Misplaced Pages

WASP-41

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Star in the constellation Centaurus
WASP-41
Observation data
Epoch J2000      Equinox J2000
Constellation Centaurus
Right ascension 12 42 28.4950
Declination −30° 38′ 23.529″
Apparent magnitude (V) 11.6
Characteristics
Evolutionary stage main-sequence star
Spectral type G8V
Astrometry
Radial velocity (Rv)4.153 km/s
Proper motion (μ) RA: 14.878 mas/yr
Dec.: 11.988 mas/yr
Parallax (π)6.1193 ± 0.0203 mas
Distance533 ± 2 ly
(163.4 ± 0.5 pc)
Details
Mass0.930±0.030 M
Radius0.900±0.050 R
Luminosity0.65 L
Surface gravity (log g)4.48 cgs
Temperature5,450±150 K
Metallicity −0.080±0.090 dex
Rotation18.4 d
Rotational velocity (v sin i)1.50±0.05 km/s
Age2.289±0.077 Gyr
Other designations
CD−29 98732, TYC 7247-587-1, GSC 07247-00587, 2MASS J12422849-3038235
Database references
SIMBAD9873 data

WASP-41 is a G-type main-sequence star. Its surface temperature is 5450±150 K. WASP-41 is similar to the Sun in its concentration of heavy elements, with a metallicity Fe/H index of −0.080±0.090, but is much younger at an age of 2.289±0.077 billion years. The star does exhibit strong starspot activity, with spots covering 3% of the stellar surface.

Multiplicity surveys did not detect any stellar companions as of 2017.

Planetary system

In 2012, one planet, named WASP-41b, was discovered on a tight, circular orbit. The transmission spectrum taken in 2017 was gray and featureless. No atmospheric constituents could be distinguished. The planetary orbit of WASP-41b is slightly misaligned with the equatorial plane of the star, at a misalignment angle of 9.15
−2.62°. Planetary equilibrium temperature is 1242±12 K.

Another planet, WASP-41c, was discovered in 2015. The planets are too far apart to significantly affect each other's orbits. The planetary equilibrium temperature of WASP-41c is 247±5 K.

The WASP-41 planetary system
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b 0.941
−0.064 MJ
0.04022±0.00044 3.0524010±0.000004 <0.12 87.700±0.080° 1.200±0.060 RJ
c >3.2±0.20 MJ 1.36±0.04 421±2 0.294±0.024 >70°

References

  1. ^ Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
  2. ^ Southworth, John; Tregloan-Reed, J.; Andersen, M. I.; Calchi Novati, S.; Ciceri, S.; Colque, J. P.; D'Ago, G.; Dominik, M.; Evans, D.; Gu, S. -H.; Herrera-Cruces, A.; Hinse, T. C.; Jorgensen, U. G.; Juncher, D.; Kuffmeier, M.; Mancini, L.; Peixinho, N.; Popovas, A.; Rabus, M.; Skottfelt, J.; Tronsgaard, R.; Unda-Sanzana, E.; Wang, X. -B.; Wertz, O.; Alsubai, K. A.; Andersen, J. M.; Bozza, V.; Bramich, D. M.; Burgdorf, M.; et al. (2015), High-precision photometry by telescope defocussing. III. WASP-22, WASP-41, WASP-42 and WASP-55, arXiv:1512.05549, doi:10.1093/mnras/stw279, S2CID 44864064
  3. ^ Maxted, P. F. L.; Anderson, D. R.; Collier Cameron, A.; Hellier, C.; Queloz, D.; Smalley, B.; Street, R. A.; Triaud, A. H. M. J.; West, R. G.; Gillon, M.; Lister, T. A.; Pepe, F.; Pollacco, D.; Ségransan, D.; Smith, A. M. S.; Udry, S. (2010), "WASP-41 b: A transiting hot Jupiter planet orbiting a magnetically-active G8 V star", Publications of the Astronomical Society of the Pacific, 123 (903): 547–554, arXiv:1012.2977, doi:10.1086/660007, S2CID 40017204
  4. ^ Bonomo, A. S.; Desidera, S.; Benatti, S.; Borsa, F.; Crespi, S.; Damasso, M.; Lanza, A. F.; Sozzetti, A.; Lodato, G.; Marzari, F.; Boccato, C.; Claudi, R. U.; Cosentino, R.; Covino, E.; Gratton, R.; Maggio, A.; Micela, G.; Molinari, E.; Pagano, I.; Piotto, G.; Poretti, E.; Smareglia, R.; Affer, L.; Biazzo, K.; Bignamini, A.; Esposito, M.; Giacobbe, P.; Hébrard, G.; Malavolta, L.; et al. (2017), "The GAPS Programme with HARPS-N@TNG XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets", Astronomy & Astrophysics, A107: 602, arXiv:1704.00373, Bibcode:2017A&A...602A.107B, doi:10.1051/0004-6361/201629882, S2CID 118923163
  5. ^ Oshagh, M.; Triaud, A. H. M. J.; Burdanov, A.; Figueira, P.; Reiners, Ansgar; Santos, N. C.; Faria, J.; Boue, G.; Díaz, R. F.; Dreizler, S.; Boldt, S.; Delrez, L.; Ducrot, E.; Gillon, M.; Guzman Mesa, A.; Jehin, E.; Khalafinejad, S.; Kohl, S.; Serrano, L.; Udry, S. (2018), "Activity induced variation in spin-orbit angles as derived from Rossiter-McLaughlin measurements", Astronomy & Astrophysics, 619: A150, arXiv:1809.01027, Bibcode:2018A&A...619A.150O, doi:10.1051/0004-6361/201833709, S2CID 54578441
  6. ^ Gallet, F.; Gallet (2020), "TATOO: Tidal-chronology standalone tool to estimate the age of massive close-in planetary systems", Astronomy & Astrophysics, 641: A38, arXiv:2006.07880, Bibcode:2020A&A...641A..38G, doi:10.1051/0004-6361/202038058, S2CID 219687851
  7. "CD-29 9873". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2020-12-22.
  8. Evans, D. F.; Southworth, J.; Smalley, B.; Jørgensen, U. G.; Dominik, M.; Andersen, M. I.; Bozza, V.; Bramich, D. M.; Burgdorf, M. J.; Ciceri, S.; d'Ago, G.; Figuera Jaimes, R.; Gu, S.-H.; Hinse, T. C.; Henning, Th.; Hundertmark, M.; Kains, N.; Kerins, E.; Korhonen, H.; Kokotanekova, R.; Kuffmeier, M.; Longa-Peña, P.; Mancini, L.; MacKenzie, J.; Popovas, A.; Rabus, M.; Rahvar, S.; Sajadian, S.; Snodgrass, C.; et al. (2018), "High-resolution Imaging of Transiting Extrasolar Planetary systems (HITEP). II. Lucky Imaging results from 2015 and 2016", Astronomy & Astrophysics, 610: A20, arXiv:1709.07476, Bibcode:2018A&A...610A..20E, doi:10.1051/0004-6361/201731855, S2CID 53400492
  9. Juvan, Ines G.; Lendl, M.; Cubillos, P. E.; Fossati, L.; Tregloan-Reed, J.; Lammer, H.; Guenther, E. W.; Hanslmeier, A. (2018), "PyTranSpot- A tool for multiband light curve modeling of planetary transits and stellar spots", Astronomy & Astrophysics, 610: A15, arXiv:1710.11209, Bibcode:2018A&A...610A..15J, doi:10.1051/0004-6361/201731345, S2CID 55138492
  10. ^ Neveu-VanMalle, M.; et al. (2016). "Hot Jupiters with relatives: Discovery of additional planets in orbit around WASP-41 and WASP-47". Astronomy and Astrophysics. 586. A93. arXiv:1509.07750. Bibcode:2016A&A...586A..93N. doi:10.1051/0004-6361/201526965. S2CID 53354547.
  11. Lai, Dong; Anderson, Kassandra R.; Pu, Bonan (2018), "How do External Companions Affect Spin-Orbit Misalignment of Hot Jupiters?", Monthly Notices of the Royal Astronomical Society, 475 (4): 5231–5236, arXiv:1710.11140, Bibcode:2018MNRAS.475.5231L, doi:10.1093/mnras/sty133, S2CID 119066265
  12. Becker, Juliette C.; Vanderburg, Andrew; Adams, Fred C.; Khain, Tali; Bryan, Marta (2017), "Exterior Companions to Hot Jupiters Orbiting Cool Stars Are Coplanar", The Astronomical Journal, 154 (6): 230, arXiv:1710.01737, Bibcode:2017AJ....154..230B, doi:10.3847/1538-3881/aa9176, S2CID 119198122


Constellation of Centaurus
Stars
Bayer
Flamsteed
Variable
HR
HD
Other
Exoplanets
Star clusters
Nebulae
Galaxies
NGC
Other
Galaxy clusters
Astronomical events
Category
Categories: