni, L.; Sciti, D.; Reece, M.; Grasso, S. (2017). "Rapid spark plasma sintering to produce dense UHTCs reinforced with undamaged carbon fibres". Materials & Design. 130: 1–7. doi:10.1016/j.matdes.2017.05.029.
  28. Galizia, Pietro; Failla, Simone; Zoli, Luca; Sciti, Diletta (2018). "Tough salami-inspired Cf/ZrB2 UHTCMCs produced by electrophoretic deposition". Journal of the European Ceramic Society. 38 (2): 403–409. doi:10.1016/j.jeurceramsoc.2017.09.047.
  29. Vinci, Antonio; Zoli, Luca; Sciti, Diletta; Melandri, Cesare; Guicciardi, Stefano (2018). "Understanding the mechanical properties of novel UHTCMCs through random forest and regression tree analysis". Materials & Design. 145: 97–107. doi:10.1016/j.matdes.2018.02.061.
  30. Zoli, L.; Medri, V.; Melandri, C.; Sciti, D. (2015). "Continuous SiC fibers-ZrB2 composites". Journal of the European Ceramic Society. 35 (16): 4371–4376. doi:10.1016/j.jeurceramsoc.2015.08.008.
  31. Sciti, D.; Murri, A. Natali; Medri, V.; Zoli, L. (2015). "Continuous C fibre composites with a porous ZrB2 Matrix". Materials & Design. 85: 127–134. doi:10.1016/j.matdes.2015.06.136.
  32. Sciti, D.; Pienti, L.; Murri, A. Natali; Landi, E.; Medri, V.; Zoli, L. (2014). "From random chopped to oriented continuous SiC fibers–ZrB2 composites". Materials & Design. 63: 464–470. doi:10.1016/j.matdes.2014.06.037.
  33. Vinci, Antonio; Zoli, Luca; Sciti, Diletta (September 2018). "Influence of SiC content on the oxidation of carbon fibre reinforced ZrB2 /SiC composites at 1500 and 1650 °C in air". Journal of the European Ceramic Society. 38 (11): 3767–3776. doi:10.1016/j.jeurceramsoc.2018.04.064. ISSN 0955-2219. S2CID 139815518.
  34. Failla, S.; Galizia, P.; Zoli, L.; Vinci, A.; Sciti, D. (March 2019). "Toughening effect of non-periodic fiber distribution on crack propagation energy of UHTC composites". Journal of Alloys and Compounds. 777: 612–618. doi:10.1016/j.jallcom.2018.11.043. ISSN 0925-8388. S2CID 139247345.
  35. Galizia, P.; Zoli, L.; Sciti, D. (December 2018). "Impact of residual stress on thermal damage accumulation, and Young's modulus of fiber-reinforced ultra-high temperature ceramics". Materials & Design. 160: 803–809. doi:10.1016/j.matdes.2018.10.019. ISSN 0264-1275.
  36. Zoli, Luca; Vinci, Antonio; Galizia, Pietro; Melandri, Cesare; Sciti, Diletta (2018-06-14). "On the thermal shock resistance and mechanical properties of novel unidirectional UHTCMCs for extreme environments". Scientific Reports. 8 (1): 9148. Bibcode:2018NatSR...8.9148Z. doi:10.1038/s41598-018-27328-x. ISSN 2045-2322. PMC 6002483. PMID 29904145.
  37. Sciti, D.; Galizia, P.; Reimer, T.; Schoberth, A.; Gutiérrez-Gonzalez, C.F.; Silvestroni, L.; Vinci, A.; Zoli, L. (July 2021). "Properties of large scale ultra-high temperature ceramic matrix composites made by filament winding and spark plasma sintering". Composites Part B: Engineering. 216: 108839. doi:10.1016/j.compositesb.2021.108839. ISSN 1359-8368.
  38. Sciti, Diletta; Guicciardi, Stefano; Zoli, Luca; Failla, Simone; Melandri, Cesare (2022-11-01). "Dry sliding wear behaviour of ZrB2-based ceramics: Self-mated and cross coupling with alumina". Journal of the European Ceramic Society. 42 (14): 6335–6346. doi:10.1016/j.jeurceramsoc.2022.07.022. ISSN 0955-2219.
  39. Mor, Matteo; Meiser, Matthias; Langhof, Nico; Vinci, Antonio; Zoli, Luca; Alber-Laukant, Bettina; Tremmel, Stephan; Schafföner, Stefan; Sciti, Diletta (2024-11-01). "Dry tribological behavior of 0/90° continuous carbon fiber reinforced ZrB2 based UHTC-material". Journal of the European Ceramic Society. 44 (14): 116664. doi:10.1016/j.jeurceramsoc.2024.06.005. ISSN 0955-2219.
  40. "C3HARME".
  41. Paul, A.; Venugopal, S.; Binner, J. G. P.; Vaidhyanathan, B.; Heaton, A. C. J.; Brown, P. M. (2013-02-01). "UHTC–carbon fibre composites: Preparation, oxyacetylene torch testing and characterisation". Journal of the European Ceramic Society. 33 (2): 423–432. doi:10.1016/j.jeurceramsoc.2012.08.018. ISSN 0955-2219.
  42. Servadei, Francesca; Zoli, Luca; Galizia, Pietro; Piancastelli, Andreana; Sciti, Diletta (2023-01-01). "Processing and characterization of ultra-high temperature ceramic matrix composites via water based slurry impregnation and polymer infiltration and pyrolysis". Ceramics International. 49 (1): 1220–1229. doi:10.1016/j.ceramint.2022.09.100. ISSN 0272-8842.
  43. Vinci, Antonio; Zoli, Luca; Galizia, Pietro; Kütemeyer, Marius; Koch, Dietmar; Frieß, Martin; Sciti, Diletta (2020-10-01). "Reactive melt infiltration of carbon fibre reinforced ZrB2/B composites with Zr2Cu". Composites Part A: Applied Science and Manufacturing. 137: 105973. doi:10.1016/j.compositesa.2020.105973. ISSN 1359-835X.
  44. Silvestroni, Laura; Vinci, Antonio; Gilli, Nicola; Zoli, Luca; Sciti, Diletta; Koch, Dietmar; Kütemeyer, Marius (2023-06-25). "Melt/solid interaction and melt super-saturation effect on the microstructure asset of ultra-refractory composites prepared by reactive melting infiltration". Journal of Alloys and Compounds. 947: 169521. doi:10.1016/j.jallcom.2023.169521. ISSN 0925-8388.
  45. Sciti, D.; Zoli, L.; Reimer, T.; Vinci, A.; Galizia, P. (2022-04-01). "A systematic approach for horizontal and vertical scale up of sintered Ultra-High Temperature Ceramic Matrix Composites for aerospace – Advances and perspectives". Composites Part B: Engineering. 234: 109709. doi:10.1016/j.compositesb.2022.109709. ISSN 1359-8368.
  46. Servadei, Francesca; Zoli, Luca; Galizia, Pietro; Melandri, Cesare; Sciti, Diletta (2022-05-01). "Preparation of UHTCMCs by hybrid processes coupling Polymer Infiltration and Pyrolysis with Hot Pressing and vice versa". Journal of the European Ceramic Society. 42 (5): 2118–2126. doi:10.1016/j.jeurceramsoc.2021.12.039. ISSN 0955-2219.
  47. Servadei, Francesca; Zoli, Luca; Galizia, Pietro; Melandri, Cesare; Failla, Simone; Sciti, Diletta (2023-03-15). "Effect of annealing treatments on the mechanical behaviour of UHTCMCs prepared by mild polymer infiltration and pyrolysis". Ceramics International. 49 (6): 10032–10040. doi:10.1016/j.ceramint.2022.11.183. ISSN 0272-8842.
  48. Vinci, Antonio; Zoli, Luca; Silvestroni, Laura; Gilli, Nicola; Sciti, Diletta (2023-03-01). "Synthesis, microstructure and mechanical properties of lamellar YB2C2 – based ultra-high temperature ceramic composites". Journal of the European Ceramic Society. 43 (3): 831–841. doi:10.1016/j.jeurceramsoc.2022.10.072. ISSN 0955-2219.
  49. Zoli, Luca; Vinci, Antonio; Galizia, Pietro; Gutièrrez-Gonzalez, Carlos F.; Rivera, Sergio; Sciti, Diletta (July 2020). "Is spark plasma sintering suitable for the densification of continuous carbon fibre - UHTCMCs?". Journal of the European Ceramic Society. 40 (7): 2597–2603. doi:10.1016/j.jeurceramsoc.2019.12.004. ISSN 0955-2219.
  50. Vinci, Antonio; Silvestroni, Laura; Gilli, Nicola; Zoli, Luca; Sciti, Diletta (2022-05-01). "Advancements in carbon fibre reinforced ultra-refractory ceramic composites: Effect of rare earth oxides addition". Composites Part A: Applied Science and Manufacturing. 156: 106858. doi:10.1016/j.compositesa.2022.106858. ISSN 1359-835X.
  51. Galizia, Pietro; Sciti, Diletta; Binner, Jon; Venkatachalam, Vinothini; Lagos, Miguel. A.; Servadei, Francesca; Vinci, Antonio; Zoli, Luca; Reimer, Thomas (2023-09-01). "Elevated temperature tensile and bending strength of ultra-high temperature ceramic matrix composites obtained by different processes". Journal of the European Ceramic Society. 43 (11): 4588–4601. doi:10.1016/j.jeurceramsoc.2023.03.055. ISSN 0955-2219.
  52. Reimer, T.; Di Martino, G. D.; Sciti, D.; Zoli, L.; Galizia, P.; Vinci, A.; Lagos, M. A.; Azurmendi, N. (2023-03-01). "Experimental characterization of fatigue life of ZrB2-SiC based ultra high-temperature ceramic matrix composites". International Journal of Fatigue. 168: 107389. doi:10.1016/j.ijfatigue.2022.107389. ISSN 0142-1123.
  53. Rösiger, Achim; Kleiner, Stefan; Unseld, Simon; Goller, Ralf; Zoli, Luca; Sciti, Diletta (2024-12-01). "Influence of diamond grinding process on material removal mechanisms and surface roughness of 0/90° continuous carbon fiber reinforced ZrB2". Open Ceramics. 20: 100669. doi:10.1016/j.oceram.2024.100669. ISSN 2666-5395.
  54. Sciti, Diletta; Corradetti, Stefano; Manzolaro, Mattia; Ballan, Michele; Cesarotto, Dario; Meneghetti, Giovanni; Silvestroni, Laura; Servadei, Francesca; Zoli, Luca (2024-09-01). "Highly porous carbon-SiC composites with continuous carbon fibers for the production of radioisotopes in ISOL facilities". Journal of the European Ceramic Society. 44 (12): 6854–6863. doi:10.1016/j.jeurceramsoc.2024.04.072. ISSN 0955-2219.
  55. Silvestroni, Laura; Corradetti, Stefano; Manzolaro, Mattia; Ballan, Michele; Cesarotto, Dario; Sciti, Diletta; Zoli, Luca (2022-11-01). "Novel SiC/C composite targets for the production of radioisotopes for nuclear applications". Journal of the European Ceramic Society. 42 (14): 6750–6756. doi:10.1016/j.jeurceramsoc.2022.07.017. ISSN 0955-2219.
  56. Zoli, Luca; Failla, Simone; Sani, Elisa; Sciti, Diletta (2022-08-01). "Novel ceramic fibre - Zirconium diboride composites for solar receivers in concentrating solar power systems". Composites Part B: Engineering. 242: 110081. doi:10.1016/j.compositesb.2022.110081. ISSN 1359-8368.
  57. Zoli, Luca; Servadei, Francesca; Bassi, Giada; Rossi, Arianna; Montesi, Monica; Vinci, Antonio; Sciti, Diletta; Panseri, Silvia (2024-02-01). "From outer space to inside the body: Ultra-high temperature ceramic matrix composites for biomedical applications". Journal of the European Ceramic Society. 44 (2): 729–737. doi:10.1016/j.jeurceramsoc.2023.10.007. ISSN 0955-2219.
Categories: