Misplaced Pages

Vector bundles on algebraic curves

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, vector bundles on algebraic curves may be studied as holomorphic vector bundles on compact Riemann surfaces, which is the classical approach, or as locally free sheaves on algebraic curves C in a more general, algebraic setting (which can for example admit singular points).

Some foundational results on classification were known in the 1950s. The result of Grothendieck (1957), that holomorphic vector bundles on the Riemann sphere are sums of line bundles, is now often called the Birkhoff–Grothendieck theorem, since it is implicit in much earlier work of Birkhoff (1909) on the Riemann–Hilbert problem.

Atiyah (1957) gave the classification of vector bundles on elliptic curves.

The Riemann–Roch theorem for vector bundles was proved by Weil (1938), before the 'vector bundle' concept had really any official status. Although, associated ruled surfaces were classical objects. See Hirzebruch–Riemann–Roch theorem for his result. He was seeking a generalization of the Jacobian variety, by passing from holomorphic line bundles to higher rank. This idea would prove fruitful, in terms of moduli spaces of vector bundles. following on the work in the 1960s on geometric invariant theory.

See also

References

Topics in algebraic curves
Rational curves
Elliptic curves
Analytic theory
Arithmetic theory
Applications
Higher genus
Plane curves
Riemann surfaces
Constructions
Structure of curves
Divisors on curves
Moduli
Morphisms
Singularities
Vector bundles
Categories: