Misplaced Pages

Eye color: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 11:57, 13 October 2012 view sourceBongwarrior (talk | contribs)Administrators158,949 editsm Reverted edits by 82.45.91.184 (talk) to last version by 66.27.162.254← Previous edit Revision as of 01:53, 15 October 2012 view source 110.174.147.166 (talk) GreenNext edit →
Line 119: Line 119:


===Green=== ===Green===
] ], often mistaken for hazel]]
] ]



Revision as of 01:53, 15 October 2012

Close up of a human iris

Eye color is a polygenic phenotypic character and is determined by 2 distinct factors: the pigmentation of the eye's iris and the frequency-dependence of the scattering of light by the turbid medium in the stroma of the iris.

In humans, the pigmentation of the iris varies from light brown to black, depending on the concentration of melanin in the iris pigment epithelium (located on the back of the iris), the melanin content within the iris stroma (located at the front of the iris), and the cellular density of the stroma. The appearance of blue, green, as well as hazel eyes results from the Rayleigh scattering of light in the stroma, a phenomenon similar to that which accounts for the blueness of the sky. Neither blue nor green pigments are ever present in the human iris or ocular fluid. Eye color is thus an instance of structural color and varies depending on the lighting conditions, especially for lighter-colored eyes.

The brightly colored eyes of many bird species result from the presence of other pigments, such as pteridines, purines, and carotenoids. Humans and other animals have many phenotypic variations in eye color. The genetics of eye color are complicated, and color is determined by multiple genes. So far, as many as 15 genes have been associated with eye color inheritance. Some of the eye-color genes include OCA2 and HERC2. The once-held view that blue eye color is a simple recessive trait has been shown to be incorrect. The genetics of eye color are so complex that almost any parent-child combination of eye colors can occur. However, OCA2 gene polymorphism, close to proximal 5′ regulatory region, explains most human eye-color variation.

Genetic determination of eye color

See also: Human genetic clustering

Eye colors can range from the most common color, brown, to the least common, green. Eye color is an inherited trait influenced by more than one gene. These genes are sought using associations to small changes in the genes themselves and in neighboring genes. These changes are known as single-nucleotide polymorphisms or SNPs. The actual number of genes that contribute to eye color is currently unknown, but there are a few likely candidates. A study in Rotterdam (2009) found that it was possible to predict the color of eyes with more than 90% accuracy for brown and blue, using just six SNPs. There is evidence that as much as 16 different genes could be responsible for eye color in humans; however, the main two genes associated with eye color variation are OCA2 and HERC2, both localized in Chromosome 15.

The gene OCA2 (Template:OMIM3), when in a variant form, causes the pink eye color and hypopigmentation common in human albinism. (The name of the gene is derived from the disorder it causes, oculocutaneous albinism type II.) Different SNPs within OCA2 are strongly associated with blue and green eyes as well as variations in freckling, mole counts, hair and skin tone. The polymorphisms may be in an OCA2 regulatory sequence, where they may influence the expression of the gene product, which in turn affects pigmentation. A specific mutation within the HERC2 gene, a gene that regulates OCA2 expression, is partly responsible for blue eyes. Other genes implicated in eye color variation are: SLC24A4 and TYR.

Blue eyes with a brown spot, green eyes, and gray eyes are caused by an entirely different part of the genome. As Eiberg said: "The SNP rs12913832 is found to be associated with the brown and blue eye color, but this single DNA variation cannot explain all the brown eye color variation from dark brown over hazel to blue eyes with brown spots." {{citation}}: Empty citation (help)

Classification of color

Iris color can provide a large amount of information about a person, and a classification of various colors may be useful in documenting pathological changes or determining how a person may respond to various ocular pharmaceuticals. Various classification systems have ranged from a basic light or dark description to detailed gradings employing photographic standards for comparison. Others have attempted to set objective standards of color comparison.

As the perception of color depends on viewing conditions (e.g., the amount and kind of illumination, as well as the hue of the surrounding environment), so does the perception of eye color.

Eye colors range from the darkest shades of brown to the lightest tints of blue. To meet the need for standardized classification, at once simple yet detailed enough for research purposes, Seddon et al. developed a graded system based on the predominant iris color and the amount of brown or yellow pigment present. There are three pigment colors that determine, depending on their proportion, the outward appearance of the iris: brown, yellow, and blue. Green irides, for example, have blue and some yellow. Brown irides contain mostly brown. Eye color in animals other than Homo sapiens is differently regulated. For example, instead of blue as in humans, autosomal recessive eye color in the skink species Corucia zebrata is black, and the autosomal dominant color is yellow-green.

Changes in eye color

Most babies who have European ancestry have light-colored eyes before the age of one. As the child develops, melanocytes (cells found within the iris of human eyes, as well as skin and hair follicles) slowly begin to produce melanin. Because melanocyte cells continually produce pigment, in theory eye color can be changed. Most eye changes happen when the infant is around one year old, although it can happen up to three years of age. Observing the iris of an infant from the side using only transmitted light with no reflection from the back of the iris, it is possible to detect the presence or absence of low levels of melanin. An iris that appears blue under this method of observation is more likely to remain blue as the infant ages. An iris that appears golden contains some melanin even at this early age and is likely to turn green or brown as the infant ages.

Changes (lightening or darkening) of eye colors during puberty, early childhood, pregnancy, and sometimes after serious trauma (like heterochromia) do represent cause for plausible argument to state that some eyes can or do change, based on chemical reactions and hormonal changes within the body.

Studies on Caucasian twins, both fraternal and identical, have shown that eye color over time can be subject to change, and major demelanization of the iris may also be genetically determined. Most eye-color changes have been observed or reported in the Caucasian population with hazel and amber eyes.

Eye color chart (Martin–Schultz scale)

Carleton Coon created this chart by the Martin–Schultz scale often used in physical anthropology.

  1. Light eyes
  2. Eyes light and light mixed are 16–12 in Martin scale.
    Light
    15: Blue, Gray only. 16: Blue exclusive; 16-1a: pure light blue.
    Light-mixed
    14–12 in Martin scale.
    1. Very light-mixed (blue with gray or green or green with gray)
    2. Light-mixed (light or very light-mixed with small admixture of brown pigment)
  3. Mixed eyes
  4. Mixed
    12–6 in Martin scale. Mixture of light eyes (blue, gray or green) with brown pigment when light and brown pigment are the same level.
  5. Dark eyes
  6. Dark-mixed
    6–4 in Martin scale. Brown with small admixture of light pigment.
    Dark
    4–1 in Martin scale. Brown (light brown and dark brown) and very dark brown (almost black).

Amber

Amber eyes in sunlight – displaying an orange color rather than brown

Amber eyes are of a solid color and have a strong yellowish/golden and russet/coppery tint. This may be due to the deposition of the yellow pigment called lipochrome in the iris (which is also found in green eyes). Amber eyes should not be confused with hazel eyes; although hazel eyes may contain specks of amber or gold, they usually tend to comprise many other colors, including green, brown and orange. Also, hazel eyes may appear to shift in color and consist of flecks and ripples, while amber eyes are of a solid gold hue. Even though amber is considered to be like gold, some people have russet or copper colored amber eyes which many people mistake for hazel, though hazel tends to be duller and contains green with red/gold flecks, as mentioned above. Amber eyes may also contain amounts of very light gold-ish gray.

The eyes of some pigeons contain yellow fluorescing pigments known as pteridines. The bright yellow eyes of the Great Horned Owl are thought to be due to the presence of the pteridine pigment xanthopterin within certain chromatophores (called xanthophores) located in the iris stroma. In humans, yellowish specks or patches are thought to be due to the pigment lipofuscin, also known as lipochrome. Many animals such as canines, domestic cats, owls, eagles, pigeons and fish have amber eyes as a common color, whereas in humans this color occurs less frequently.

Blue

A blue iris

There is no blue pigmentation either in the iris or in the ocular fluid. Dissection reveals that the iris pigment epithelium is brownish black due to the presence of melanin. Unlike brown eyes, blue eyes have low concentrations of melanin in the stroma of the iris, which lies in front of the dark epithelium. Longer wavelengths of light tend to be absorbed by the dark underlying epithelium, while shorter wavelengths are reflected and undergo Rayleigh scattering in the turbid medium of the stroma. This is the same frequency-dependence of scattering that accounts for the blue appearance of the sky. The result is a "Tyndall blue" structural color that varies with external lighting conditions.

In humans, the inheritance pattern followed by blue eyes is considered similar to that of a recessive trait (in general, eye color inheritance is considered a polygenic trait, meaning that it is controlled by the interactions of several genes, not just one). In 2008, new research suggested that people with blue eyes have a single common ancestor. Scientists tracked down a genetic mutation that leads to blue eyes. "Originally, we all had brown eyes," said Eiberg. Eiberg and colleagues showed in a study published in Human Genetics that a mutation in the 86th intron of the HERC2 gene, which is hypothesized to interact with the OCA2 gene promoter, reduced expression of OCA2 with subsequent reduction in melanin production. The authors concluded that the mutation may have arisen in a single individual probably living in the northwestern part of the Black Sea region (around modern Romania) 6,000–10,000 years ago during the Neolithic revolution. Eiberg stated, "A genetic mutation affecting the OCA2 gene in our chromosomes resulted in the creation of a 'switch,' which literally 'turned off' the ability to produce brown eyes."

The genetic switch is located in the gene adjacent to OCA2 and rather than completely turning off the gene, the switch limits its action, which reduces the production of melanin in the iris. In effect, the turned-down switch diluted brown eyes to blue. If the OCA2 gene had been completely shut down, our hair, eyes and skin would be melanin-less, a condition known as albinism.

File:Westernparadigm blue eye color map.jpg
Distribution of light-eyed people in Europe

Blue eyes are most common in the Baltic Sea area and Northern Europe, and are also found in Eastern, Central, and Southern Europe. Blue eyes are also found in parts of the Western Asia, most notably in Afghanistan, Syria, and Iran, as well as in the Levant, especially among the Jewish population of Israel. Many modern Israeli Jews are of European Ashkenazi origin, among whom this trait is common (53.7% of Ukrainian Jews have blue eyes).

Y-Chromosome DNA testing performed on ancient Scythian skeletons dating to the Bronze and Iron Ages in the Siberian Krasnoyarsk region found that 10 out of the 11 subjects carried Y-DNA R1a1 (most commonly found today in Eastern Europe, Afghanistan and the northern Indian Subcontinent), with blue or green eye color and light hair common, suggesting mostly European origin of that particular population.

In Estonia, 99% of people have blue eyes, stated Hans Eiberg from the Department of Cellular and Molecular Medicine at the University of Copenhagen. In Denmark 30 years ago, only 8% of the population had brown eyes, though through immigration, today that number is about 11%. In Germany, about 75% have blue eyes.

A 2002 study found that the prevalence of blue eye color among Caucasians in the United States to be 33.8 percent for those born from 1936 through 1951 compared with 57.4 percent for those born from 1899 through 1905. Blue eyes are continuing to become less common among American children, with only one out of every six or 16.6% of the total population, and 22.3% of the white population (including Hispanics) having blue eyes.

Blue-eyed Siamese cat and Jungle Crow. The Australian Wildlife Experience has the first blue-eyed koala known to be born in captivity in the world.

Blue eyes are rare in mammals; one example is the quite recently-discovered marsupial, the Blue-eyed Spotted Cuscus (Spilocuscus wilsoni). The trait is hitherto known only from a single primate other than humans – Sclater's Lemur (Eulemur flavifrons) of Madagascar. While some cats and dogs have blue eyes, this is usually due to another mutation which is associated with deafness. But in cats alone, there are four identified gene mutations that produce blue eyes, some of which are associated with congenital neurological disorders. The mutation found in the Siamese cats is associated with strabismus (crossed eyes). The mutation found in blue-eyed solid white cats (where the coat color is caused by the gene for "epistatic white") is associated with deafness. However, there are phenotypically identical, but genotypically different, blue-eyed white cats (where the coat color is caused by the gene for white spotting) where the coat color is not strongly associated with deafness. In the blue-eyed Ojos Azules breed, there may be other neurological defects. Blue-eyed non-white cats of unknown genotype also occur at random in the cat population.

Brown

"Brown eyes" redirects here. For other uses, see Brown eyes (disambiguation).
Dark brown iris is most common in East Asia, Southeast Asia, South Asia.
Light brown iris. Is most common in West Asia, Eastern Europe and among the Americas.

In humans, brown eyes result from a relatively high concentration of melanin in the stroma of the iris, which causes light of both shorter and longer wavelengths to be absorbed. Dark brown eyes are dominant in humans and in many parts of the world, it is nearly the only iris color present. Dark pigment of brown eyes is most common in East Asia, Southeast Asia, South Asia, West Asia, Oceania, Africa, Americas, etc. as well as parts of Eastern Europe and Southern Europe. The majority of people in the world overall have dark brown eyes.

Dark brown is also found in the semitic people seen in a fair percentage among Jewish and Arab populations in the Middle East.

Light or medium-pigmented brown eyes are common in Europe, Afghanistan, Pakistan and Northern India, as well as some parts of the Middle East. Light-pigmented brown eyes are sometimes referred to as "honey eyes".

Gray

Gray Eye With Yellow Ring
True gray eyes

Like blue eyes, gray eyes have a dark epithelium at the back of the iris and a relatively clear stroma at the front. One possible explanation for the difference in the appearance of gray and blue eyes is that gray eyes have larger deposits of collagen in the stroma, so that the light that is reflected from the epithelium undergoes Mie scattering (which is not strongly frequency-dependent) rather than Rayleigh scattering (in which shorter wavelengths of light are scattered more). This would be analogous to the change in the color of the sky, from the blue given by the Rayleigh scattering of sunlight by small gas molecules when the sky is clear, to the gray caused by Mie scattering off large water droplets when the sky is cloudy. Alternatively, it has been suggested that gray and blue eyes might differ in the concentration of melanin at the front of the stroma.

Gray eyes are most common in Northern and Eastern Europe. Gray eyes can also be found in parts of North West Africa (Aurès Mountains) among the Algerian Shawia people in the Middle East, Iran, Afghanistan (the Indo-Iranian Nuristani people), and Pakistan (the Kalasha, another Indo-Iranian people). Under magnification, gray eyes exhibit small amounts of yellow and brown color in the iris.

A gray iris may indicate the presence of a uveitis. However, other visual signs make a uveitis obvious. Gray iris color, as well as blue, are at increased risk of uveal melanoma.

Green

Forest Green eye; green eye with brown around the centre Central Heterochromia, often mistaken for hazel
Green eyes

Green is the least common eye color and as in the case of blue eyes, the color of green eyes does not result simply from the pigmentation of the iris. Rather, their appearance is caused by the combination of an amber or light brown pigmentation of the stroma, given by a low or moderate concentration of melanin, with the blue tone imparted by the Rayleigh scattering of the reflected light.

Green eyes probably result from the interaction of multiple variants within the OCA2 and other genes. They were present in south Siberia during the Bronze Age. They are most common in Northern and Central Europe. They can also be found in Southern Europe parts of South Asia (Afghanistan, northern Pakistan, northwestern India). In Iceland, 89% of women and 87% of men have either blue or green eye color. A study of Icelandic and Dutch adults found green eyes to be much more prevalent in women than in men. Among European Americans, green eyes are most common among those of recent Celtic and Germanic ancestry, about 16%.

Hazel

Hazel eyes are due to a combination of Rayleigh scattering and a moderate amount of melanin in the iris' anterior border layer. Hazel eyes often appear to shift in color from a brown to a green. Although hazel mostly consists of brown and green, the dominant color in the eye can either be brown/gold or green. This is how many people mistake hazel eyes to be amber and vice versa. This can sometimes produce a multicolored iris, i.e., an eye that is light brown/amber near the pupil and charcoal or dark green on the outer part of the iris (or vice versa) when observed in sunlight.

Definitions of the eye color hazel vary: it is sometimes considered to be synonymous with light brown or gold, as in the color of a hazelnut shell.

Red and violet

"Red" albino eyes

The eyes of people with severe forms of albinism may appear red under certain lighting conditions owing to the extremely low quantities of melanin, allowing the blood vessels to show through. In addition, flash photography can sometimes cause a "red-eye effect", in which the very bright light from a flash reflects off the retina, which is abundantly vascular, causing the pupil to appear red in the photograph. Although the deep blue eyes of some people such as Elizabeth Taylor can appear violet at certain times, "true" violet-colored eyes occur only due to albinism.

Spectrum of eye color

Medical implications

Those with lighter iris color have been found to have a higher prevalence of age-related macular degeneration (ARMD) than those with darker iris color; lighter eye color is also associated with an increased risk of ARMD progression. An increased risk of uveal melanoma has been found in those with blue, green or gray iris color. However, a study in 2000 suggests that people with dark brown eyes are at increased risk of developing cataracts and therefore should protect their eyes from direct exposure to sunlight.

Eye color may also be symptomatic of disease. Aside from the iris, yellowing of the whites of the eyes is associated with jaundice and symptomatic of liver disease, including cirrhosis, hepatitis and malaria. Yellowing of the whites of the eyes in people with darker pigmented skin is often due to melanin being present in the whites of the eyes. However, any sudden changes in the color of the whites of the eyes should be addressed by a medical professional. A white, gray, or blue ring around the eye may be arcus senilis.

Wilson's disease

A Kayser–Fleischer ring in a patient with Wilson's disease

Wilson's disease involves a mutation of the gene coding for the enzyme ATPase7B, which prevents copper within the liver from entering the Golgi apparatus in cells. Instead, the copper accumulates in the liver and in other tissues, including the iris of the eye. This results in the formation of Kayser-Fleischer rings, which are dark rings that encircle the periphery of the iris.

Anomalous conditions

Aniridia

Main article: Aniridia

Aniridia is a congenital condition characterized by an extremely underdeveloped iris, which appears absent on superficial examination.

Ocular albinism and eye color

Normally, there is a thick layer of melanin on the back of the iris. Even people with the lightest blue eyes, with no melanin on the front of the iris at all, have dark brown coloration on the back of it, to prevent light from scattering around inside the eye. In those with milder forms of albinism, the color of the iris is typically blue but can vary from blue to brown. In severe forms of albinism, there is no pigment on the back of the iris, and light from inside the eye can pass through the iris to the front. In these cases, the only color seen is the red from the hemoglobin of the blood in the capillaries of the iris. Such albinos have pink eyes, as do albino rabbits, mice, or any other animal with a total lack of melanin. Transillumination defects can almost always be observed during an eye examination due to lack of iridial pigmentation. The ocular albino also lacks normal amounts of melanin in the retina as well, which allows more light than normal to reflect off the retina and out of the eye. Because of this, the pupillary reflex is much more pronounced in albino individuals, and this can emphasize the red eye effect in photographs.

Heterochromia

An example of complete heterochromia. The subject has one brown eye and one hazel eye.
An example of sectoral heterochromia. The subject has a blue iris with a brown section.
Main article: Heterochromia

Heterochromia (also known as a heterochromia iridis or heterochromia iridum) is an ocular condition in which one iris is a different color from the other iris (complete heterochromia), or where the part of one iris is a different color from the remainder (partial heterochromia or sectoral heterochromia). It is a result of the relative excess or lack of pigment within an iris or part of an iris, which may be inherited or acquired by disease or injury. This uncommon condition usually results due to uneven melanin content. A number of causes are responsible, including genetic, such as chimerism, Horners Syndrome and Waardenburg syndrome.

File:PartialHeterochromia.jpg
An example of sectoral heterochromia. A green eye with a brown section.

A chimera can have two different colored eyes just like any two siblings can—because each cell has different eye color genes. A mosaic can have two different colored eyes if the DNA difference happens to be in an eye-color gene.

There are many other possible reasons for having two different-colored eyes. For example, David Bowie has the appearance of different eye colors due to an injury that caused one pupil to be permanently dilated. Another idea about how this can happen is if an early viral infection while in the womb turns an eye color gene on or off in just one eye. Occasionally it can be a sign of a serious disease.

A common cause in females with heterochromia is X-inactivation, which can result in a number of heterochromatic traits, such as calico cats. Trauma and certain medications, such as some prostaglandin analogues, can also cause increased pigmentation in one eye. On occasion, the condition of having two different-colored eyes is caused by blood staining the iris after sustaining injury.

See also

References

  1. Wielgus AR, Sarna T (2005). "Melanin in human irides of different color and age of donors". Pigment Cell Res. 18 (6): 454–64. doi:10.1111/j.1600-0749.2005.00268.x. PMID 16280011.
  2. Prota G, Hu DN, Vincensi MR, McCormick SA, Napolitano A (1998). "Characterization of melanins in human irides and cultured uveal melanocytes from eyes of different colors". Exp. Eye Res. 67 (3): 293–9. doi:10.1006/exer.1998.0518. PMID 9778410.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. ^ Fox, Denis Llewellyn (1979). Biochromy: Natural Coloration of Living Things. University of California Press. p. 9. ISBN 0-520-03699-9. Cite error: The named reference "Fox" was defined multiple times with different content (see the help page).
  4. ^ Huiqiong Wang, Stephen Lin, Xiaopei Liu, Sing Bing Kang (2005). "Separating Reflections in Human Iris Images for Illumination Estimation". Tenth IEEE International Conference on Computer Vision. 2: 1691–1698. doi:10.1109/ICCV.2005.215. ISBN 0-7695-2334-X.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. ^ Mason, Clyde W. (1924). "Blue Eyes". Journal of Physical Chemistry. 28 (5): 498–501. doi:10.1021/j150239a007.
  6. Oliphant LW (1987). "Pteridines and purines as major pigments of the avian iris". Pigment Cell Res. 1 (2): 129–31. doi:10.1111/j.1600-0749.1987.tb00401.x. PMID 3507666.
  7. Morris, PJ. "Phenotypes and Genotypes for human eye colors." Athro Limited website. Retrieved May 10, 2006.
  8. ^ "Genotype–phenotype associations and human eye color", Journal of Human Genetics January 2011. White, Désirée; Rabago-Smith, Montserrat (2011). "Genotype-phenotype associations and human eye color". Journal of Human Genetics. 56 (1): 5–7. doi:10.1038/jhg.2010.126. PMID 20944644.
  9. No Single Gene For Eye Color, Researchers Prove. Sciencedaily.com (2007-02-22). Retrieved on 2011-12-23.
  10. October 19, 2011 (2003-10-29). "Eye color definition – Medical Dictionary definitions of popular medical terms easily defined on MedTerms". Medterms.com. Retrieved 2011-10-19.{{cite web}}: CS1 maint: numeric names: authors list (link)
  11. ^ Duffy, David L.; Montgomery, Grant W.; Chen, Wei; Zhao, Zhen Zhen; Le, Lien; James, Michael R.; Hayward, Nicholas K.; Martin, Nicholas G.; Sturm, Richard A. (2007). "A three-single-nucleotide polymorphism haplotype in intron 1 of OCA2 explains most human eye-color variation". Am. J. Hum. Genet. 80 (2): 241–52. doi:10.1086/510885. PMC 1785344. PMID 17236130.
  12. ^ Sturm RA, Frudakis TN (2004). "Eye colour: portals into pigmentation genes and ancestry" (PDF). Trends Genet. 20 (8): 327–32. doi:10.1016/j.tig.2004.06.010. PMID 15262401.
  13. ^ Grant MD, Lauderdale DS (2002). "Cohort effects in a genetically determined trait: eye colour among US whites". Ann. Hum. Biol. 29 (6): 657–66. doi:10.1080/03014460210157394. PMID 12573082.
  14. "DNA test for eye colour could help fight crime", New Scientist 14 March 2009. Liu, Fan; Van Duijn, Kate; Vingerling, Johannes R.; Hofman, Albert; Uitterlinden, André G.; Janssens, A. Cecile J.W.; Kayser, Manfred (2009). "Eye color and the prediction of complex phenotypes from genotypes". Current Biology. 19 (5): R192 – R193. doi:10.1016/j.cub.2009.01.027. PMID 19278628.
  15. Kayser, Manfred; Liu, Fan; Janssens, A. Cecile J.W.; Rivadeneira, Fernando; Lao, Oscar; Van Duijn, Kate; Vermeulen, Mark; Arp, Pascal; Jhamai, Mila M. (2008). "Three genome-wide association studies and a linkage analysis identify HERC2 as a human iris color gene". Am. J. Hum. Genet. 82 (2): 411–23. doi:10.1016/j.ajhg.2007.10.003. PMC 2427174. PMID 18252221.
  16. ^ Sulem, Patrick; Gudbjartsson, Daniel F; Stacey, Simon N; Helgason, Agnar; Rafnar, Thorunn; Magnusson, Kristinn P; Manolescu, Andrei; Karason, Ari; Palsson, Arnar (2007). "Genetic determinants of hair, eye and skin pigmentation in Europeans". Nat. Genet. 39 (12): 1443–52. doi:10.1038/ng.2007.13. PMID 17952075.
  17. ^ German EJ, Hurst MA, Wood D, Gilchrist J (1998). "A novel system for the objective classification of iris colour and its correlation with response to 1% tropicamide". Ophthalmic Physiol Opt. 18 (2): 103–10. doi:10.1016/S0275-5408(97)00070-7. PMID 9692029.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  18. Fan S, Dyer CR, Hubbard L. Quantification and Correction of Iris Color." Technical report 1495, University of Wisconsin–Madison, Dec, 2003.
  19. Color Perception. Edromanguitars.com. Retrieved on 2011-12-23.
  20. Seddon, J.M. (1 August 1990). "Evaluation of an iris color classification system". Investigative Ophthalmology & Visual Science. 31 (8). Association for Research in Vision and Ophthalmology: 1592–8. PMID 2201662. Retrieved 2011-10-19. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  21. Jones, S.L., Schnirel, B.L. (2006). "Subspecies comparison of the Genus: Corucia". Polyphemos. 4 (1): 1–25.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  22. Aluzri, Shan Z., All About Eyes., retrieved 1 June 2009.
  23. Bito, LZ; Matheny, A; Cruickshanks, KJ; Nondahl, DM; Carino, OB (1997). "Eye Color Changes Past Early Childhood". Archives of ophthalmology. 115 (5): 659–63. PMID 9152135.
  24. Howard Hughes Medical Institute: Ask A Scientist. Hhmi.org. Retrieved on 2011-12-23.
  25. Larry Bickford Eye Color. Eyecarecontacts.com. Retrieved on 2011-12-23.
  26. Oliphant LW (1987). "Observations on the pigmentation of the pigeon iris". Pigment Cell Res. 1 (3): 202–8. doi:10.1111/j.1600-0749.1987.tb00414.x. PMID 3508278.
  27. Oliphant LW (1981). "Crystalline pteridines in the stromal pigment cells of the iris of the great horned owl". Cell Tissue Res. 217 (2): 387–95. doi:10.1007/BF00233588. PMID 7237534.
  28. ^ Lefohn A, Budge B, Shirley P, Caruso R, Reinhard E (2003). "An Ocularist's Approach to Human Iris Synthesis". IEEE Comput. Graph. Appl. 23 (6): 70–5. doi:10.1109/MCG.2003.1242384.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  29. Menon IA, Basu PK, Persad S, Avaria M, Felix CC, Kalyanaraman B (1987). "Is there any difference in the photobiological properties of melanins isolated from human blue and brown eyes?". Br J Ophthalmol. 71 (7): 549–52. doi:10.1136/bjo.71.7.549. PMC 1041224. PMID 2820463.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  30. ^ Bryner, Jeanna (2008-01-31). "Genetic mutation makes those brown eyes blue". MSNBC. Retrieved 2009-10-19.
  31. ^ Eiberg, Hans; Troelsen, Jesper; Nielsen, Mette; Mikkelsen, Annemette; Mengel-From, Jonas; Kjaer, Klaus W.; Hansen, Lars (2008). "Blue eye color in humans may be caused by a perfectly associated founder mutation in a regulatory element located within the HERC2 gene inhibiting OCA2 expression". Hum. Genet. 123 (2): 177–87. doi:10.1007/s00439-007-0460-x. PMID 18172690.
  32. Highfield, Roger (2008-01-30). "Blue eyes result of ancient genetic 'mutation'". The Daily Telegraph. London. Retrieved 2011-10-19.
  33. Belkin, Douglas (2006-10-18). "Blue eyes are increasingly rare in America – Americas – International Herald Tribune". New York Times. Retrieved 2012-03-07.
  34. ^ Distribution of Bodily Characters. Pigmentation, the Pilous System, and Morphology of the Soft Parts
  35. ^ Day, John V. (2002). "In Quest of Our Linguistic Ancestors: The Elusive Origins of the Indo-Europeans" (PDF). The Occidental Quarterly. 2 (3): 5–20. Retrieved 2010-05-08.
  36. ^ Showcase IRAN (by various photographers). "Amazing IRAN – A small peasant girl – Khorasan, Iran – Worldisround photo". Worldisround.com. Retrieved 2011-10-19.
  37. Maurice Fishberg (1911). Jews, race & environment. Transaction Publishers. ISBN 978-1-4128-0574-2. Retrieved 23 December 2011.
  38. Keyser, Christine; Bouakaze, Caroline; Crubézy, Eric; Nikolaev, Valery G.; Montagnon, Daniel; Reis, Tatiana; Ludes, Bertrand (2009). "Ancient DNA provides new insights into the history of south Siberian Kurgan people". Human Genetics. 126 (3). Human Genetics: 395–410. doi:10.1007/s00439-009-0683-0. PMID 19449030.
  39. ^ Weise, Elizabeth. (2008-02-05) More than meets the blue eye: You may all be related. Usatoday.com. Retrieved on 2011-12-23.
  40. Douglas Belkin (October 17, 2006). "Don't it make my blue eyes brown Americans are seeing a dramatic color change". The Boston Globe.
  41. Belkin, Douglas (2006-10-18). "Blue eyes are increasingly rare in America – Americas". International Herald Tribune – The New York Times. Retrieved 2011-10-19.
  42. Blue eyed Koala. Adelaidenow.com.au (2008-01-11). Retrieved on 2011-12-23.
  43. Eiberg H, Mohr J (1996). "Assignment of genes coding for brown eye colour (BEY2) and brown hair colour (HCL3) on chromosome 15q". Eur. J. Hum. Genet. 4 (4): 237–41. PMID 8875191.
  44. Online Mendelian Inheritance in Man (OMIM): SKIN/HAIR/EYE PIGMENTATION, VARIATION IN, 1; SHEP1 - 227220
  45. http://en.wikipedia.org/File:Westernparadigm_blue_eye_color_map.jpg
  46. ^ Lucy Southworth. "Are gray eyes the same as blue in terms of genetics?". Understanding Genetics: Human Health and the Genome. Stanford School of Medicine. Retrieved 2011-10-19.
  47. ^ Herbert Risley, William Crooke, The People of India, (1999)
  48. Template:Fr Provincia: bulletin trimestriel de la Société de Statistique ..., Volumes 16–17 By Société de statistique, d'histoire et d'archéologie de Marseille et de Provence p. 273 l'iris gris est celui des chaouias...
  49. ^ Stang A, Ahrens W, Anastassiou G, Jöckel KH (2003). "Phenotypical characteristics, lifestyle, social class and uveal melanoma". Ophthalmic Epidemiol. 10 (5): 293–302. doi:10.1076/opep.10.5.293.17319. PMID 14566630.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  50. Keyser, Christine; Bouakaze, Caroline; Crubézy, Eric; Nikolaev, Valery G.; Montagnon, Daniel; Reis, Tatiana; Ludes, Bertrand (2009). "Ancient DNA provides new insights into the history of south Siberian Kurgan people". Human Genetics. 126 (3): 395–410. doi:10.1007/s00439-009-0683-0. PMID 19449030. Indeed, among the SNPs tested was rs12913832, a single DNA variation within a regulatory element of HERC2 gene which is associated to blue eye color in humans. This polymorphism, together with the diplotypes obtained from variations of the OCA2 locus (major contributor to the human eye color variation) showed that at least 60% of the ancient Siberian specimens under study had blue (or green) eyes.
  51. Blue Eyes Versus Brown Eyes: A Primer on Eye Color. Eyedoctorguide.com. Retrieved on 2011-12-23.
  52. Why Do Europeans Have So Many Hair and Eye Colors?. Cogweb.ucla.edu. Retrieved on 2011-12-23.
  53. ^ Rafnsson V, Hrafnkelsson J, Tulinius H, Sigurgeirsson B, Olafsson JH (2004). "Risk factors for malignant melanoma in an Icelandic population sample". Prev Med. 39 (2): 247–52. doi:10.1016/j.ypmed.2004.03.027. PMID 15226032.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  54. Genetic determinants of hair, eye and skin pigmentation in Europeans. Retrieved on 2012-08-07.
  55. "Gene Expression: NLSY blogging: Eye and hair color of Americans".
  56. ^ Zhu, Gu; Evans, David M.; Duffy, David L.; Montgomery, Grant W.; Medland, Sarah E.; Gillespie, Nathan A.; Ewen, Kelly R.; Jewell, Mary; Liew, Yew Wah (2004). "A genome scan for eye color in 502 twin families: most variation is due to a QTL on chromosome 15q". Twin Res. 7 (2): 197–210. doi:10.1375/136905204323016186. PMID 15169604.
  57. Albert, DM; Green, WR; Zimbric, ML; Lo, C; Gangnon, RE; Hope, KL; Gleiser, J (2003). "Iris melanocyte numbers in Asian, African American, and Caucasian irides" (PDF). Trans Am Ophthalmol Soc. 101: 217–21, discussion 221–2. PMC 1358991. PMID 14971580.
  58. ^ Mitchell R, Rochtchina E, Lee A, Wang JJ, Mitchell P (2003). "Iris color and intraocular pressure: the Blue Mountains Eye Study". Am. J. Ophthalmol. 135 (3): 384–6. doi:10.1016/S0002-9394(02)01967-0. PMID 12614760.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  59. Lindsey JD, Jones HL, Hewitt EG, Angert M, Weinreb RN (2001). "Induction of tyrosinase gene transcription in human iris organ cultures exposed to latanoprost". Arch. Ophthalmol. 119 (6): 853–60. PMID 11405836.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  60. ^ Frank RN, Puklin JE, Stock C, Canter LA (2000). "Race, iris color, and age-related macular degeneration". Trans Am Ophthalmol Soc. 98: 109–15, discussion 115–7. PMC 1298217. PMID 11190014.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  61. ^ Regan S, Judge HE, Gragoudas ES, Egan KM (1999). "Iris color as a prognostic factor in ocular melanoma". Arch. Ophthalmol. 117 (6): 811–4. PMID 10369595.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  62. Hawkins TA, Stewart WC, McMillan TA, Gwynn DR (1994). "Analysis of diode, argon, and Nd: YAG peripheral iridectomy in cadaver eyes". Doc Ophthalmol. 87 (4): 367–76. doi:10.1007/BF01203345. PMID 7851220.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  63. Hammond BR, Fuld K, Snodderly DM (1996). "Iris color and macular pigment optical density". Exp. Eye Res. 62 (3): 293–7. doi:10.1006/exer.1996.0035. PMID 8690039.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  64. NOAH — What is Albinism?. Albinism.org. Retrieved on 2011-12-23.
  65. Dave Johnson (2009-01-16). "HOW TO: Avoid the red eye effect". New Zealand PC World. Retrieved 2010-01-09.
  66. Palmer, Roxanne (2005-03-25). "Elizabeth Taylor: Beautiful Mutant". Slate. Retrieved March 26, 2011.
  67. Nicolas, Caroline M; Robman, Luba D; Tikellis, Gabriella; Dimitrov, Peter N; Dowrick, Adam; Guymer, Robyn H; McCarty, Catherine A (2003). "Iris colour, ethnic origin and progression of age-related macular degeneration". Clin. Experiment. Ophthalmol. 31 (6): 465–9. doi:10.1046/j.1442-9071.2003.00711.x. PMID 14641151.
  68. Cumming RG, Mitchell P, Lim R (2000). "Iris color and cataract: The Blue Mountains Eye Study". American journal of ophthalmology. 130 (2): 237–238. doi:10.1016/S0002-9394(00)00479-7. PMID 11004303.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  69. McDonnell G, Esmonde T (1999). "A homesick student". Postgrad Med J. 75 (884): 375–8. PMC 1741256. PMID 10435182.
  70. Aniridia at eMedicine
  71. Ocular Manifestations of Albinism at eMedicine
  72. Imesch PD, Wallow IH, Albert DM (1997). "The color of the human eye: a review of morphologic correlates and of some conditions that affect iridial pigmentation". Surv Ophthalmol. 41 (Suppl 2): S117–23. doi:10.1016/S0039-6257(97)80018-5. PMID 9154287.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  73. Hejkal TW, Camras CB (1999). "Prostaglandin analogs in the treatment of glaucoma". Seminars in ophthalmology. 14 (3): 114–23. doi:10.3109/08820539909061464. PMID 10790575.

External links

Template:Link GA Template:Link GA

Categories: