In statistical mechanics , an Ursell function or connected correlation function , is a cumulant of a random variable . It can often be obtained by summing over connected Feynman diagrams (the sum over all Feynman diagrams gives the correlation functions ).
The Ursell function was named after Harold Ursell , who introduced it in 1927.
Definition
If X is a random variable, the moments s n and cumulants (same as the Ursell functions) u n are functions of X related by the exponential formula :
E
(
exp
(
z
X
)
)
=
∑
n
s
n
z
n
n
!
=
exp
(
∑
n
u
n
z
n
n
!
)
{\displaystyle \operatorname {E} (\exp(zX))=\sum _{n}s_{n}{\frac {z^{n}}{n!}}=\exp \left(\sum _{n}u_{n}{\frac {z^{n}}{n!}}\right)}
(where
E
{\displaystyle \operatorname {E} }
is the expectation ).
The Ursell functions for multivariate random variables are defined analogously to the above, and in the same way as multivariate cumulants.
u
n
(
X
1
,
…
,
X
n
)
=
∂
∂
z
1
⋯
∂
∂
z
n
log
E
(
exp
∑
z
i
X
i
)
|
z
i
=
0
{\displaystyle u_{n}\left(X_{1},\ldots ,X_{n}\right)=\left.{\frac {\partial }{\partial z_{1}}}\cdots {\frac {\partial }{\partial z_{n}}}\log \operatorname {E} \left(\exp \sum z_{i}X_{i}\right)\right|_{z_{i}=0}}
The Ursell functions of a single random variable X are obtained from these by setting X = X 1 = … = X n .
The first few are given by
u
1
(
X
1
)
=
E
(
X
1
)
u
2
(
X
1
,
X
2
)
=
E
(
X
1
X
2
)
−
E
(
X
1
)
E
(
X
2
)
u
3
(
X
1
,
X
2
,
X
3
)
=
E
(
X
1
X
2
X
3
)
−
E
(
X
1
)
E
(
X
2
X
3
)
−
E
(
X
2
)
E
(
X
3
X
1
)
−
E
(
X
3
)
E
(
X
1
X
2
)
+
2
E
(
X
1
)
E
(
X
2
)
E
(
X
3
)
u
4
(
X
1
,
X
2
,
X
3
,
X
4
)
=
E
(
X
1
X
2
X
3
X
4
)
−
E
(
X
1
)
E
(
X
2
X
3
X
4
)
−
E
(
X
2
)
E
(
X
1
X
3
X
4
)
−
E
(
X
3
)
E
(
X
1
X
2
X
4
)
−
E
(
X
4
)
E
(
X
1
X
2
X
3
)
−
E
(
X
1
X
2
)
E
(
X
3
X
4
)
−
E
(
X
1
X
3
)
E
(
X
2
X
4
)
−
E
(
X
1
X
4
)
E
(
X
2
X
3
)
+
2
E
(
X
1
X
2
)
E
(
X
3
)
E
(
X
4
)
+
2
E
(
X
1
X
3
)
E
(
X
2
)
E
(
X
4
)
+
2
E
(
X
1
X
4
)
E
(
X
2
)
E
(
X
3
)
+
2
E
(
X
2
X
3
)
E
(
X
1
)
E
(
X
4
)
+
2
E
(
X
2
X
4
)
E
(
X
1
)
E
(
X
3
)
+
2
E
(
X
3
X
4
)
E
(
X
1
)
E
(
X
2
)
−
6
E
(
X
1
)
E
(
X
2
)
E
(
X
3
)
E
(
X
4
)
{\displaystyle {\begin{aligned}u_{1}(X_{1})={}&\operatorname {E} (X_{1})\\u_{2}(X_{1},X_{2})={}&\operatorname {E} (X_{1}X_{2})-\operatorname {E} (X_{1})\operatorname {E} (X_{2})\\u_{3}(X_{1},X_{2},X_{3})={}&\operatorname {E} (X_{1}X_{2}X_{3})-\operatorname {E} (X_{1})\operatorname {E} (X_{2}X_{3})-\operatorname {E} (X_{2})\operatorname {E} (X_{3}X_{1})-\operatorname {E} (X_{3})\operatorname {E} (X_{1}X_{2})+2\operatorname {E} (X_{1})\operatorname {E} (X_{2})\operatorname {E} (X_{3})\\u_{4}\left(X_{1},X_{2},X_{3},X_{4}\right)={}&\operatorname {E} (X_{1}X_{2}X_{3}X_{4})-\operatorname {E} (X_{1})\operatorname {E} (X_{2}X_{3}X_{4})-\operatorname {E} (X_{2})\operatorname {E} (X_{1}X_{3}X_{4})-\operatorname {E} (X_{3})\operatorname {E} (X_{1}X_{2}X_{4})-\operatorname {E} (X_{4})\operatorname {E} (X_{1}X_{2}X_{3})\\&-\operatorname {E} (X_{1}X_{2})\operatorname {E} (X_{3}X_{4})-\operatorname {E} (X_{1}X_{3})\operatorname {E} (X_{2}X_{4})-\operatorname {E} (X_{1}X_{4})\operatorname {E} (X_{2}X_{3})\\&+2\operatorname {E} (X_{1}X_{2})\operatorname {E} (X_{3})\operatorname {E} (X_{4})+2\operatorname {E} (X_{1}X_{3})\operatorname {E} (X_{2})\operatorname {E} (X_{4})+2\operatorname {E} (X_{1}X_{4})\operatorname {E} (X_{2})\operatorname {E} (X_{3})+2\operatorname {E} (X_{2}X_{3})\operatorname {E} (X_{1})\operatorname {E} (X_{4})\\&+2\operatorname {E} (X_{2}X_{4})\operatorname {E} (X_{1})\operatorname {E} (X_{3})+2\operatorname {E} (X_{3}X_{4})\operatorname {E} (X_{1})\operatorname {E} (X_{2})-6\operatorname {E} (X_{1})\operatorname {E} (X_{2})\operatorname {E} (X_{3})\operatorname {E} (X_{4})\end{aligned}}}
Characterization
Percus (1975) showed that the Ursell functions, considered as multilinear functions of several random variables, are uniquely determined up to a constant by the fact that they vanish whenever the variables X i can be divided into two nonempty independent sets.
See also
References
Shlosman, S. B. (1986). "Signs of the Ising model Ursell functions" . Communications in Mathematical Physics . 102 (4): 679–686. Bibcode :1985CMaPh.102..679S . doi :10.1007/BF01221652 . S2CID 122963530 .
Glimm, James ; Jaffe, Arthur (1987), Quantum physics (2nd ed.), Berlin, New York: Springer-Verlag , ISBN 978-0-387-96476-8 , MR 0887102
Percus, J. K. (1975), "Correlation inequalities for Ising spin lattices" (PDF), Comm. Math. Phys. , 40 (3): 283–308, Bibcode :1975CMaPh..40..283P , doi :10.1007/bf01610004 , MR 0378683 , S2CID 120940116
Ursell, H. D. (1927), "The evaluation of Gibbs phase-integral for imperfect gases", Proc. Cambridge Philos. Soc. , 23 (6): 685–697, Bibcode :1927PCPS...23..685U , doi :10.1017/S0305004100011191 , S2CID 123023251
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑