Misplaced Pages

Walsh–Lebesgue theorem

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Walsh–Lebesgue theorem is a famous result from harmonic analysis proved by the American mathematician Joseph L. Walsh in 1929, using results proved by Lebesgue in 1907. The theorem states the following:

Let K be a compact subset of the Euclidean plane ℝ such the relative complement of K {\displaystyle K} with respect to ℝ is connected. Then, every real-valued continuous function on K {\displaystyle \partial {K}} (i.e. the boundary of K) can be approximated uniformly on K {\displaystyle \partial {K}} by (real-valued) harmonic polynomials in the real variables x and y.

Generalizations

The Walsh–Lebesgue theorem has been generalized to Riemann surfaces and to .

This Walsh-Lebesgue theorem has also served as a catalyst for entire chapters in the theory of function algebras such as the theory of Dirichlet algebras and logmodular algebras.

In 1974 Anthony G. O'Farrell gave a generalization of the Walsh–Lebesgue theorem by means of the 1964 Browder–Wermer theorem with related techniques.

References

  1. Walsh, J. L. (1928). "Über die Entwicklung einer harmonischen Funktion nach harmonischen Polynomen". J. Reine Angew. Math. 159: 197–209.
  2. Walsh, J. L. (1929). "The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions". Bull. Amer. Math. Soc. 35 (2): 499–544. doi:10.1090/S0002-9947-1929-1501495-4.
  3. Lebesgue, H. (1907). "Sur le probléme de Dirichlet". Rendiconti del Circolo Matematico di Palermo. 24 (1): 371–402. doi:10.1007/BF03015070. S2CID 120228956.
  4. Gamelin, Theodore W. (1984). "3.3 Theorem (Walsh-Lebesgue Theorem)". Uniform Algebras. American Mathematical Society. pp. 36–37. ISBN 9780821840498.
  5. Bagby, T.; Gauthier, P. M. (1992). "Uniform approximation by global harmonic functions". Approximations by solutions of partial differential equations. Dordrecht: Springer. pp. 15–26 (p. 20). ISBN 9789401124362.
  6. Walsh, J. L. (2000). Rivlin, Theodore J.; Saff, Edward B. (eds.). Joseph L. Walsh. Selected papers. Springer. pp. 249–250. ISBN 978-0-387-98782-8.
  7. Browder, A.; Wermer, J. (August 1964). "A method for constructing Dirichlet algebras". Proceedings of the American Mathematical Society. 15 (4): 546–552. doi:10.1090/s0002-9939-1964-0165385-0. JSTOR 2034745.
  8. O'Farrell, A. G (2012). "A Generalised Walsh-Lebesgue Theorem" (PDF). Proceedings of the Royal Society of Edinburgh, Section A. 73: 231–234. doi:10.1017/S0308210500016395.
  9. O'Farrell, A. G. (1981). "Five Generalisations of the Weierstrass Approximation Theorem" (PDF). Proceedings of the Royal Irish Academy, Section A. 81 (1): 65–69.
  10. O'Farrell, A. G. (1980). "Theorems of Walsh-Lebesgue Type" (PDF). In D. A. Brannan; J. Clunie (eds.). Aspects of Contemporary Complex Analysis. Academic Press. pp. 461–467.
Categories: