Misplaced Pages

Wirth–Weber precedence relationship

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Wirth-Weber precedence relationship)
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Wirth–Weber precedence relationship" – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this message)
This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (July 2012) (Learn how and when to remove this message)
(Learn how and when to remove this message)

In computer science, a Wirth–Weber relationship between a pair of symbols ( V t V n ) {\displaystyle (V_{t}\cup V_{n})} is necessary to determine if a formal grammar is a simple precedence grammar. In such a case, the simple precedence parser can be used. The relationship is named after computer scientists Niklaus Wirth and Helmut Weber.

The goal is to identify when the viable prefixes have the pivot and must be reduced. A {\displaystyle \gtrdot } means that the pivot is found, a {\displaystyle \lessdot } means that a potential pivot is starting, and a {\displaystyle \doteq } means that a relationship remains in the same pivot.

Formal definition

G = V n , V t , S , P {\displaystyle G=\langle V_{n},V_{t},S,P\rangle }
X Y { A α X Y β P A V n α , β ( V n V t ) X , Y ( V n V t ) X Y { A α X B β P B + Y γ A , B V n α , β , γ ( V n V t ) X , Y ( V n V t ) X Y { A α B Y β P B + γ X Y a δ A , B V n α , β , γ , δ ( V n V t ) X , Y ( V n V t ) a V t {\displaystyle {\begin{aligned}X\doteq Y&\iff {\begin{cases}A\to \alpha XY\beta \in P\\A\in V_{n}\\\alpha ,\beta \in (V_{n}\cup V_{t})^{*}\\X,Y\in (V_{n}\cup V_{t})\end{cases}}\\X\lessdot Y&\iff {\begin{cases}A\to \alpha XB\beta \in P\\B\Rightarrow ^{+}Y\gamma \\A,B\in V_{n}\\\alpha ,\beta ,\gamma \in (V_{n}\cup V_{t})^{*}\\X,Y\in (V_{n}\cup V_{t})\end{cases}}\\X\gtrdot Y&\iff {\begin{cases}A\to \alpha BY\beta \in P\\B\Rightarrow ^{+}\gamma X\\Y\Rightarrow ^{*}a\delta \\A,B\in V_{n}\\\alpha ,\beta ,\gamma ,\delta \in (V_{n}\cup V_{t})^{*}\\X,Y\in (V_{n}\cup V_{t})\\a\in V_{t}\end{cases}}\end{aligned}}}

Precedence relations computing algorithm

We will define three sets for a symbol:

H e a d + ( X ) = { Y X + Y α } T a i l + ( X ) = { Y X + α Y } H e a d ( X ) = ( H e a d + ( X ) { X } ) V t {\displaystyle {\begin{aligned}\mathrm {Head} ^{+}(X)&=\{Y\mid X\Rightarrow ^{+}Y\alpha \}\\\mathrm {Tail} ^{+}(X)&=\{Y\mid X\Rightarrow ^{+}\alpha Y\}\\\mathrm {Head} ^{*}(X)&=(\mathrm {Head} ^{+}(X)\cup \{X\})\cap V_{t}\end{aligned}}}
Head(X) is X if X is a terminal, and if X is a non-terminal, Head(X) is the set with only the terminals belonging to Head(X). This set is equivalent to First-set or Fi(X) described in LL parser.
Head(X) and Tail(X) are ∅ if X is a terminal.

The pseudocode for computing relations is:

  • RelationTable := ∅
  • For each production A α P {\displaystyle A\to \alpha \in P}
    • For each two adjacent symbols X Y in α
      • add(RelationTable, X Y {\displaystyle X\doteq Y} )
      • add(RelationTable, X H e a d + ( Y ) {\displaystyle X\lessdot \mathrm {Head} ^{+}(Y)} )
      • add(RelationTable, T a i l + ( X ) H e a d ( Y ) {\displaystyle \mathrm {Tail} ^{+}(X)\gtrdot \mathrm {Head} ^{*}(Y)} )
  • add(RelationTable, $ H e a d + ( S ) {\displaystyle \$\lessdot \mathrm {Head} ^{+}(S)} ) where S is the initial non terminal of the grammar, and $ is a limit marker
  • add(RelationTable, T a i l + ( S ) $ {\displaystyle \mathrm {Tail} ^{+}(S)\gtrdot \$} ) where S is the initial non terminal of the grammar, and $ is a limit marker
{\displaystyle \lessdot } and {\displaystyle \gtrdot } are used with sets instead of elements as they were defined, in this case you must add all the cartesian product between the sets/elements.

Examples

Example 1

S a S S b | c {\displaystyle S\to aSSb|c}

  • Head(a) = ∅
  • Head(S) = {a, c}
  • Head(b) = ∅
  • Head(c) = ∅
  • Tail(a) = ∅
  • Tail(S) = {b, c}
  • Tail(b) = ∅
  • Tail(c) = ∅
  • Head(a) = a
  • Head(S) = {a, c}
  • Head(b) = b
  • Head(c) = c
  • S a S S b {\displaystyle S\to aSSb}
    • a Next to S
      • a S {\displaystyle a\doteq S}
      • a H e a d + ( S ) {\displaystyle a\lessdot \mathrm {Head} ^{+}(S)}
        • a a {\displaystyle a\lessdot a}
        • a c {\displaystyle a\lessdot c}
    • S Next to S
      • S S {\displaystyle S\doteq S}
      • S H e a d + ( S ) {\displaystyle S\lessdot \mathrm {Head} ^{+}(S)}
        • S a {\displaystyle S\lessdot a}
        • S c {\displaystyle S\lessdot c}
      • T a i l + ( S ) H e a d ( S ) {\displaystyle \mathrm {Tail} ^{+}(S)\gtrdot \mathrm {Head} ^{*}(S)}
        • b a {\displaystyle b\gtrdot a}
        • b c {\displaystyle b\gtrdot c}
        • c a {\displaystyle c\gtrdot a}
        • c c {\displaystyle c\gtrdot c}
    • S Next to b
      • S b {\displaystyle S\doteq b}
      • T a i l + ( S ) H e a d ( b ) {\displaystyle \mathrm {Tail} ^{+}(S)\gtrdot \mathrm {Head} ^{*}(b)}
        • b b {\displaystyle b\gtrdot b}
        • c b {\displaystyle c\gtrdot b}
  • S c {\displaystyle S\to c}
    • there is only one symbol, so no relation is added.
precedence table
S a b c $ S a b c $ {\displaystyle {\begin{array}{c|ccccc}&S&a&b&c&\$\\\hline S&\doteq &\lessdot &\doteq &\lessdot &\\a&\doteq &\lessdot &&\lessdot &\\b&&\gtrdot &\gtrdot &\gtrdot &\gtrdot \\c&&\gtrdot &\gtrdot &\gtrdot &\gtrdot \\\$&&\lessdot &&\lessdot &\end{array}}}

Example 2

S a | a T | [ S ] {\displaystyle S\to a|aT|}

T b | b T {\displaystyle T\to b|bT}

  • Head( S ) = { a, [ }
  • Head( a ) = ∅
  • Head( T ) = { b }
  • Head( [ ) = ∅
  • Head( ] ) = ∅
  • Head( b ) = ∅
  • Tail( S ) = { a, T, ], b }
  • Tail( a ) = ∅
  • Tail( T ) = { b, T }
  • Tail( [ ) = ∅
  • Tail( ] ) = ∅
  • Tail( b ) = ∅
  • Head( S ) = { a, [ }
  • Head( a ) = a
  • Head( T ) = { b }
  • Head( [ ) = [
  • Head( ] ) = ]
  • Head( b ) = b
  • S a T {\displaystyle S\to aT}
    • a Next to T
      • a T {\displaystyle a\doteq T}
      • a H e a d + ( T ) {\displaystyle a\lessdot \mathrm {Head} ^{+}(T)}
        • a b {\displaystyle a\lessdot b}
  • S [ S ] {\displaystyle S\to }
    • [ Next to S
      • [ S {\displaystyle [\doteq S}
      • [ H e a d + ( S ) {\displaystyle [\lessdot \mathrm {Head} ^{+}(S)}
        • [ a {\displaystyle [\lessdot a}
        • [ [ {\displaystyle [\lessdot [}
    • S Next to ]
      • S ] {\displaystyle S\doteq ]}
      • T a i l + ( S ) H e a d ( ] ) {\displaystyle \mathrm {Tail} ^{+}(S)\gtrdot \mathrm {Head} ^{*}(])}
        • a ] {\displaystyle a\gtrdot ]}
        • T ] {\displaystyle T\gtrdot ]}
        • ] ] {\displaystyle ]\gtrdot ]}
        • b ] {\displaystyle b\gtrdot ]}
  • T b T {\displaystyle T\to bT}
    • b Next to T
      • b T {\displaystyle b\doteq T}
      • b H e a d + ( T ) {\displaystyle b\lessdot \mathrm {Head} ^{+}(T)}
        • b b {\displaystyle b\lessdot b}
precedence table
S T a b [ ] $ S T a b [ ] $ {\displaystyle {\begin{array}{c|ccccccc}&S&T&a&b&&\$\\\hline S&&&&&&\doteq &\doteq \\T&&&&&&\gtrdot &\gtrdot \\a&&\doteq &&\lessdot &&\gtrdot &\gtrdot \\b&&\doteq &&\lessdot &&\gtrdot &\gtrdot \\{\text{&&&&&&\gtrdot &\gtrdot \\\$&\doteq &&\lessdot &&\lessdot &&\end{array}}}


Further reading

  • Aho, Alfred V.; Ullman, Jeffrey D., The theory of parsing, translation, and compiling
Niklaus Wirth
Software
Programming
languages
Euler (1965) → PL360 (1966) → ALGOL W (1966) → Pascal (1970) → Modula (1975) → Modula-2 (1978) → Object Pascal (1986) → Oberon (1987) → Oberon-2 (1991) → Lola (1995) → Active Oberon (1998) → Oberon-07 (2007)
Operating systemsOberon System (1987) → Active Object System (AOS, 2002), Bluebottle (2005), A2 (2008)
Formalisms
Books
WorkstationsLilith (1977) → Ceres (1985)
Workplaces
Collaborators
Awards
Category: