Misplaced Pages

Descending wedge

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Vel (symbol)) Logic symbol resembling a "V"

The descending wedge symbol may represent:

The vertically reflected symbol, ∧, is a wedge, and often denotes related or dual operators.

The ∨ symbol was introduced by Russell and Whitehead in Principia Mathematica, where they called it the Logical Sum or Disjunctive Function.

In Unicode the symbol is encoded U+2228 ∨ LOGICAL OR (∨, ∨). In TeX, it is \vee or \lor.

One motivation and the most probable explanation for the choice of the symbol ∨ is the latin word "vel" meaning "or" in the inclusive sense. Several authors use "vel" as name of the "or" function.

References

  1. Whitehead, Alfred North (2005). Principia mathematica, by Alfred North Whitehead ... and Bertrand Russell.
  2. Rueff, Marcel; Jeger, Max (1970). Sets and Boolean Algebra. American Elsevier Publishing Company. ISBN 978-0-444-19751-1.
  3. Trappl, Robert (1975). Progress in Cybernetics and Systems Research. Hemisphere Publishing Corporation. ISBN 978-0-89116-240-7.
  4. Constable, Robert L. (1986). Implementing Mathematics with the Nuprl Proof Development System. Prentice-Hall. ISBN 978-0-13-451832-9.
  5. Malatesta, Michele (1997). The Primary Logic: Instruments for a Dialogue Between the Two Cultures. Gracewing Publishing. ISBN 978-0-85244-499-3.
  6. Harris, John W.; Stöcker, Horst (1998-07-23). Handbook of Mathematics and Computational Science. Springer Science & Business Media. ISBN 978-0-387-94746-4.
  7. Tidman, Paul; Kahane, Howard (2003). Logic and Philosophy: A Modern Introduction. Wadsworth/Thomson Learning. ISBN 978-0-534-56172-7.
  8. Kudryavtsev, Valery B.; Rosenberg, Ivo G. (2006-01-18). Structural Theory of Automata, Semigroups, and Universal Algebra: Proceedings of the NATO Advanced Study Institute on Structural Theory of Automata, Semigroups and Universal Algebra, Montreal, Quebec, Canada, 7-18 July 2003. Springer Science & Business Media. ISBN 978-1-4020-3817-4.
  9. Denecke, Klaus; Wismath, Shelly L. (2009). Universal Algebra and Coalgebra. World Scientific. ISBN 978-981-283-745-5.

See also

Common logical symbols
 or  & and or ¬  or  ~ not implies implies,
superset
 or  iff | nand universal
quantification
existential
quantification
true,
tautology
false,
contradiction
entails,
proves
entails,
therefore
therefore because
Philosophy portal
icon Mathematics portal
Category: