Misplaced Pages

Uniformly Cauchy sequence

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, a sequence of functions { f n } {\displaystyle \{f_{n}\}} from a set S to a metric space M is said to be uniformly Cauchy if:

  • For all ε > 0 {\displaystyle \varepsilon >0} , there exists N > 0 {\displaystyle N>0} such that for all x S {\displaystyle x\in S} : d ( f n ( x ) , f m ( x ) ) < ε {\displaystyle d(f_{n}(x),f_{m}(x))<\varepsilon } whenever m , n > N {\displaystyle m,n>N} .

Another way of saying this is that d u ( f n , f m ) 0 {\displaystyle d_{u}(f_{n},f_{m})\to 0} as m , n {\displaystyle m,n\to \infty } , where the uniform distance d u {\displaystyle d_{u}} between two functions is defined by

d u ( f , g ) := sup x S d ( f ( x ) , g ( x ) ) . {\displaystyle d_{u}(f,g):=\sup _{x\in S}d(f(x),g(x)).}

Convergence criteria

A sequence of functions {fn} from S to M is pointwise Cauchy if, for each xS, the sequence {fn(x)} is a Cauchy sequence in M. This is a weaker condition than being uniformly Cauchy.

In general a sequence can be pointwise Cauchy and not pointwise convergent, or it can be uniformly Cauchy and not uniformly convergent. Nevertheless, if the metric space M is complete, then any pointwise Cauchy sequence converges pointwise to a function from S to M. Similarly, any uniformly Cauchy sequence will tend uniformly to such a function.

The uniform Cauchy property is frequently used when the S is not just a set, but a topological space, and M is a complete metric space. The following theorem holds:

  • Let S be a topological space and M a complete metric space. Then any uniformly Cauchy sequence of continuous functions fn : SM tends uniformly to a unique continuous function f : SM.

Generalization to uniform spaces

A sequence of functions { f n } {\displaystyle \{f_{n}\}} from a set S to a uniform space U is said to be uniformly Cauchy if:

  • For any entourange E of U, there exists N > 0 {\displaystyle N>0} such that, for all x S {\displaystyle x\in S} , ( f n ( x ) , f m ( x ) ) E {\displaystyle (f_{n}(x),f_{m}(x))\in E} whenever m , n > N {\displaystyle m,n>N} .

See also


Stub icon

This mathematical analysis–related article is a stub. You can help Misplaced Pages by expanding it.

Categories: