This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (June 2013) (Learn how and when to remove this message) |
The Zaslavskii map is a discrete-time dynamical system introduced by George M. Zaslavsky. It is an example of a dynamical system that exhibits chaotic behavior. The Zaslavskii map takes a point () in the plane and maps it to a new point:
and
where mod is the modulo operator with real arguments. The map depends on four constants ν, μ, ε and r. Russel (1980) gives a Hausdorff dimension of 1.39 but Grassberger (1983) questions this value based on their difficulties measuring the correlation dimension.
See also
References
- G.M. Zaslavskii (1978). "The Simplest case of a strange attractor". Phys. Lett. A. 69 (3): 145–147. Bibcode:1978PhLA...69..145Z. doi:10.1016/0375-9601(78)90195-0. (LINK)
- D.A. Russel; J.D. Hanson & E. Ott (1980). "Dimension of strange attractors". Phys. Rev. 45 (14): 1175. Bibcode:1980PhRvL..45.1175R. doi:10.1103/PhysRevLett.45.1175. (LINK)
- P. Grassberger and I. Procaccia (1983). "Measuring the strangeness of strange attractors". Physica. 9D (1–2): 189–208. Bibcode:1983PhyD....9..189G. doi:10.1016/0167-2789(83)90298-1. (LINK)