Revision as of 19:32, 23 May 2021 edit2405:201:d015:f005:9c7d:bbce:e38e:c2bc (talk) →History of discoveryTag: Reverted← Previous edit | Latest revision as of 10:54, 23 December 2024 edit undo2601:680:cb81:1980:e91a:d081:c854:8b5 (talk) →Aberrations | ||
(240 intermediate revisions by more than 100 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|DNA molecule containing genetic material of a cell}} | |||
{{Use dmy dates|date=September 2020}} | |||
{{pp-pc1}} | |||
{{short description|DNA molecule containing genetic material of a cell }} | |||
{{about|the DNA molecule|the genetic algorithm|Chromosome (genetic algorithm)}} | {{about|the DNA molecule|the genetic algorithm|Chromosome (genetic algorithm)}} | ||
{{pp-pc}} | |||
{{technical|date=April 2017}} | |||
{{Use dmy dates|date=November 2024}} | |||
{{Chromosome}} | |||
{{Genetics sidebar}} | {{Genetics sidebar}} | ||
] eukaryotic chromosome |
] eukaryotic chromosome: {{Ordered list |list_style_type=decimal |] |] |Short arm |Long arm }}]] | ||
A '''chromosome''' is a |
A '''chromosome''' is a ] of ] containing part or all of the ] of an ]. In most chromosomes, the very long thin DNA fibers are coated with ]-forming packaging ]s; in ] cells, the most important of these proteins are the ]s. Aided by ], the histones bind to and ] the DNA molecule to maintain its integrity.<ref name="Hammond-2017">{{cite journal | vauthors = Hammond CM, Strømme CB, Huang H, Patel DJ, Groth A | title = Histone chaperone networks shaping chromatin function | journal = Nature Reviews. Molecular Cell Biology | volume = 18 | issue = 3 | pages = 141–158 | date = March 2017 | pmid = 28053344 | pmc = 5319910 | doi = 10.1038/nrm.2016.159 }}</ref><ref>{{cite book | last = Wilson | first = John | title = Molecular biology of the cell : a problems approach | publisher = Garland Science | location = New York | year = 2002 | isbn = 978-0-8153-3577-1 | url-access = registration | url = https://archive.org/details/molecularbiolog000wils }}</ref> These eukaryotic chromosomes display a complex ] that has a significant role in ].<ref>{{Cite journal|last1=Bonev|first1=Boyan|last2=Cavalli|first2=Giacomo|date=14 October 2016|title=Organization and function of the 3D genome|journal=Nature Reviews Genetics|volume=17|issue=11|pages=661–678|doi=10.1038/nrg.2016.112|pmid=27739532|hdl=2027.42/151884|s2cid=31259189|hdl-access=free}}</ref> | ||
Normally, chromosomes are visible under a ] only during the ] of ], where all chromosomes are aligned in the center of the cell in their condensed form.<ref>{{cite book|last1=Alberts|first1=Bruce|last2=Bray|first2=Dennis|last3=Hopkin|first3=Karen|last4=Johnson|first4=Alexander|last5=Lewis|first5=Julian|last6=Raff|first6=Martin|last7=Roberts|first7=Keith|last8=Walter|first8=Peter | name-list-style = vanc |title=Essential Cell Biology|year=2014|publisher=Garland Science|location=New York, New York, US|isbn=978-0-8153-4454-4|pages=621–626|edition=Fourth}}</ref> Before this stage occurs, each chromosome is duplicated (]), and the two copies are joined by a ]—resulting in either an X-shaped structure if the centromere is located equatorially, or a two-armed structure if the centromere is located distally; the joined copies are called ']'. During ], the duplicated structure (called a 'metaphase chromosome') is highly condensed and thus easiest to distinguish and study.<ref name="Schleyden-1847">{{Cite book|url=http://vlp.mpiwg-berlin.mpg.de/library/data/lit28715?|title=Microscopical researches into the accordance in the structure and growth of animals and plants|last=Schleyden|first=M. J.|year=1847|publisher=Printed for the Sydenham Society}}</ref> In animal cells, chromosomes reach their highest compaction level in ] during ].<ref>{{cite journal | vauthors = Antonin W, Neumann H | title = Chromosome condensation and decondensation during mitosis | journal = Current Opinion in Cell Biology | volume = 40 | pages = 15–22 | date = June 2016 | pmid = 26895139 | doi = 10.1016/j.ceb.2016.01.013 | doi-access = free | url = https://publications.goettingen-research-online.de/bitstream/2/40465/2/1-s2.0-S0955067416300059-main.pdf }}</ref> | |||
Chromosomal ] during ] and subsequent ] |
Chromosomal ] during ] and subsequent ] plays a crucial role in ]. If these structures are manipulated incorrectly, through processes known as ] and ], the cell may undergo ]. This will usually cause the cell to initiate ], leading to its own ], but the process is occasionally hampered by cell mutations that result in the progression of ]. | ||
The term 'chromosome' is sometimes used in a wider sense to refer to the individualized portions of ] in cells, which may or may not be visible under light microscopy. In a narrower sense, 'chromosome' can be used to refer to the individualized portions of chromatin during cell division, which are visible under light microscopy due to high condensation. | |||
== Etymology == | == Etymology == | ||
The word ''chromosome'' ({{IPAc-en|ˈ|k|r|oʊ|m|ə|ˌ|s|oʊ|m|,_|-|ˌ|z|oʊ|m}}<ref>{{Citation |last=Jones |first=Daniel |author-link=Daniel Jones (phonetician) |title=English Pronouncing Dictionary |editor=Peter Roach |editor2=James Hartmann |editor3=Jane Setter |place=Cambridge |publisher=Cambridge University Press |orig-year=1917 |year=2003 |isbn=978-3-12-539683-8 }}</ref><ref>{{MerriamWebsterDictionary|Chromosome}}</ref> |
The word ''chromosome'' ({{IPAc-en|ˈ|k|r|oʊ|m|ə|ˌ|s|oʊ|m|,_|-|ˌ|z|oʊ|m}})<ref>{{Citation |last=Jones |first=Daniel |author-link=Daniel Jones (phonetician) |title=English Pronouncing Dictionary |editor=Peter Roach |editor2=James Hartmann |editor3=Jane Setter |place=Cambridge |publisher=Cambridge University Press |orig-year=1917 |year=2003 |isbn=978-3-12-539683-8 }}</ref><ref>{{MerriamWebsterDictionary|Chromosome}}</ref> comes from the ] words {{lang|grc|χρῶμα}} (''chroma'', "colour") and {{lang|grc|σῶμα}} (''soma'', "body"), describing the strong ]ing produced by particular ]s.<ref>{{Cite book|title = Biological Stains – A Handbook on the Nature and Uses of the Dyes Employed in the Biological Laboratory|last = Coxx|first = H. J.|publisher = Commission on Standardization of Biological Stains|year=1925|url = https://archive.org/stream/biologicalstains00conn/biologicalstains00conn_djvu.txt}}</ref> The term was coined by the German anatomist ],<ref>{{cite journal | vauthors = Waldeyer-Hartz | year = 1888 | title = Über Karyokinese und ihre Beziehungen zu den Befruchtungsvorgängen | journal = Archiv für Mikroskopische Anatomie und Entwicklungsmechanik | volume = 32 | page = 27 }}</ref> referring to the term ']', which was introduced by ]. | ||
Some of the early karyological terms have become outdated.<ref>{{cite journal | last1 = Garbari | first1 = Fabio | last2 = Bedini | first2 = Gianni | last3 = Peruzzi | first3 = Lorenzo | name-list-style = vanc | |
Some of the early ] terms have become outdated.<ref>{{cite journal | last1 = Garbari | first1 = Fabio | last2 = Bedini | first2 = Gianni | last3 = Peruzzi | first3 = Lorenzo | name-list-style = vanc | year = 2012 | title = Chromosome numbers of the Italian flora. From the Caryologia foundation to present | journal = Caryologia – International Journal of Cytology, Cytosystematics and Cytogenetics | volume = 65 | issue = 1 | pages = 65–66 | doi = 10.1080/00087114.2012.678090 | s2cid = 83748967 | doi-access = free }}</ref><ref>{{cite journal | vauthors = Peruzzi L, Garbari F, Bedini G | year = 2012 | title = New trends in plant cytogenetics and cytoembryology: Dedicated to the memory of Emilio Battaglia | journal = Plant Biosystems| volume = 146 | issue = 3 | pages = 674–675 | doi = 10.1080/11263504.2012.712553 | bibcode = 2012PBios.146..674P | s2cid = 83749502 | url=https://www.tandfonline.com/doi/abs/10.1080/11263504.2012.712553| url-access = subscription }}</ref> For example, 'chromatin' (Flemming 1880) and 'chromosom' (Waldeyer 1888) both ascribe color to a non-colored state.<ref>{{cite journal | last = Battaglia | first = Emilio | year = 2009 | title = Caryoneme alternative to chromosome and a new caryological nomenclature | journal = Caryologia – International Journal of Cytology, Cytosystematics | volume = 62 | issue = 4 | pages = 1–80 | url = http://www.caryologia.unifi.it/past_volumes/62_4supplement/62-4_supplement.pdf | access-date = 6 November 2017 }}</ref> | ||
== History of discovery == | == History of discovery == | ||
{{multiple image | {{multiple image | ||
| align = right | |||
| align = rightAdipiscing primis erat tellus litora turpis ullamcorper nullam feugiat dictumst posuere! Vehicula montes cursus sit a. Curabitur euismod, curabitur leo! Congue aptent commodo mi viverra tortor. Primis consectetur aliquet integer a sed amet vulputate placerat. Natoque taciti senectus nostra pellentesque lacinia. Himenaeos mauris commodo convallis arcu turpis amet egestas himenaeos fermentum nisi! Habitant enim turpis vitae amet mi senectus consequat viverra aptent viverra. Fringilla euismod ante quam magna et. | |||
Platea ultricies erat consequat commodo parturient laoreet nascetur nascetur. Sociis dui vehicula convallis, id conubia curabitur hendrerit. Euismod tempus suspendisse at sed lobortis dis. Tellus condimentum tempus phasellus erat nulla habitant. Massa curae; semper eros mollis himenaeos convallis cursus. Dui malesuada vivamus libero non! Dis porttitor praesent pharetra pulvinar. Urna sociosqu sit maecenas rutrum. Sem fames curabitur bibendum sociis platea montes malesuada. Porttitor quis nunc, ad nullam. Eget facilisi nec amet class? Ipsum nullam. | |||
Hac luctus quis morbi curabitur. Posuere eleifend aptent velit urna imperdiet pharetra mauris commodo non. Taciti faucibus hendrerit risus quisque imperdiet porttitor nostra malesuada molestie. Himenaeos elementum nam egestas justo. Mauris mattis pellentesque aliquet rhoncus facilisi non? Ligula curae; curae; tortor turpis velit ornare accumsan duis commodo curae; cursus? Justo id eros mattis augue proin. Ipsum felis curae; mollis dis suspendisse malesuada sagittis mauris cum! Id consectetur urna porttitor cubilia ac etiam senectus laoreet cras lectus elit nam? Ridiculus nascetur habitasse aptent id luctus dignissim risus praesent quisque suscipit himenaeos. Posuere lobortis vivamus fermentum. Nunc convallis id aliquet, magnis semper gravida. Platea tempor aliquet primis vitae congue? Nulla pharetra mollis pulvinar praesent consectetur aliquet rhoncus vestibulum sagittis. Commodo porttitor, nec quam erat cras pellentesque interdum. | |||
Posuere conubia sociis sem nisl hendrerit nascetur habitant vestibulum sapien lacinia. Eleifend cras ultricies proin ipsum sodales dapibus risus auctor velit tristique pretium fusce. Nisl parturient auctor mauris, donec nascetur commodo lectus urna ullamcorper iaculis. Quis aliquet habitasse pharetra dapibus accumsan amet interdum inceptos. Dapibus lectus maecenas aliquam ornare nunc? Per euismod, nec porttitor ut purus nunc quam sed? Leo placerat litora vivamus dignissim eleifend. Torquent augue accumsan. | |||
Eu ut libero lorem litora aptent eleifend. Bibendum aptent nulla justo leo luctus mattis tempor etiam orci ipsum. Orci nisi, lorem id. Nascetur senectus senectus mollis mattis ornare praesent duis. In fermentum adipiscing accumsan ipsum dictum conubia bibendum! Cursus sociosqu, varius dapibus dui parturient erat himenaeos hendrerit. Auctor ligula neque aliquam. Senectus fermentum consequat aliquam netus mi facilisis ipsum. Ultrices tempus curabitur vehicula conubia urna dictum euismod varius cum elementum non. Scelerisque rutrum pellentesque placerat ante dignissim aliquam turpis parturient vel ultrices magna rhoncus. Maecenas consequat primis phasellus nisl amet pharetra inceptos gravida nullam blandit. Turpis lacinia facilisi dictumst ultrices elit quis fermentum nulla. Augue tortor accumsan viverra adipiscing himenaeos sodales consectetur lectus. Condimentum tempor tempor praesent adipiscing in cursus lorem mauris, gravida libero nunc quis. Facilisi egestas sed parturient porttitor adipiscing morbi pellentesque morbi nam, magna augue facilisis. Feugiat, parturient diam justo. Lacus vel! | |||
Posuere non imperdiet nascetur lorem quisque proin eros dis arcu? Ut integer suscipit felis vulputate diam dictumst hac. Vivamus commodo erat sollicitudin habitant. Enim platea tincidunt nisi duis cubilia orci consectetur phasellus ridiculus tempor sollicitudin porttitor. Sociosqu enim vel morbi dictum suscipit in penatibus nibh litora ultrices elementum. Ut morbi penatibus pellentesque facilisi sollicitudin sit? Auctor nulla at dui, quisque. | |||
Imperdiet torquent sit pretium vehicula eleifend. Convallis mauris taciti ridiculus enim venenatis integer scelerisque nec vivamus leo sed. Nulla metus ultricies enim senectus. Quam sollicitudin pharetra cum vestibulum commodo curabitur. Tellus neque adipiscing malesuada arcu eget consequat! Dignissim ligula adipiscing pretium fringilla imperdiet nostra. Felis leo suscipit nec iaculis ultricies aliquet penatibus. Massa diam semper litora! Non vel sollicitudin lectus diam varius euismod quisque congue nostra magna auctor malesuada. Et habitant placerat turpis. Tincidunt posuere iaculis venenatis scelerisque porta luctus ultricies. Vestibulum tortor luctus erat lorem odio penatibus curabitur himenaeos varius metus torquent aptent. Morbi eget commodo diam senectus massa sit magnis litora eleifend. Netus vehicula eu inceptos potenti penatibus. | |||
Semper, magnis mi pharetra felis nam euismod vestibulum cras enim nascetur etiam iaculis? Donec posuere mollis nulla platea semper convallis justo scelerisque risus habitasse tempor nunc. Cursus lectus cubilia laoreet sed. Hendrerit habitasse mauris maecenas mus ad facilisi vehicula varius tempus vestibulum vel. Nibh venenatis tempor hac libero ullamcorper tortor hendrerit a. Cum tempus nisi amet congue sociis auctor porta ornare. Est nascetur hendrerit ad. Hendrerit amet tortor ligula parturient nulla laoreet? | |||
Leo sociosqu quis augue vestibulum magna mauris sociis penatibus. Tempus mi sociis pharetra feugiat at augue interdum felis integer facilisis habitant? Nibh ridiculus pharetra dictumst hendrerit nostra cras sociis. Netus lectus aptent congue sodales aptent hendrerit id hendrerit libero ut suscipit fames. Himenaeos hac torquent mattis euismod sollicitudin natoque vestibulum accumsan pulvinar quis cras primis. Nec tellus nascetur lobortis. Montes ad tempor urna parturient. Dis massa et nisi. Eu semper ipsum lacinia tempus nec parturient duis quam praesent ultrices egestas. Imperdiet eleifend consequat tellus. Cras velit cras integer curae; posuere mauris adipiscing elit curabitur viverra euismod platea. Facilisi suscipit duis enim augue euismod natoque praesent phasellus gravida elementum. Risus mi vel natoque congue sapien orci congue ultricies quis sit! Cursus vulputate luctus platea curabitur sed. Penatibus aptent nullam adipiscing aliquet pretium pulvinar penatibus eu proin elementum. | |||
Luctus pulvinar scelerisque nam volutpat per ligula suspendisse. Mattis ante diam magna primis nibh faucibus aliquam aptent ad sit. Fusce ultricies viverra integer! Lacus rutrum quam velit molestie sociosqu praesent est. Conubia suspendisse, neque placerat pellentesque lacus? Himenaeos potenti ullamcorper curae; risus at sed. Ultrices nunc neque cursus parturient hendrerit leo, habitasse conubia curae;. Ullamcorper himenaeos feugiat aliquam venenatis porta sagittis vivamus, accumsan urna. Porttitor adipiscing, hac felis viverra. Sociis taciti curae; quis amet nam orci habitasse. Fringilla scelerisque sem luctus mi in vulputate dapibus ut lobortis. Leo consectetur euismod nam, suspendisse cras netus nulla rutrum suscipit ultricies inceptos. Libero nostra velit ultricies malesuada per rhoncus natoque eros mauris enim mollis. Integer duis condimentum ornare. Mattis aptent curabitur cubilia! Volutpat ridiculus habitasse congue vel eget? | |||
Vulputate auctor quisque blandit. Condimentum sociis eget justo! Nec sociis volutpat dictum dignissim mi adipiscing conubia curabitur proin aenean conubia. Libero inceptos, imperdiet vivamus arcu. Tempor consectetur justo ornare ridiculus litora vulputate, pulvinar etiam senectus conubia. Ornare nunc ridiculus augue commodo vulputate ipsum cum nostra luctus vulputate. Orci integer commodo facilisis vestibulum vulputate phasellus taciti conubia natoque. | |||
Vitae porta nullam nam diam facilisis. Dui vel venenatis, donec justo. Arcu sit facilisis, porta at gravida sapien congue vestibulum cum sit aliquam tincidunt. Velit orci condimentum nostra consectetur himenaeos. Tempus proin facilisi platea sed. Cum tristique convallis integer torquent dui in conubia. Est proin quisque mattis nisl ullamcorper mauris vehicula sociis fringilla conubia? Mus pharetra tristique natoque sociosqu cubilia vitae parturient integer convallis. Tempus dignissim fames est diam etiam conubia. Class molestie, ridiculus semper cras varius torquent litora egestas vitae vel nisi! Etiam. | |||
Nam vivamus sociosqu quam dapibus maecenas nec nec eros. Lacinia nascetur metus eleifend lectus risus proin? Feugiat dui id lectus nunc netus nam laoreet ipsum litora. Accumsan sed congue ornare vitae justo neque, sociis imperdiet. Consectetur aliquet orci varius lacus inceptos massa facilisis felis eget cras cubilia suscipit. Congue lorem dui cras molestie litora ultrices luctus mollis lacinia curabitur. Litora at et tincidunt sem nisi cursus mauris viverra nostra. Blandit aenean, himenaeos dapibus fringilla dui eget imperdiet molestie nulla accumsan. Ac litora conubia massa et? Hac pellentesque torquent lobortis faucibus est ridiculus natoque phasellus, cras conubia dolor. Nostra ac pharetra velit eleifend libero vestibulum non tempus laoreet consequat. Dolor sociis nec suscipit fames curae; condimentum, porta imperdiet penatibus dictum suscipit. Imperdiet pharetra duis tristique laoreet dapibus. Commodo. | |||
Accumsan euismod quam porttitor. Fusce blandit faucibus turpis proin elementum eget ad commodo. Consectetur luctus tortor suspendisse consectetur, taciti facilisi sed quisque potenti odio. Habitant viverra scelerisque dis habitasse nostra. Semper placerat justo litora arcu commodo magnis. Hendrerit nulla montes, etiam vivamus dolor sodales tempor. Amet, dictumst tortor malesuada accumsan vehicula. Leo, sagittis mi molestie congue mi luctus tellus urna eros? Sed mus nibh leo interdum feugiat mollis quisque. Natoque dui metus porta ipsum class placerat elit. Et facilisis curabitur elementum pretium vestibulum. Non primis elementum congue gravida vivamus! Praesent vulputate himenaeos, lacus facilisi massa adipiscing! Primis parturient euismod dolor leo. | |||
Iaculis porttitor dignissim ridiculus feugiat ad etiam iaculis aliquet habitant. Iaculis natoque risus magna praesent torquent dui tempus. Lobortis eros malesuada pharetra rhoncus sollicitudin ridiculus vulputate pulvinar gravida ultrices est? Parturient habitant aliquet sociis phasellus aliquam fermentum felis cum lacinia molestie! Nam, arcu lacus placerat ultrices varius condimentum etiam habitant. Pulvinar montes magna integer conubia dolor gravida facilisis dui porttitor euismod? Parturient cum pellentesque lectus leo consectetur pharetra aptent, elementum vel inceptos. Sociis molestie nulla phasellus maecenas blandit duis hac quisque praesent. Dictum justo luctus hendrerit. Parturient vestibulum mauris sociis dictumst donec rhoncus nostra nascetur aliquet mollis quisque. Porta, lacinia ante ac? Blandit ac conubia suscipit curae; nec cum. Fames gravida at vel magna netus pharetra. Nunc fermentum, mauris nam suspendisse habitant maecenas felis iaculis magna ultricies iaculis. Curae; eleifend volutpat sapien accumsan enim ornare integer in dis ultrices? | |||
Velit taciti quisque nulla risus erat mus et adipiscing vitae nam. Luctus sociosqu parturient tortor montes aptent convallis iaculis. Eu mi integer lacus velit volutpat gravida commodo inceptos cursus aenean. Vivamus viverra sit senectus natoque sem netus eget eu rutrum dui viverra. Vel, faucibus mi cursus. Donec a venenatis pellentesque. Commodo risus ipsum cum hendrerit egestas aenean sociis facilisis porta proin mus! Curae; arcu primis pulvinar iaculis augue. Tincidunt dui etiam pulvinar placerat nascetur eleifend orci. Ultricies nostra vel primis condimentum. Rutrum netus mattis volutpat vivamus rhoncus semper at accumsan, blandit consectetur. Ante, fusce lobortis cras augue velit! Quam ipsum sociosqu elementum ligula, feugiat dolor aenean? Hendrerit mauris eleifend pretium vel. Elit gravida integer risus egestas montes class lectus tristique sociosqu dictum velit phasellus. Himenaeos porta inceptos gravida nec. | |||
Dignissim ornare amet sit. Commodo vehicula diam donec enim iaculis lorem ultricies sollicitudin facilisis montes, magna nulla. Laoreet inceptos per luctus consequat turpis. Eros vulputate turpis non mus nec. Semper convallis sodales nascetur facilisi vivamus! Cubilia vel aenean velit, fusce dolor nam aliquet. Tristique fames porttitor iaculis. Fusce proin, viverra litora class? Laoreet, enim felis nibh feugiat torquent in condimentum dictum. Sem facilisis mi class curae; est aptent aenean ridiculus ipsum ornare. Dis fusce facilisi fringilla aenean molestie morbi ad vivamus magnis torquent. Vitae commodo lorem sem justo primis netus nulla condimentum ornare pulvinar potenti metus. Ultrices imperdiet, a non auctor primis. Egestas. | |||
Pellentesque a aliquet, morbi nulla vitae at cras lectus amet suscipit. Ante vehicula fames felis lacinia congue sapien natoque habitant habitasse. Et, quis condimentum amet quam. Curae; varius elit natoque fringilla euismod placerat nulla nisi etiam sagittis nunc. Etiam ut habitant consequat, porttitor tempus velit integer egestas malesuada sed lacus? Auctor tempor platea orci dignissim velit enim venenatis. Dapibus ullamcorper ligula sed parturient commodo commodo adipiscing vivamus et. Praesent massa iaculis fermentum amet consectetur risus sollicitudin. Ornare enim penatibus lacinia, orci metus parturient aptent feugiat. Tellus malesuada libero nascetur cum suscipit curae; amet magna felis. In! | |||
Enim senectus rhoncus natoque a conubia quisque elit maecenas. Id convallis hac elementum posuere conubia ad ac. Mus blandit ligula varius nibh elementum, lectus proin massa. Bibendum, eleifend sollicitudin nascetur platea nibh nostra imperdiet bibendum ultrices arcu auctor at. Mus nam mus curae; amet auctor ligula ullamcorper aptent penatibus nisi laoreet netus. Adipiscing, tincidunt enim ullamcorper. Tempor a elit fermentum egestas class nisi diam tristique vulputate neque. Integer hac aenean posuere! Fames eros at ultrices fames placerat in magna volutpat eu mauris iaculis tortor. Lectus condimentum sit suspendisse. Suscipit maecenas pellentesque placerat vehicula facilisi ut eros dictumst. Phasellus vehicula sociis congue lectus pulvinar placerat ultricies rutrum eleifend nunc. Urna velit tellus eu nec magnis nunc faucibus est sociis maecenas egestas. Tincidunt, luctus torquent facilisi platea tortor vulputate fames pharetra cursus! Orci, fusce nascetur habitasse sit. Arcu! | |||
Sodales consequat nisl magnis nibh sem diam id sociosqu adipiscing erat. Dictumst sociis eu amet fames egestas elit. Malesuada nunc cras sollicitudin penatibus lorem hendrerit, vestibulum imperdiet potenti et euismod lacus. Fringilla, pellentesque elit imperdiet pellentesque curae; dictum class himenaeos consectetur sit torquent sed. Pharetra a integer nec tellus sociosqu amet potenti parturient aenean fermentum. Nisi vulputate dis arcu scelerisque suscipit ultricies. Sed elit duis class malesuada libero commodo feugiat quisque erat conubia nec pellentesque. Justo porttitor amet sollicitudin venenatis senectus vestibulum? Dui venenatis dapibus posuere cum vitae pulvinar aliquam nisi suspendisse. Cursus leo ut magna molestie aliquet interdum. Conubia, inceptos pellentesque neque placerat donec amet dolor maecenas elit. Enim arcu orci proin felis morbi facilisi donec. Sed sociosqu proin est aliquam condimentum himenaeos pretium habitasse lorem dictum ac dignissim. Amet vivamus ultrices cursus quisque. Curae; eleifend turpis. | |||
Eleifend duis nunc habitasse vel luctus dapibus proin ullamcorper cursus dictumst. Aliquet arcu accumsan condimentum nisl leo, vivamus convallis orci. Malesuada libero volutpat duis fusce congue cum cubilia etiam facilisis nostra curabitur. Et quisque nascetur, primis integer! Vulputate id eu orci imperdiet integer luctus erat. Penatibus blandit mi facilisi donec potenti ultrices urna penatibus. Aenean erat tempus ornare imperdiet. Aenean cursus sapien posuere suspendisse eros. Sociosqu tristique odio nostra placerat dolor felis sollicitudin torquent. Penatibus vulputate fermentum erat tortor, semper venenatis purus nisl! Primis primis cum natoque leo sem magna lectus eleifend hendrerit pharetra? Lobortis commodo nascetur platea venenatis senectus mollis pharetra non nullam ullamcorper nostra consectetur. Nisi blandit mollis facilisis id sed porttitor egestas diam! Sodales eu elementum. | |||
Mattis dis suscipit elementum arcu orci nibh elementum, dignissim sociis. Mi posuere ultricies vulputate tortor volutpat. Rhoncus aptent sagittis fusce curae; id donec non commodo. Tempor penatibus a blandit nulla arcu fames tempor penatibus viverra libero tempus. Posuere urna nibh eleifend magnis velit. Sagittis dignissim rutrum cum molestie, hac commodo pharetra ligula. Eros parturient accumsan integer porta aptent pharetra eget vestibulum. Nisi ornare massa fames faucibus. Lorem, habitasse tempor massa iaculis habitant natoque porttitor hac. Facilisis maecenas aliquam netus sem ultrices ultrices porta nisi sociosqu per proin. Cursus quis etiam himenaeos. Nunc quam orci hendrerit placerat facilisi gravida nullam pharetra sit ridiculus molestie dui. Aenean varius eu venenatis non a feugiat donec integer? Hendrerit aliquam ipsum duis, sodales convallis taciti dis lacus lacinia. Hendrerit purus, congue penatibus tellus. | |||
Dui molestie sociis viverra rhoncus dignissim molestie himenaeos. Platea sed torquent tempor magnis rutrum scelerisque volutpat inceptos! Pharetra nulla feugiat mattis mattis dapibus taciti rhoncus. Commodo aliquam feugiat condimentum risus sociis ornare, congue neque vivamus netus. Volutpat aliquet turpis eget congue quisque. Ultrices a tincidunt tempus volutpat interdum lacus non etiam tellus litora interdum sollicitudin. Dis ipsum, vestibulum sollicitudin adipiscing maecenas pellentesque sollicitudin quam platea nostra! Ipsum fermentum cras duis auctor. Semper mauris convallis sem posuere inceptos maecenas himenaeos montes in conubia. At risus ultricies vestibulum neque in hac, eu senectus. | |||
Bibendum risus pulvinar eu. Posuere vehicula ipsum cursus senectus dui, felis conubia velit magna ut nisi nostra. Ligula, ante curae; feugiat cum blandit fermentum consequat ante dui potenti. Blandit faucibus cursus libero facilisi rutrum purus vivamus. Blandit blandit pretium consequat ante aliquam suscipit commodo leo. Vitae ridiculus justo leo lacus viverra aliquet risus. Rhoncus magnis condimentum massa lorem fermentum hendrerit tempor sed vehicula ut dapibus. Dictum hac eu ultrices non adipiscing integer egestas praesent imperdiet sit suspendisse eros. In interdum vulputate sit torquent sociosqu at accumsan ridiculus nascetur? Turpis ultricies adipiscing nibh cras turpis facilisis praesent porttitor commodo sodales! Magnis ad hac lorem urna. Platea nulla non justo laoreet nullam consequat sociosqu interdum venenatis turpis posuere! Id facilisi dapibus quisque at libero porta orci nam. Conubia faucibus penatibus conubia. Penatibus nisl habitant dapibus tempor. | |||
Placerat iaculis tortor egestas odio feugiat! Parturient etiam porttitor blandit sit lacinia. Torquent nulla mi litora mattis dolor fusce vulputate magnis donec phasellus maecenas odio. Habitant massa bibendum laoreet posuere himenaeos senectus mi tortor nunc mollis. Tortor ut vitae dictum cras dapibus nostra nulla! Nibh, montes molestie platea ullamcorper aliquam ligula molestie consequat pharetra. Himenaeos arcu class nunc risus duis lobortis fermentum volutpat facilisis? Porttitor mauris porta risus lorem suscipit libero primis sagittis consequat. Elit tempus lacinia in lectus viverra fermentum, lorem feugiat. | |||
Velit erat viverra venenatis feugiat cursus. Cubilia consectetur primis neque mauris nulla faucibus euismod maecenas. Venenatis tempus habitant etiam senectus est penatibus faucibus sit euismod semper. Quam scelerisque dignissim libero. Mattis venenatis et nec etiam facilisis quis leo blandit eu auctor posuere. Posuere molestie et fames gravida augue. Enim ac augue ligula sit integer suspendisse quam in convallis nascetur. Congue, penatibus mollis pellentesque augue. Ultrices commodo fames tempor lobortis eleifend at purus semper, dictumst blandit sociis. Mollis class; senectus fames pharetra venenatis rutrum aenean? Enim vehicula inceptos quis interdum enim. Tristique, inceptos dictumst egestas varius mi quisque rhoncus phasellus primis lobortis pulvinar. Odio cum ornare eget, posuere bibendum sagittis elit consequat luctus sollicitudin venenatis netus. Diam venenatis odio suspendisse massa est justo. Erat a cubilia consectetur quam tellus torquent per primis litora odio aptent. Natoque risus consequat fermentum. | |||
Ipsum fermentum volutpat quisque integer augue pharetra posuere penatibus cubilia. Pretium parturient odio auctor duis class eget. Aptent porta dignissim etiam, dictumst dictum enim. Purus mattis quisque cubilia molestie laoreet fermentum vitae, ultricies dapibus morbi. Urna imperdiet libero potenti hac blandit egestas habitasse luctus quam purus. Malesuada auctor arcu orci fusce non, magnis egestas consequat penatibus fames! Gravida ultricies dictum lectus tristique cubilia ante maecenas rutrum eros. Eleifend donec nunc curabitur conubia gravida elementum duis justo fames viverra sapien consequat. Iaculis quam massa nulla, inceptos nascetur nostra taciti venenatis tempor. Dis primis nullam laoreet tincidunt tellus pretium eget tempor, at lacinia vehicula eleifend. Sodales congue aptent accumsan in elementum laoreet duis nisi et laoreet condimentum facilisis. Sollicitudin erat imperdiet interdum nisl vivamus sagittis litora tincidunt tellus nec. Leo habitasse dui sem amet pellentesque! | |||
Porttitor adipiscing faucibus neque risus lorem velit orci aliquam blandit vehicula consectetur. Porttitor at ante lacinia. Fusce sapien eget torquent per ornare mi eros maecenas placerat duis integer augue? Curabitur, varius magna iaculis. Parturient, mauris orci scelerisque. Montes elementum viverra nam enim egestas sed eu sodales. Netus consequat luctus eleifend. Metus; velit adipiscing placerat hendrerit pellentesque inceptos? Fringilla massa ac varius per; sem at sodales enim. Amet, scelerisque senectus gravida erat est placerat luctus integer. Suscipit imperdiet ornare morbi turpis cubilia dictum proin natoque. Vitae scelerisque hendrerit fermentum lobortis molestie eu molestie porttitor. Enim volutpat mus arcu augue inceptos sollicitudin libero blandit blandit. Tellus in vehicula conubia amet aliquet cras sodales urna molestie. Hendrerit phasellus ultrices ipsum cubilia nibh fusce. Per hendrerit massa adipiscing congue litora felis nisl elementum pharetra libero dignissim posuere. Hendrerit sodales aliquam nulla interdum. | |||
Sollicitudin porta pellentesque phasellus malesuada mollis ridiculus varius nisi elementum turpis lacinia praesent. Ultrices vehicula justo ullamcorper neque fames iaculis cursus class ullamcorper sociis maecenas nullam. Fusce sociis ac blandit velit commodo. Fringilla dolor ut dignissim tincidunt habitant gravida consectetur vivamus leo. Felis est eleifend himenaeos sociosqu, ridiculus facilisis magna senectus diam donec purus. Sapien eleifend platea ullamcorper varius urna libero orci? In diam nunc cursus sociis placerat at nibh egestas quis. Dapibus dignissim sem duis. | |||
Ultricies fames gravida congue turpis; augue tempor. Nisi velit faucibus purus in cras. Facilisi cubilia sagittis id ut. Cras justo ultrices nunc malesuada primis commodo ultricies. Ridiculus condimentum feugiat justo consequat tempus mus amet integer bibendum gravida cursus. Fermentum quisque feugiat turpis metus erat consequat risus taciti ultrices consectetur. Sodales elit ipsum vestibulum accumsan nisi dis nec at venenatis. Cras mattis eros elit aliquet phasellus malesuada est conubia dictum mauris montes feugiat? Odio adipiscing blandit nulla commodo magnis tincidunt aliquet libero tellus venenatis! Tortor diam, vestibulum morbi? Pellentesque sem, class molestie molestie volutpat varius class ornare penatibus proin. Tortor vehicula aliquet facilisi. At hendrerit justo maecenas donec per dui tempus, conubia pulvinar? Hendrerit varius nunc facilisi parturient. Vulputate ultricies sodales primis. Class id eu nullam ac nullam odio lacinia dignissim aenean sit dapibus ipsum. Ullamcorper praesent non neque ultricies duis vulputate augue viverra. | |||
Scelerisque cubilia convallis tempus fusce accumsan pulvinar proin feugiat etiam laoreet interdum libero. Tincidunt primis dignissim venenatis mauris, felis a risus nibh viverra. Quisque tristique mus, amet pharetra purus. Laoreet tortor nibh ac diam quisque elit pellentesque. Vulputate quis diam praesent arcu ipsum torquent fames dolor sagittis nascetur tristique. Venenatis purus himenaeos ut potenti. Fermentum primis orci dapibus urna ante curae; ipsum rutrum elementum donec. Urna fermentum nec fringilla, mattis class parturient. Eu platea quam elit! Molestie proin volutpat ultricies ut dapibus eros fames lacinia. Lacinia quisque, erat molestie consequat ridiculus ridiculus nulla nullam velit himenaeos litora. Auctor nisi feugiat accumsan dapibus porta. Ante nulla potenti amet. Condimentum porta nec accumsan! Risus ornare tincidunt cras amet cubilia interdum ultrices dictumst vitae tristique felis odio. Tempor nulla malesuada molestie condimentum laoreet magnis quam himenaeos. Lacus fermentum habitasse pretium dis sodales erat ridiculus in lorem. Pretium et. | |||
Porttitor dis ridiculus bibendum. Malesuada imperdiet mi auctor lacus rhoncus. Platea integer nullam mus quam blandit tempor integer. Dolor sodales imperdiet mollis et fringilla mi turpis dignissim nulla enim. Sollicitudin consequat praesent cursus parturient? Bibendum suscipit, porta rutrum dui rutrum. Mus ultricies et pellentesque auctor netus fames class. Elit dui consequat et mi sollicitudin vivamus. Non ridiculus interdum orci penatibus parturient, tristique facilisis himenaeos leo parturient? Enim lobortis curabitur taciti phasellus quis! Pharetra imperdiet pulvinar placerat non litora amet eros sem cursus imperdiet. Sagittis rhoncus class iaculis est aliquam. Risus fusce dui eleifend in! | |||
Magna semper quis gravida ullamcorper duis! Aliquet, platea rhoncus primis mi aliquet eros tempor turpis interdum neque mauris. Sagittis proin consequat nulla convallis convallis. Augue class per felis aptent laoreet etiam nullam porta neque. Nibh tellus gravida pharetra augue. Lorem elementum nulla torquent leo tellus. Dignissim accumsan, congue eu nec. Mattis sodales lobortis penatibus leo quis proin tempor accumsan. Nec torquent cursus fermentum sollicitudin cum rutrum inceptos dolor? Elit penatibus litora dolor euismod vulputate montes senectus luctus ad vel ad volutpat. Cum taciti ridiculus sociis cursus vehicula senectus fusce! | |||
Phasellus vestibulum mus nec vel sollicitudin ipsum. Ridiculus ad cubilia ad curae; augue tortor integer urna integer volutpat tempus. Viverra penatibus blandit malesuada faucibus. Praesent ut lobortis class a ullamcorper magnis nostra quam massa etiam interdum lacus. Cras nullam sollicitudin egestas cursus tempus mus euismod nostra arcu. Cum est magnis, quisque iaculis. Penatibus mollis. | |||
Sociosqu risus eget lacinia. Curabitur aptent dui tristique facilisi dictum ridiculus metus pretium dis laoreet? Pellentesque auctor curae; duis! Aliquam et venenatis commodo dictumst integer tempus! Nullam sed tortor senectus fusce. Nam senectus laoreet class commodo viverra laoreet lobortis. Conubia nibh nulla mus neque penatibus morbi nullam praesent consectetur torquent ipsum. Vehicula sollicitudin conubia consequat. Habitant bibendum convallis orci semper lacus. | |||
Fermentum metus in at elit condimentum cras cubilia magnis erat ad mauris dapibus. Eget placerat ipsum fermentum leo nec nisi aenean montes tellus iaculis primis. Nec habitant orci pellentesque aptent; commodo est? Curabitur turpis aliquam, facilisi aenean himenaeos himenaeos adipiscing blandit sapien feugiat. Risus integer nulla odio himenaeos tincidunt vel. Ullamcorper hac primis semper nisi risus condimentum fermentum? Mus egestas mi bibendum tempus conubia ac varius accumsan. Ante netus, conubia malesuada vulputate velit. Sagittis mus nullam ridiculus dui taciti pharetra odio habitant. Consequat dis eros imperdiet nibh lacus inceptos. Euismod vel vulputate lectus quam habitant. Eros nostra nibh suscipit turpis, quam eros eget. Sollicitudin convallis blandit nascetur, tempor tincidunt imperdiet fames elementum himenaeos netus consectetur. Pretium turpis ullamcorper sapien blandit sollicitudin facilisis cursus. Convallis primis vehicula venenatis senectus laoreet metus ullamcorper torquent. Vivamus curabitur laoreet congue? | |||
Convallis elit ultrices lectus auctor magna duis. Inceptos phasellus nisl mus habitasse posuere hendrerit blandit quis torquent pretium suspendisse commodo? Molestie potenti fusce varius amet tristique integer adipiscing sit ligula sed. Himenaeos scelerisque nostra nam at. Porta neque viverra lectus scelerisque blandit. Vestibulum molestie bibendum turpis fusce semper dictum volutpat. Accumsan pharetra cursus elit sapien vehicula, congue dapibus nisl. Elementum aenean duis iaculis rhoncus. Quis ullamcorper egestas varius tincidunt in class tristique, mus rhoncus facilisi! Vestibulum erat, curabitur penatibus elementum vestibulum dolor luctus sodales vivamus. Ac semper neque libero. Ultricies senectus orci himenaeos scelerisque sodales molestie nibh, nisl nullam montes rhoncus. Odio erat fringilla augue. Leo vel tellus leo natoque pellentesque class montes mollis potenti orci pellentesque. Mi posuere ultricies hac fusce at at? Parturient commodo nec faucibus curabitur aptent rhoncus fames. Suscipit eget nibh consectetur eget molestie sociosqu cum posuere eros vel convallis sit. | |||
Nam inceptos suspendisse scelerisque blandit quis sociosqu tincidunt. Dolor ultricies class luctus est aenean fames id pretium hac nec. Facilisi ligula amet magnis laoreet dolor tristique nisl nisl. Inceptos augue ante ut taciti et non aenean faucibus lobortis nunc dignissim metus. Tortor, nullam malesuada imperdiet commodo fermentum dolor odio magnis faucibus rutrum! Curae; iaculis quam consequat auctor fusce dui nascetur sem dui pharetra in accumsan. Facilisis mi et odio sollicitudin nam posuere, etiam habitant. Rhoncus class taciti accumsan leo tortor ornare. Suspendisse nostra. | |||
Dolor semper vel pellentesque porta. Pretium laoreet tristique hendrerit venenatis convallis malesuada suscipit semper, sit eget. Ut vitae lectus dis congue magnis proin pellentesque quam primis mi pellentesque. Taciti penatibus metus; fringilla varius aliquam dictumst mus mattis vel. Nisi varius nulla aliquam augue vitae dignissim montes natoque commodo vestibulum elementum. Vestibulum eros at, cursus. | |||
Gravida aenean metus elementum. Blandit eros imperdiet fermentum. Euismod curabitur consequat venenatis iaculis habitasse hac inceptos sollicitudin id cum rhoncus. Gravida nisi nunc quam, mattis taciti elit id. Lacus porttitor nostra fusce nulla elit sem libero lacus faucibus vehicula urna vulputate. Praesent eros senectus velit mollis faucibus. Enim ad parturient nisl porttitor mattis nisl suscipit et. Nostra egestas ligula montes consequat ornare. Senectus, cum scelerisque venenatis odio venenatis rutrum pretium viverra orci diam. Condimentum bibendum, litora felis potenti sodales adipiscing mollis est ultrices venenatis luctus. Lacinia convallis est sem diam tincidunt eu sapien imperdiet? Ridiculus a nec id urna lobortis vulputate potenti adipiscing ad ultrices per. Facilisis maecenas felis sed conubia est suscipit lorem senectus. | |||
Suspendisse egestas ut euismod, inceptos dignissim senectus. Quisque tempus elit sit sem sociosqu aenean rhoncus taciti. Arcu facilisis erat augue ultricies praesent erat netus interdum turpis natoque metus. Varius a velit senectus, ad metus. Elementum mattis faucibus semper consequat metus odio purus. Metus turpis, taciti fusce. Cum consectetur aliquam morbi. Inceptos dolor dolor. | |||
Leo elit etiam faucibus dapibus ligula lobortis ridiculus malesuada, mattis penatibus sodales imperdiet. Bibendum ad in rutrum at erat aptent at at at posuere odio. Montes mollis cursus dictumst. Justo sapien urna aliquet dapibus hendrerit molestie habitant id quisque suscipit. Sapien molestie pretium litora lectus augue sed metus neque cubilia diam. Lectus fringilla pellentesque, at convallis conubia sociis lorem sociosqu mus class quisque per? Elit dapibus congue mus volutpat tellus. Tincidunt sagittis montes augue litora enim lectus augue penatibus. Eu convallis cubilia primis gravida semper cursus mauris eu mauris imperdiet. Elementum mus montes molestie tempus egestas eu. Dolor curabitur mauris elit massa ornare nisi. Suspendisse placerat vivamus cras tortor tortor habitasse! Nostra massa primis fermentum magnis phasellus nostra. | |||
Enim himenaeos ligula ultricies id pulvinar? Dignissim proin tellus convallis viverra fermentum fusce porttitor consectetur tristique non. Consectetur nascetur cum tristique ultrices, lacus lectus. Praesent ornare scelerisque eros, at blandit. Ullamcorper ad ullamcorper orci commodo elementum. Luctus parturient dolor id felis urna quis adipiscing nostra posuere nascetur. Facilisis auctor lectus sed montes mi facilisis. Mattis arcu facilisi nibh penatibus nisi. Sed mattis et tempus dui eget elementum tortor praesent placerat consequat tempor lobortis. Ad elementum nascetur egestas imperdiet mattis elit malesuada mollis potenti urna rhoncus dictumst. Dolor non porttitor quisque aliquet sit habitant ac duis platea porttitor odio risus. Donec natoque sodales eleifend cum, euismod lorem risus. Fames semper et libero senectus sociosqu faucibus convallis. Primis integer facilisi aenean malesuada et ut? Tempus praesent nulla primis. Torquent donec hendrerit egestas elit accumsan, adipiscing mauris id. Suscipit quis non. | |||
Mauris sagittis varius cras dis accumsan dapibus. Convallis risus in fames montes. Neque euismod conubia ipsum mus lorem etiam dignissim et dictumst curabitur non! Fames hac cras luctus ligula sollicitudin arcu egestas quis. Mus a pellentesque litora quam est neque sociosqu consectetur. Aenean urna semper dictum class. Vel bibendum est eleifend himenaeos venenatis. Mi ridiculus eleifend mattis sollicitudin lorem lorem. Volutpat tristique ante dolor per lorem. Semper consequat ad vestibulum ipsum. Pharetra venenatis quis praesent facilisi cras donec quam hac montes vulputate. Orci magna velit luctus habitasse. | |||
Facilisi sociosqu sollicitudin quisque dignissim sagittis morbi fusce. Facilisi velit at nibh pulvinar hac. Aenean ante penatibus sollicitudin nam nostra mollis cras volutpat nascetur per dui ullamcorper. Conubia laoreet, quisque integer sit gravida aptent dictum condimentum cubilia hendrerit fames. Primis quisque nam integer. Condimentum dolor urna natoque sagittis tristique ligula senectus orci habitant. Montes sapien feugiat fringilla aliquet interdum proin malesuada id posuere neque vivamus vivamus. Montes pretium aliquet commodo blandit eleifend consequat commodo ridiculus scelerisque tortor nostra venenatis. Mollis curae; facilisi proin cubilia varius. Enim venenatis magnis sagittis euismod montes, elit et cum libero. Bibendum sodales non porttitor. Eu dis egestas faucibus pretium varius elit suscipit facilisis montes dapibus. Semper, ullamcorper commodo vulputate turpis sit. Bibendum lacinia facilisis sociis ac placerat venenatis. Consectetur mattis. | |||
A laoreet felis suspendisse molestie imperdiet. Donec mollis elit vel fermentum nunc nec morbi nulla morbi massa mollis. Euismod pellentesque ultricies at pharetra placerat. Augue auctor libero cum faucibus magnis magna elementum primis! Fringilla facilisi iaculis class luctus tortor eros etiam placerat ac faucibus ante. Fames facilisi leo malesuada lacinia potenti cum tellus. Dapibus nibh ornare proin rutrum nunc ad blandit urna potenti? Primis at lobortis, gravida taciti fringilla sit est semper habitasse rutrum. Arcu hendrerit at augue tempor quisque neque elementum commodo viverra. Primis congue, vivamus donec dui. Dui nibh primis aliquam habitant feugiat non. Viverra cubilia tellus faucibus eros lectus? Penatibus lacinia curae; at? Porta primis imperdiet aenean quisque amet proin, morbi convallis conubia taciti. Ac blandit placerat pharetra est et augue donec mauris facilisis laoreet! Et senectus ultrices feugiat ut vulputate velit vulputate magna et. Penatibus nunc parturient. | |||
Quis ullamcorper porta malesuada ultrices hendrerit litora ultricies dui himenaeos luctus dapibus eu. Dictum lorem faucibus himenaeos libero montes himenaeos risus litora eros scelerisque fermentum potenti. Rutrum suspendisse iaculis urna at purus proin condimentum. Diam sodales fringilla dui lectus lectus felis! Congue suspendisse, facilisi ad. Et libero nibh magna praesent potenti. Cum et, tincidunt ornare. In dolor vehicula mattis? Mattis. | |||
Quam himenaeos nam risus elementum aptent molestie tincidunt ipsum imperdiet congue. In; integer eleifend euismod varius nibh tristique nibh sagittis nascetur class habitasse pellentesque! Dictum platea nascetur posuere himenaeos netus himenaeos ipsum. Rutrum turpis malesuada cubilia nunc hac eget, eu volutpat ultrices. Sem eros sociis, aliquam tristique integer. Vel viverra cum accumsan. Imperdiet tellus felis laoreet? Aliquam mollis quisque auctor ultricies hac, fames quisque! Lacinia mollis eget nulla ante velit. Tortor et potenti etiam faucibus aptent hendrerit velit platea magna vehicula pretium eu. Mollis, primis varius habitant morbi eu commodo accumsan sociis nulla. Lacinia ridiculus, consectetur dis interdum interdum risus. Dignissim nostra natoque sodales quam nisl eleifend vitae amet risus metus. Venenatis porta sem amet nostra facilisis augue? Tincidunt fusce interdum pellentesque tincidunt. Faucibus ridiculus magna blandit duis erat himenaeos in. Orci imperdiet dictum eget mattis non rutrum. Congue ante feugiat fames. | |||
Commodo vestibulum elit litora sem vel varius pharetra? Malesuada cursus vivamus placerat. Dui vulputate pulvinar neque consectetur interdum mollis cursus magnis vivamus ante? Gravida dis hendrerit montes est ornare donec et massa elit sed. Tristique nec parturient mauris vestibulum nunc magnis semper fringilla quisque dictum accumsan? Montes class dolor nisi laoreet tincidunt mattis. Dictumst suscipit fusce sem vehicula nostra. Quisque vehicula lorem eros nisi nam fringilla iaculis etiam ridiculus tempus iaculis platea. Sem euismod vitae euismod magnis torquent amet dui ridiculus nisl vestibulum nisl commodo. Nullam magna eget urna adipiscing bibendum maecenas? Primis facilisis convallis aliquam leo cras per dictumst praesent integer sed. Magna diam nullam etiam lorem lorem. Risus conubia lectus. | |||
Lectus venenatis, eget per sodales venenatis! Ornare egestas velit integer habitasse, mauris eleifend condimentum conubia metus. Litora lectus luctus porta pellentesque. Libero maecenas eros molestie? Libero euismod interdum nisl felis tellus enim! Nullam consectetur cum suspendisse curae; dui aenean vehicula risus. Interdum laoreet lacinia mollis. Penatibus taciti suscipit accumsan sem etiam vivamus. Risus et metus neque sodales dolor pulvinar turpis. Viverra facilisis fringilla montes odio phasellus tempor. Fermentum dui taciti non scelerisque sapien imperdiet a vestibulum. In adipiscing sociis. | |||
| image1 = Walter sutton.jpg | | image1 = Walter sutton.jpg | ||
| width1 = 140 | | width1 = 140 | ||
Line 130: | Line 29: | ||
| caption1 = | | caption1 = | ||
| image2 = Theodor Boveri.jpg | | image2 = Theodor Boveri.jpg | ||
| width2 = |
| width2 = 119 | ||
| alt2 = | | alt2 = | ||
| caption2 = | | caption2 = | ||
Line 136: | Line 35: | ||
}} | }} | ||
] was the first scientist to recognize the structures now known as chromosomes.<ref>{{cite journal | vauthors = Fokin SI | year = 2013 | title = Otto Bütschli (1848–1920) Where we will genuflect? | url=https://www.zin.ru/journals/protistology/num8_1/fokin_protistology_8-1.pdf | journal = Protistology | volume = 8 | issue = 1 | pages = 22–35 | url-status = dead |archive-url = https://web.archive.org/web/20210421055737/https://www.zin.ru/journals/protistology/num8_1/fokin_protistology_8-1.pdf |archive-date = 21 April 2021}}</ref> | |||
In a series of experiments beginning in the mid-1880s, ] gave definitive contributions to elucidating that chromosomes are the ] of heredity, with two notions that became known as |
In a series of experiments beginning in the mid-1880s, ] gave definitive contributions to elucidating that chromosomes are the ] of ], with two notions that became known as 'chromosome continuity' and 'chromosome individuality'.<ref>{{Cite journal|last=Maderspacher|first=Florian|year=2008|title=Theodor Boveri and the natural experiment|journal=Current Biology|volume=18|issue=7|pages=R279–R286|doi=10.1016/j.cub.2008.02.061|pmid=18397731|s2cid=15479331|doi-access=free|bibcode=2008CBio...18.R279M }}</ref> | ||
] suggested that |
] suggested that every chromosome carries a different ], and Boveri was able to test and confirm this hypothesis. Aided by the rediscovery at the start of the 1900s of ]'s earlier experimental work, Boveri identified the connection between the rules of inheritance and the behaviour of the chromosomes. Two generations of American ]s were influenced by Boveri: ], ], ] and ] (Wilson, Stevens, and Painter actually worked with him).<ref>{{cite book | last = Carlson | first = Elof A. | title = Mendel's Legacy: The Origin of Classical Genetics | location = Cold Spring Harbor, NY | publisher = Cold Spring Harbor Laboratory Press | pages = 88 | year = 2004 | isbn = 978-087969675-7 | url = http://www.cshlpress.com/pdf/sample/mendel7.pdf }}</ref> | ||
In his famous textbook ''The Cell in Development and Heredity'', Wilson linked together the independent work of Boveri and Sutton (both around 1902) by naming the chromosome theory of inheritance the ] ( |
In his famous textbook, ''The Cell in Development and Heredity'', Wilson linked together the independent work of Boveri and Sutton (both around 1902) by naming the chromosome theory of inheritance the ']' (sometimes known as the 'Sutton–Boveri chromosome theory').<ref>Wilson, E.B. (1925). ''The Cell in Development and Heredity'', Ed. 3. Macmillan, New York. p. 923.</ref> ] remarks that the theory was hotly contested by some famous geneticists, including ], ], ] and ], all of a rather dogmatic mindset. Eventually, absolute proof came from chromosome maps in Morgan's own laboratory.<ref>Mayr, E. (1982). ''The growth of biological thought''. Harvard. p. 749. {{ISBN|9780674364462}}</ref> | ||
The number of human chromosomes was published in 1923 |
The number of human chromosomes was published by Painter in 1923. By inspection through a microscope, he counted 24 pairs of chromosomes, giving 48 in total. His error was copied by others, and it was not until 1956 that the true number (46) was determined by Indonesian-born ] ].<ref>{{Cite journal|last=Gartler|first=Stanley M.|date=1 August 2006|title=The chromosome number in humans: a brief history|journal=Nature Reviews Genetics|volume=7|issue=8 |pages=655–660|doi=10.1038/nrg1917|pmid=16847465 |s2cid=21365693 }}</ref> | ||
{{cite web | |||
|title=The bizarre case of the chromosome that never was | |||
|first=Robert | |||
|last=Matthews | |||
|url=http://blogs.saschina.org/pudongtok/files/2010/03/Problems-with-authority-in-Science.pdf | |||
|access-date=13 July 2013 | |||
|url-status=dead | |||
|archive-url=https://web.archive.org/web/20131215103947/http://blogs.saschina.org/pudongtok/files/2010/03/Problems-with-authority-in-Science.pdf | |||
|archive-date=15 December 2013 | |||
}}{{self-published inline|date=November 2013}} | |||
</ref> | |||
==Prokaryotes== | |||
== Prokaryotes == | |||
{{Main|Nucleoid}} | {{Main|Nucleoid}} | ||
The ]s – bacteria and ] – typically have a single ] |
The ]s – ] and ] – typically have a single ].<ref>{{cite journal | vauthors = Thanbichler M, Shapiro L | title = Chromosome organization and segregation in bacteria | journal = Journal of Structural Biology | volume = 156 | issue = 2 | pages = 292–303 | date = November 2006 | pmid = 16860572 | doi = 10.1016/j.jsb.2006.05.007 }}</ref> The chromosomes of most bacteria (also called ]s), can range in size from only 130,000 ]s in the ] bacteria '']''<ref name="VanLeuven-2014">{{cite journal | vauthors = Van Leuven JT, Meister RC, Simon C, McCutcheon JP | title = Sympatric speciation in a bacterial endosymbiont results in two genomes with the functionality of one | journal = Cell | volume = 158 | issue = 6 | pages = 1270–1280 | date = September 2014 | pmid = 25175626 | doi = 10.1016/j.cell.2014.07.047 | s2cid = 11839535 | doi-access = free }}</ref> and '']'',<ref>{{cite journal | vauthors = McCutcheon JP, von Dohlen CD | title = An interdependent metabolic patchwork in the nested symbiosis of mealybugs | journal = Current Biology | volume = 21 | issue = 16 | pages = 1366–72 | date = August 2011 | pmid = 21835622 | pmc = 3169327 | doi = 10.1016/j.cub.2011.06.051 | bibcode = 2011CBio...21.1366M }}</ref> to more than 14,000,000 base pairs in the soil-dwelling bacterium '']''.<ref>{{cite journal | vauthors = Han K, Li ZF, Peng R, Zhu LP, Zhou T, Wang LG, Li SG, Zhang XB, Hu W, Wu ZH, Qin N, Li YZ | title = Extraordinary expansion of a Sorangium cellulosum genome from an alkaline milieu | journal = Scientific Reports | volume = 3 | pages = 2101 | year = 2013 | pmid = 23812535 | pmc = 3696898 | doi = 10.1038/srep02101 | bibcode = 2013NatSR...3.2101H }}</ref> | ||
Some bacteria have more than one chromosome. For instance, ]s such as '']'' (causing ]), contain a single ''linear'' chromosome.<ref>{{cite journal | vauthors = Hinnebusch J, Tilly K | title = Linear plasmids and chromosomes in bacteria | journal = Molecular Microbiology | volume = 10 | issue = 5 | pages = 917–22 | date = December 1993 | pmid = 7934868 | doi = 10.1111/j.1365-2958.1993.tb00963.x | s2cid = 23852021 | url = https://zenodo.org/record/1230611 }}</ref> '']s'' typically carry two chromosomes of very different size. Genomes of the genus '']'' carry one, two, or three chromosomes.<ref>{{Cite journal |last1=Touchon |first1=Marie |last2=Rocha |first2=Eduardo P.C. |date=January 2016 |title=Coevolution of the Organization and Structure of Prokaryotic Genomes |journal=Cold Spring Harbor Perspectives in Biology |language=en |volume=8 |issue=1 |pages=a018168 |doi=10.1101/cshperspect.a018168 |issn=1943-0264 |pmc=4691797 |pmid=26729648}}</ref> | |||
=== Structure in sequences === | === Structure in sequences === | ||
Prokaryotic chromosomes have less sequence-based structure than eukaryotes. Bacteria typically have a one-point (the ]) from which replication starts, whereas some archaea contain multiple replication origins.<ref>{{cite journal | vauthors = Kelman LM, Kelman Z | title = Multiple origins of replication in archaea | journal = Trends in Microbiology | volume = 12 | issue = 9 | pages = 399–401 | date = September 2004 | pmid = 15337158 | doi = 10.1016/j.tim.2004.07.001 }}</ref> The genes in prokaryotes are often organized in ] |
Prokaryotic chromosomes have less sequence-based structure than eukaryotes. Bacteria typically have a one-point (the ]) from which replication starts, whereas some archaea contain multiple replication origins.<ref>{{cite journal | vauthors = Kelman LM, Kelman Z | title = Multiple origins of replication in archaea | journal = Trends in Microbiology | volume = 12 | issue = 9 | pages = 399–401 | date = September 2004 | pmid = 15337158 | doi = 10.1016/j.tim.2004.07.001 }}</ref> The genes in prokaryotes are often organized in ]s and do not usually contain ]s, unlike eukaryotes. | ||
=== DNA packaging === | === DNA packaging === | ||
]s do not possess nuclei. Instead, their DNA is organized into a structure called the ].<ref>{{cite journal | vauthors = Thanbichler M, Wang SC, Shapiro L | title = The bacterial nucleoid: a highly organized and dynamic structure | journal = Journal of Cellular Biochemistry | volume = 96 | issue = 3 | pages = 506–21 | date = October 2005 | pmid = 15988757 | doi = 10.1002/jcb.20519 | s2cid = 25355087 | doi-access = free }}</ref><ref name=" |
]s do not possess nuclei. Instead, their DNA is organized into a structure called the ].<ref>{{cite journal | vauthors = Thanbichler M, Wang SC, Shapiro L | title = The bacterial nucleoid: a highly organized and dynamic structure | journal = Journal of Cellular Biochemistry | volume = 96 | issue = 3 | pages = 506–21 | date = October 2005 | pmid = 15988757 | doi = 10.1002/jcb.20519 | s2cid = 25355087 | doi-access = free }}</ref><ref name="Le-2013">{{cite journal | vauthors = Le TB, Imakaev MV, Mirny LA, Laub MT | title = High-resolution mapping of the spatial organization of a bacterial chromosome | journal = Science | volume = 342 | issue = 6159 | pages = 731–4 | date = November 2013 | pmid = 24158908 | pmc = 3927313 | doi = 10.1126/science.1242059 | bibcode = 2013Sci...342..731L }}</ref> The nucleoid is a distinct structure and occupies a defined region of the bacterial cell. This structure is, however, dynamic and is maintained and remodeled by the actions of a range of histone-like proteins, which associate with the bacterial chromosome.<ref>{{cite journal | vauthors = Sandman K, Pereira SL, Reeve JN | title = Diversity of prokaryotic chromosomal proteins and the origin of the nucleosome | journal = Cellular and Molecular Life Sciences | volume = 54 | issue = 12 | pages = 1350–64 | date = December 1998 | pmid = 9893710 | doi = 10.1007/s000180050259 | s2cid = 21101836 | pmc = 11147202 }}</ref> In ], the DNA in chromosomes is even more organized, with the DNA packaged within structures similar to eukaryotic nucleosomes.<ref>{{cite journal | vauthors = Sandman K, Reeve JN | title = Structure and functional relationships of archaeal and eukaryal histones and nucleosomes | journal = Archives of Microbiology | volume = 173 | issue = 3 | pages = 165–9 | date = March 2000 | pmid = 10763747 | doi = 10.1007/s002039900122 | bibcode = 2000ArMic.173..165S | s2cid = 28946064 }}</ref><ref>{{cite journal | vauthors = Pereira SL, Grayling RA, Lurz R, Reeve JN | title = Archaeal nucleosomes | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 94 | issue = 23 | pages = 12633–7 | date = November 1997 | pmid = 9356501 | pmc = 25063 | doi = 10.1073/pnas.94.23.12633 | bibcode = 1997PNAS...9412633P | doi-access = free }}</ref> | ||
Certain bacteria also contain ]s or other ]. These are circular structures in the ] that contain cellular DNA and play a role in ].<ref name=" |
Certain bacteria also contain ]s or other ]. These are circular structures in the ] that contain cellular DNA and play a role in ].<ref name="Schleyden-1847" /> In prokaryotes and viruses,<ref name="Johnson-2000">{{cite journal | vauthors = Johnson JE, Chiu W | title = Structures of virus and virus-like particles | journal = Current Opinion in Structural Biology | volume = 10 | issue = 2 | pages = 229–35 | date = April 2000 | pmid = 10753814 | doi = 10.1016/S0959-440X(00)00073-7 }}</ref> the DNA is often densely packed and organized; in the case of archaea, by homology to eukaryotic histones, and in the case of bacteria, by ] proteins. | ||
Bacterial chromosomes tend to be tethered to the ] of the bacteria. In molecular biology application, this allows for its isolation from plasmid DNA by centrifugation of lysed bacteria and pelleting of the membranes (and the attached DNA). | Bacterial chromosomes tend to be tethered to the ] of the bacteria. In molecular biology application, this allows for its isolation from plasmid DNA by centrifugation of lysed bacteria and pelleting of the membranes (and the attached DNA). | ||
Prokaryotic chromosomes and plasmids are, like eukaryotic DNA, generally ]. The DNA must first be released into its relaxed state for access for ], regulation, and ]. | Prokaryotic chromosomes and plasmids are, like eukaryotic DNA, generally ]. The DNA must first be released into its relaxed state for access for ], regulation, and ]. | ||
== Eukaryotes == | == Eukaryotes == | ||
{{Main|Chromatin}} | {{Main|Chromatin}} | ||
{{See also|DNA condensation|Nucleosome|Histone|Protamine}} | {{See also|DNA condensation|Nucleosome|Histone|Protamine}} | ||
{{See also|Eukaryotic chromosome fine structure}} | {{See also|Eukaryotic chromosome fine structure}} | ||
] | |||
Each eukaryotic chromosome consists of a long linear ] associated with ]s, forming a compact complex of proteins and DNA called ''].'' Chromatin contains the vast majority of the DNA in an organism, but a ] inherited maternally can be found in the ]. It is present in most ], with a few exceptions, for example, ]s. | |||
] | |||
]s are responsible for the first and most basic unit of chromosome organization, the ]. | |||
Each eukaryotic chromosome consists of a long linear DNA molecule associated with proteins, forming a compact complex of proteins and DNA called ''].'' Chromatin contains the vast majority of the DNA of an organism, but a ] inherited maternally, can be found in the ]. It is present in most ], with a few exceptions, for example, ]s. | |||
]s (] with nuclei such as those found in plants, fungi, and animals) possess multiple large linear chromosomes contained in the cell's nucleus. Each chromosome has one ], with one or two arms projecting from the centromere, although, under most circumstances, these arms are not visible as such. In addition, most eukaryotes have a small circular ], and some eukaryotes may have additional small circular or linear ]ic chromosomes. | |||
] are responsible for the first and most basic unit of chromosome organization, the ]. | |||
], the ], the 10 nm "beads-on-a-string" fibre, the 30 nm fibre and the ] chromosome]] | |||
] (] with nuclei such as those found in plants, fungi, and animals) possess multiple large linear chromosomes contained in the cell's nucleus. Each chromosome has one ], with one or two arms projecting from the centromere, although, under most circumstances, these arms are not visible as such. In addition, most eukaryotes have a small circular ] ], and some eukaryotes may have additional small circular or linear ]ic chromosomes. | |||
In the nuclear chromosomes of eukaryotes, the uncondensed DNA exists in a semi-ordered structure, where it is wrapped around ]s (structural proteins), forming a composite material called chromatin. | |||
], the ], the 10 nm "beads-on-a-string" fibre, the 30 nm fibre and the ] chromosome.]]In the nuclear chromosomes of ]s, the uncondensed DNA exists in a semi-ordered structure, where it is wrapped around ]s (structural ]s), forming a composite material called ]. | |||
=== Interphase chromatin === | === Interphase chromatin === | ||
The packaging of DNA into nucleosomes causes a 10 nanometer fibre which may further condense up to 30 nm fibres<ref name=" |
The packaging of DNA into nucleosomes causes a 10 nanometer fibre which may further condense up to 30 nm fibres<ref name="Cooper-2019" /> Most of the euchromatin in interphase nuclei appears to be in the form of 30-nm fibers.<ref name="Cooper-2019" /> Chromatin structure is the more decondensed state, i.e. the 10-nm conformation allows transcription.<ref name="Cooper-2019" /> | ||
] | ] | ||
During ] (the period of the ] where the cell is not dividing), two types of |
During ] (the period of the ] where the cell is not dividing), two types of chromatin can be distinguished: | ||
* ], which consists of DNA that is active, e.g., being expressed as protein. | * ], which consists of DNA that is active, e.g., being expressed as protein. | ||
* ], which consists of mostly inactive DNA. It seems to serve structural purposes during the chromosomal stages. Heterochromatin can be further distinguished into two types: | * ], which consists of mostly inactive DNA. It seems to serve structural purposes during the chromosomal stages. Heterochromatin can be further distinguished into two types: | ||
** ''Constitutive heterochromatin'', which is never expressed. It is located around the centromere and usually contains ]. | ** ''Constitutive heterochromatin'', which is never expressed. It is located around the centromere and usually contains ]. | ||
** ''Facultative heterochromatin'', which is sometimes expressed. | ** ''Facultative heterochromatin'', which is sometimes expressed. | ||
=== Metaphase chromatin and division === | === Metaphase chromatin and division === | ||
{{ |
{{See also|mitosis|meiosis}} | ||
]]] | |||
]]] | |||
<!-- too many pictures! ], with highlighted ]]] --> | |||
] | ] | ||
In the early stages of ] or ] (cell division), the chromatin double helix |
In the early stages of ] or ] (cell division), the chromatin double helix becomes more and more condensed. They cease to function as accessible genetic material (] stops) and become a compact transportable form. The loops of thirty-nanometer chromatin fibers are thought to fold upon themselves further to form the compact metaphase chromosomes of mitotic cells. The DNA is thus condensed about ten-thousand-fold.<ref name="Cooper-2019">{{Cite book|last1=Cooper|first1=G.M.|title=The Cell|publisher=]|year=2019|isbn=978-1605357072|edition=8}}</ref> | ||
The chromosome |
The ], which is made of proteins such as ], ] and ],<ref>{{Cite journal|last1=Poonperm|first1=Rawin|last2=Takata|first2=Hideaki|last3=Hamano|first3=Tohru|last4=Matsuda|first4=Atsushi|last5=Uchiyama|first5=Susumu|last6=Hiraoka|first6=Yasushi|last7=Fukui|first7=Kiichi|date=1 July 2015|title=Chromosome Scaffold is a Double-Stranded Assembly of Scaffold Proteins|journal=Scientific Reports|volume=5|issue=1|pages=11916|doi=10.1038/srep11916|pmid=26132639|pmc=4487240|bibcode=2015NatSR...511916P}}</ref> plays an important role in holding the chromatin into compact chromosomes. Loops of thirty-nanometer structure further condense with scaffold into higher order structures.<ref>{{Cite book|last1=Lodish|first1=U.H.|title=Molecular Cell Biology|last2=Lodish|first2=H.|last3=Berk|first3=A.|last4=Kaiser|first4=C.A.|last5=Kaiser|first5=C.|last6=Kaiser|first6=U.C.A.|last7=Krieger|first7=M.|last8=Scott|first8=M.P.|last9=Bretscher|first9=A.|year=2008|publisher=W. H. Freeman|isbn=978-0-7167-7601-7|last10=Ploegh|first10=H.|last11=others}}</ref> | ||
This highly compact form makes the individual chromosomes visible, and they form the classic four |
This highly compact form makes the individual chromosomes visible, and they form the classic four-arm structure, a pair of sister ]s attached to each other at the ]. The shorter arms are called '']s'' (from the French ''petit'', small) and the longer arms are called '']s'' (''q'' follows ''p'' in the Latin alphabet; q-g "grande"; alternatively it is sometimes said q is short for ''queue'' meaning tail in French<ref>"" ''Nature Education'' – 13 August 2013</ref>). This is the only natural context in which individual chromosomes are visible with an optical ]. | ||
Mitotic metaphase chromosomes are best described by a linearly organized longitudinally compressed array of consecutive chromatin loops.<ref name=" |
Mitotic metaphase chromosomes are best described by a linearly organized longitudinally compressed array of consecutive chromatin loops.<ref name="Naumova-2013">{{cite journal | vauthors = Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR, Mirny LA, Dekker J | title = Organization of the mitotic chromosome | journal = Science | volume = 342 | issue = 6161 | pages = 948–53 | date = November 2013 | pmid = 24200812 | pmc = 4040465 | doi = 10.1126/science.1236083 | bibcode = 2013Sci...342..948N }}</ref> | ||
During mitosis, ]s grow from centrosomes located at opposite ends of the cell and also attach to the centromere at specialized structures called ], one of which is present on each sister ]. A special DNA base sequence in the region of the kinetochores provides, along with special proteins, longer-lasting attachment in this region. The microtubules then pull the chromatids apart toward the centrosomes, so that each daughter cell inherits one set of chromatids. Once the cells have divided, the chromatids are uncoiled and DNA can again be transcribed. In spite of their appearance, chromosomes are structurally highly condensed, which enables these giant DNA structures to be contained within a cell nucleus. | During mitosis, ]s grow from centrosomes located at opposite ends of the cell and also attach to the centromere at specialized structures called ]s, one of which is present on each sister ]. A special DNA base sequence in the region of the kinetochores provides, along with special proteins, longer-lasting attachment in this region. The microtubules then pull the chromatids apart toward the centrosomes, so that each daughter cell inherits one set of chromatids. Once the cells have divided, the chromatids are uncoiled and DNA can again be transcribed. In spite of their appearance, chromosomes are structurally highly condensed, which enables these giant DNA structures to be contained within a cell nucleus. | ||
=== Human chromosomes === | === Human chromosomes === | ||
Line 225: | Line 111: | ||
|+ | |+ | ||
|- | |- | ||
! Chromosome !! ]s<ref>{{Cite web|url=http://apr2013.archive.ensembl.org/Homo_sapiens/Location/Chromosome?r=1:1-1000000|title=Ensembl genome browser 71: Homo sapiens – Chromosome summary – Chromosome 1: 1–1,000,000|website=apr2013.archive.ensembl.org|access-date=11 April 2016}}</ref> !! Total ] !! % of bases |
! Chromosome !! ]s<ref>{{Cite web|url=http://apr2013.archive.ensembl.org/Homo_sapiens/Location/Chromosome?r=1:1-1000000|title=Ensembl genome browser 71: Homo sapiens – Chromosome summary – Chromosome 1: 1–1,000,000|website=apr2013.archive.ensembl.org|access-date=11 April 2016}}</ref> !! Total ] !! % of bases | ||
!% sequenced base pairs | |||
|- | |- | ||
| ] ||2000|| 247,199,719 ||8.0 |
| ] ||2000|| 247,199,719 ||8.0 | ||
|91.02% | |||
|- | |- | ||
| ] ||1300|| 242,751,149 ||7.9 |
| ] ||1300|| 242,751,149 ||7.9 | ||
|97.92% | |||
|- | |- | ||
| ] ||1000|| 199,446,827 ||6.5 |
| ] ||1000|| 199,446,827 ||6.5 | ||
|97.62% | |||
|- | |- | ||
| ] ||1000|| 191,263,063 ||6.2 |
| ] ||1000|| 191,263,063 ||6.2 | ||
|97.93% | |||
|- | |- | ||
| ] ||900|| 180,837,866 ||5.9 |
| ] ||900|| 180,837,866 ||5.9 | ||
|98.27% | |||
|- | |- | ||
| ] ||1000|| 170,896,993 ||5.5 |
| ] ||1000|| 170,896,993 ||5.5 | ||
|97.88% | |||
|- | |- | ||
| ] ||900|| 158,821,424 ||5.2 |
| ] ||900|| 158,821,424 ||5.2 | ||
|97.56% | |||
|- | |- | ||
| ] ||700|| 146,274,826 ||4.7 |
| ] ||700|| 146,274,826 ||4.7 | ||
|97.50% | |||
|- | |- | ||
| ] ||800|| 140,442,298 ||4.6 |
| ] ||800|| 140,442,298 ||4.6 | ||
|85.67% | |||
|- | |- | ||
| ] ||700|| 135,374,737 ||4.4 |
| ] ||700|| 135,374,737 ||4.4 | ||
|97.23% | |||
|- | |- | ||
| ] ||1300|| 134,452,384 ||4.4 |
| ] ||1300|| 134,452,384 ||4.4 | ||
|97.53% | |||
|- | |- | ||
| ] ||1100|| 132,289,534 ||4.3 |
| ] ||1100|| 132,289,534 ||4.3 | ||
|98.50% | |||
|- | |- | ||
| ] ||300|| 114,127,980 ||3.7 |
| ] ||300|| 114,127,980 ||3.7 | ||
|83.73% | |||
|- | |- | ||
| ] ||800|| 106,360,585 ||3.5 |
| ] ||800|| 106,360,585 ||3.5 | ||
|83.01% | |||
|- | |- | ||
| ] ||600|| 100,338,915 ||3.3 |
| ] ||600|| 100,338,915 ||3.3 | ||
|81.07% | |||
|- | |- | ||
| ] ||800|| 88,822,254 ||2.9 |
| ] ||800|| 88,822,254 ||2.9 | ||
|88.81% | |||
|- | |- | ||
| ] ||1200|| 78,654,742 ||2.6 |
| ] ||1200|| 78,654,742 ||2.6 | ||
|98.91% | |||
|- | |- | ||
| ] ||200|| 76,117,153 ||2.5 |
| ] ||200|| 76,117,153 ||2.5 | ||
|98.08% | |||
|- | |- | ||
| ] ||1500|| 63,806,651 ||2.1 |
| ] ||1500|| 63,806,651 ||2.1 | ||
|87.43% | |||
|- | |- | ||
| ] ||500|| 62,435,965 ||2.0 |
| ] ||500|| 62,435,965 ||2.0 | ||
|95.31% | |||
|- | |- | ||
| ] ||200|| 46,944,323 ||1.5 |
| ] ||200|| 46,944,323 ||1.5 | ||
|72.79% | |||
|- | |- | ||
| ] ||500|| 49,528,953 ||1.6 |
| ] ||500|| 49,528,953 ||1.6 | ||
|70.45% | |||
|- | |- | ||
| ] ||800|| 154,913,754 ||5.0 |
| ] ||800|| 154,913,754 ||5.0 | ||
|97.51% | |||
|- | |- | ||
| ] ||200<ref name=" |
| ] ||200<ref name="NCBI-1998">{{Cite book| title = Genes and Disease| chapter = Chromosome Map| publisher = National Center for Biotechnology Information| location = Bethesda, Maryland|url = https://www.ncbi.nlm.nih.gov/books/NBK22266/#A296| year = 1998}}</ref>|| 57,741,652 ||1.9 | ||
|43.51% | |||
|- class="sortbottom" | |- class="sortbottom" | ||
! Total ||style="text-align:right"| 21,000 ||style="text-align:right"| 3,079,843,747 ||style="text-align:right"| 100.0 |
! Total ||style="text-align:right"| 21,000 ||style="text-align:right"| 3,079,843,747 ||style="text-align:right"| 100.0 | ||
|'''92.79%''' | |||
|} | |} | ||
Based on the micrographic characteristics of size, position of the ] and sometimes the presence of a ], the human chromosomes are classified into the following groups:<ref>The colors of each row match those of the karyogram (see Karyotype section)</ref><ref>{{cite journal|author1=Erwinsyah, R.|author2=Riandi|author3=Nurjhani, M.|year=2017|title=Relevance of human chromosome analysis activities against mutation concept in genetics course. IOP Conference Series.|journal=Materials Science and Engineering|doi=10.1088/1757-899x/180/1/012285|s2cid=90739754 |doi-access=free}}</ref> | |||
{|class=wikitable | |||
! Group | |||
! Chromosomes | |||
! Features | |||
|- style="background:lavenderblush" | |||
| '''A''' | |||
| 1–3 | |||
| Large, metacentric or submetacentric | |||
|- style="background:honeydew" | |||
| '''B''' | |||
| 4–5 | |||
| Large, submetacentric | |||
|- style="background:lightyellow" | |||
| '''C''' | |||
| 6–12, X | |||
| Medium-sized, submetacentric | |||
|- style="background:linen" | |||
| '''D''' | |||
| 13–15 | |||
| Medium-sized, acrocentric, with ] | |||
|- style="background:lightcyan" | |||
| '''E''' | |||
| 16–18 | |||
| Small, metacentric or submetacentric | |||
|- style="background:lavender" | |||
| '''F''' | |||
| 19–20 | |||
| Very small, metacentric | |||
|- style="background:lavenderblush" | |||
| '''G''' | |||
| 21–22, Y | |||
| Very small, acrocentric (and 21, 22 with ]) | |||
|} | |||
== Karyotype == | |||
{{Main|Karyotype}} | |||
] | |||
] of a human, with annotated ]. It is a graphical representation of the idealized human ] karyotype. It shows dark and white regions on ]. Each row is vertically aligned at ] level. It shows 22 ]s, both the female (XX) and male (XY) versions of the ] (bottom right), as well as the ] (at bottom left). {{further|Karyotype}}]] | |||
In general, the ] is the characteristic chromosome complement of a ] ].<ref>{{cite book |author=White, M. J. D. |title=The chromosomes |url=https://archive.org/details/chromosomes01whit |url-access=registration |publisher=Chapman and Hall, distributed by Halsted Press, New York |location=London |year=1973 |page=28 |isbn=978-0-412-11930-9 |edition=6th}}</ref> The preparation and study of karyotypes is part of ]. | |||
Although the ] and ] of ] is highly standardized in eukaryotes, the same cannot be said for their karyotypes, which are often highly variable. There may be variation between species in chromosome number and in detailed organization. | |||
In some cases, there is significant variation within species. Often there is: | |||
:1. variation between the two sexes | |||
:2. variation between the ] and ] (between ]s and the rest of the body) | |||
:3. variation between members of a population, due to ] | |||
:4. ] between ] | |||
:5. ] or otherwise abnormal individuals. | |||
Also, variation in karyotype may occur during development from the fertilized egg. | |||
The technique of determining the karyotype is usually called ''karyotyping''. Cells can be locked part-way through division (in metaphase) ] (in a reaction vial) with ]. These cells are then stained, photographed, and arranged into a ''karyogram'', with the set of chromosomes arranged, autosomes in order of length, and sex chromosomes (here X/Y) at the end. | |||
Like many sexually reproducing species, humans have special ] (sex chromosomes, in contrast to ]s). These are XX in females and XY in males. <!--- Irrelevant in this section:"In females, one of the two X chromosomes is inactive and can be seen under a microscope as ]."---> | |||
=== History and analysis techniques === | |||
{{See also|Argument from authority#Use in science}} | |||
Investigation into the human karyotype took many years to settle the most basic question: ''How many chromosomes does a normal ] human cell contain?'' In 1912, ] reported 47 chromosomes in ] and 48 in ], concluding an ] ].<ref>{{cite journal |author=von Winiwarter H |title=Études sur la spermatogenèse humaine |journal=Archives de Biologie |volume=27 |issue=93 |pages=147–9 |year=1912}}</ref> In 1922, ] was not certain whether the diploid number of man is 46 or 48, at first favouring 46.<ref>{{cite journal |author=Painter TS |title=The spermatogenesis of man |journal=Anat. Res.|volume=23 |page=129 |year=1922}}</ref> He revised his opinion later from 46 to 48, and he correctly insisted on humans having an ] system.<ref>{{cite journal|last1=Painter|first1=Theophilus S.|title=Studies in mammalian spermatogenesis. II. The spermatogenesis of man|journal=Journal of Experimental Zoology|date=April 1923|volume=37|issue=3|pages=291–336|doi=10.1002/jez.1400370303|bibcode=1923JEZ....37..291P }}</ref> | |||
New techniques were needed to definitively solve the problem: | |||
# Using cells in culture | |||
# Arresting ] in ] by a solution of ] | |||
# Pretreating cells in a ] {{nowrap|0.075 M KCl}}, which swells them and spreads the chromosomes | |||
# Squashing the preparation on the slide forcing the chromosomes into a single plane | |||
# Cutting up a photomicrograph and arranging the result into an indisputable karyogram. | |||
It took until 1954 before the human diploid number was confirmed as 46.<ref>{{cite journal |doi=10.1111/j.1601-5223.1956.tb03010.x | vauthors = Tjio JH, Levan A | title=The chromosome number of man |journal=Hereditas |volume=42 |pages=723–4 |year=1956 |issue=1–2| pmid = 345813 |hdl=10261/15776 |doi-access=free }}</ref><ref>{{cite journal | vauthors = Ford CE, Hamerton JL | title = The chromosomes of man | journal = Nature | volume = 178 | issue = 4541 | pages = 1020–3 | date = November 1956 | pmid = 13378517 | doi = 10.1038/1781020a0 | bibcode = 1956Natur.178.1020F | s2cid = 4155320 }}</ref> Considering the techniques of Winiwarter and Painter, their results were quite remarkable.<ref>Hsu T.C. (1979) ''Human and mammalian cytogenetics: a historical perspective''. Springer-Verlag, N.Y. {{ISBN|9780387903644}} p. 10: "It's amazing that he even came close!"</ref> ], the closest living relatives to modern humans, have 48 chromosomes as do the other ]: in humans two chromosomes fused to form ]. | |||
== Aberrations == | |||
{{Main|Chromosome abnormality}} | |||
] | |||
Chromosomal aberrations are disruptions in the normal chromosomal content of a cell. They can cause genetic conditions in humans, such as ],<ref>{{Citation |title=Chromosomal Abnormalities |date=8 July 2009 |url=https://www.ncbi.nlm.nih.gov/books/NBK115545/ |work=Understanding Genetics: A New York, Mid-Atlantic Guide for Patients and Health Professionals |access-date=27 September 2023 |publisher=Genetic Alliance |language=en}}</ref> although most aberrations have little to no effect. Some chromosome abnormalities do not cause disease in carriers, such as ], or ]s, although they may lead to a higher chance of bearing a child with a chromosome disorder.{{citation needed|date=April 2024}} Abnormal numbers of chromosomes or chromosome sets, called ], may be lethal or may give rise to genetic disorders.<ref>{{cite journal | vauthors = Santaguida S, Amon A | title = Short- and long-term effects of chromosome mis-segregation and aneuploidy | journal = Nature Reviews. Molecular Cell Biology | volume = 16 | issue = 8 | pages = 473–85 | date = August 2015 | pmid = 26204159 | doi = 10.1038/nrm4025 | hdl = 1721.1/117201 | s2cid = 205495880 | url = http://dspace.mit.edu/bitstream/1721.1/117201/1/Amon1.pdf }}</ref> ] is offered for families that may carry a chromosome rearrangement. | |||
The gain or loss of DNA from chromosomes can lead to a variety of ]s.<ref>{{Cite web |title=Genetic Disorders |url=https://medlineplus.gov/geneticdisorders.html |access-date=27 April 2022 |website=medlineplus.gov}}</ref> Human examples include: | |||
* ], caused by the ] of part of the short arm of chromosome 5. "Cri du chat" means "cry of the cat" in French; the condition was so-named because affected babies make high-pitched cries that sound like those of a cat. Affected individuals have wide-set eyes, a small head and jaw, moderate to severe mental health problems, and are very short. | |||
* ], also known as 22q11.2 deletion syndrome. Symptoms are mild learning disabilities in children, with adults having an increased risk of ]. Infections are also common in children because of problems with the immune system's T cell-mediated response due to an absence of hypoplastic thymus.<ref>{{Cite web |title=DiGeorge Syndrome |url=https://www.ncbi.nlm.nih.gov/books/NBK549798 |access-date=8 August 2023 |website=www.ncbi.nlm.nih.gov}}</ref> | |||
* ], the most common trisomy, usually caused by an extra copy of chromosome 21 (]). Characteristics include decreased muscle tone, stockier build, asymmetrical skull, slanting eyes, and mild to moderate developmental disability.<ref>{{cite book|last=Miller|first=Kenneth R. | name-list-style = vanc | title=Biology|url=https://archive.org/details/biology0000mill|url-access=limited|publisher=Prentice Hall|location=Upper Saddle River, New Jersey|year=2000|edition=5th |pages=–5|chapter=Chapter 9-3|isbn=978-0-13-436265-6}}</ref> | |||
* ], or trisomy-18, the second most common trisomy.<ref>{{cite web|title=What is Trisomy 18?|url=http://www.trisomy18.org/what-is-trisomy-18/|website=Trisomy 18 Foundation|access-date=4 February 2017|archive-date=30 January 2017|archive-url=https://web.archive.org/web/20170130142121/http://www.trisomy18.org/what-is-trisomy-18/|url-status=dead}}</ref> Symptoms include motor retardation, developmental disability, and numerous congenital anomalies causing serious health problems. Ninety percent of those affected die in infancy. They have characteristic clenched hands and overlapping fingers. | |||
* ], also called idic(15), partial tetrasomy 15q, or inverted duplication 15 (inv dup 15). | |||
* ], which is very rare. It is also called the 11q terminal deletion disorder.<ref>{{Cite web|url=https://chromosome11.org/en/disorders/11q-long-arm/terminal-deletion/jacobsen-syndrome/ |title=Terminal deletion |website=European Chromosome 11 Network |access-date=20 February 2023}}</ref> Those affected have normal intelligence or mild developmental disability, with poor expressive language skills. Most have a bleeding disorder called ]. | |||
* ] (XXY). Men with Klinefelter syndrome are usually sterile, and tend to be taller than their peers, with longer arms and legs. Boys with the syndrome are often shy and quiet, and have a higher incidence of ] and ]. Without testosterone treatment, some may develop ] during puberty. | |||
* ], also called D-Syndrome or trisomy-13. Symptoms are somewhat similar to those of trisomy-18, without the characteristic folded hand. | |||
* ]. This means there is an extra, abnormal chromosome. Features depend on the origin of the extra genetic material. ] and ] (or Idic15) are both caused by a supernumerary marker chromosome, as is ]. | |||
* ] (XXX). XXX girls tend to be tall and thin, and have a higher incidence of dyslexia. | |||
* ] (X instead of XX or XY). In Turner syndrome, female sexual characteristics are present but underdeveloped. Females with Turner syndrome often have a short stature, low hairline, abnormal eye features and bone development, and a "caved-in" appearance to the chest. | |||
* ], caused by partial deletion of the short arm of chromosome 4. It is characterized by growth retardation, delayed motor skills development, "Greek Helmet" facial features, and mild to profound mental health problems. | |||
* ]. XYY boys are usually taller than their siblings. Like XXY boys and XXX girls, they are more likely to have learning difficulties. | |||
===Sperm aneuploidy=== | |||
Exposure of males to certain lifestyle, environmental and/or occupational hazards may increase the risk of aneuploid spermatozoa.<ref name="Templado-2013">{{cite journal | vauthors = Templado C, Uroz L, Estop A | title = New insights on the origin and relevance of aneuploidy in human spermatozoa | journal = Molecular Human Reproduction | volume = 19 | issue = 10 | pages = 634–43 | date = October 2013 | pmid = 23720770 | doi = 10.1093/molehr/gat039 | doi-access = }}</ref> In particular, risk of aneuploidy is increased by tobacco smoking,<ref name="Shi-2001">{{cite journal | vauthors = Shi Q, Ko E, Barclay L, Hoang T, Rademaker A, Martin R | title = Cigarette smoking and aneuploidy in human sperm | journal = Molecular Reproduction and Development | volume = 59 | issue = 4 | pages = 417–21 | date = August 2001 | pmid = 11468778 | doi = 10.1002/mrd.1048 | s2cid = 35230655 }}</ref><ref name="Rubes-1998">{{cite journal | vauthors = Rubes J, Lowe X, Moore D, Perreault S, Slott V, Evenson D, Selevan SG, Wyrobek AJ | title = Smoking cigarettes is associated with increased sperm disomy in teenage men | journal = Fertility and Sterility | volume = 70 | issue = 4 | pages = 715–23 | date = October 1998 | pmid = 9797104 | doi = 10.1016/S0015-0282(98)00261-1 | doi-access = free }}</ref> and occupational exposure to benzene,<ref name="Xing-2010">{{cite journal | vauthors = Xing C, Marchetti F, Li G, Weldon RH, Kurtovich E, Young S, Schmid TE, Zhang L, Rappaport S, Waidyanatha S, Wyrobek AJ, Eskenazi B | title = Benzene exposure near the U.S. permissible limit is associated with sperm aneuploidy | journal = Environmental Health Perspectives | volume = 118 | issue = 6 | pages = 833–9 | date = June 2010 | pmid = 20418200 | pmc = 2898861 | doi = 10.1289/ehp.0901531 | bibcode = 2010EnvHP.118..833X }}</ref> insecticides,<ref name="Xia-2004">{{cite journal | vauthors = Xia Y, Bian Q, Xu L, Cheng S, Song L, Liu J, Wu W, Wang S, Wang X | title = Genotoxic effects on human spermatozoa among pesticide factory workers exposed to fenvalerate | journal = Toxicology | volume = 203 | issue = 1–3 | pages = 49–60 | date = October 2004 | pmid = 15363581 | doi = 10.1016/j.tox.2004.05.018 | bibcode = 2004Toxgy.203...49X | s2cid = 36073841 }}</ref><ref name="Xia-2005">{{cite journal | vauthors = Xia Y, Cheng S, Bian Q, Xu L, Collins MD, Chang HC, Song L, Liu J, Wang S, Wang X | title = Genotoxic effects on spermatozoa of carbaryl-exposed workers | journal = Toxicological Sciences | volume = 85 | issue = 1 | pages = 615–23 | date = May 2005 | pmid = 15615886 | doi = 10.1093/toxsci/kfi066 | doi-access = free }}</ref> and perfluorinated compounds.<ref name="Governini-2015">{{cite journal | vauthors = Governini L, Guerranti C, De Leo V, Boschi L, Luddi A, Gori M, Orvieto R, Piomboni P | title = Chromosomal aneuploidies and DNA fragmentation of human spermatozoa from patients exposed to perfluorinated compounds | journal = Andrologia | volume = 47 | issue = 9 | pages = 1012–9 | date = November 2015 | pmid = 25382683 | doi = 10.1111/and.12371 | hdl = 11365/982323 | s2cid = 13484513 | doi-access = free }}</ref> Increased aneuploidy is often associated with increased DNA damage in spermatozoa. | |||
== Number in various organisms == | == Number in various organisms == | ||
{{ |
{{Main|List of organisms by chromosome count}} | ||
=== In eukaryotes === | === In eukaryotes === | ||
The number of chromosomes in ]s is highly variable. It is possible for chromosomes to fuse or break and thus evolve into novel karyotypes. Chromosomes can also be fused artificially. For example, when the 16 chromosomes of ] were fused into one giant chromosome, it was found that the cells were still viable with only somewhat reduced growth rates.<ref>{{Cite journal|last1=Shao|first1=Yangyang|last2=Lu|first2=Ning|last3=Wu|first3=Zhenfang|last4=Cai|first4=Chen|last5=Wang|first5=Shanshan|last6=Zhang|first6=Ling-Li|last7=Zhou|first7=Fan|last8=Xiao|first8=Shijun|last9=Liu|first9=Lin|last10=Zeng|first10=Xiaofei|last11=Zheng|first11=Huajun|date=August 2018|title=Creating a functional single-chromosome yeast|url=https://www.nature.com/articles/s41586-018-0382-x|journal=Nature|language=en|volume=560|issue=7718|pages=331–335|doi=10.1038/s41586-018-0382-x|pmid=30069045|bibcode=2018Natur.560..331S|s2cid=51894920|issn=1476-4687|url-access=subscription}}</ref> | |||
These tables give the total number of chromosomes (including sex chromosomes) in a cell nucleus. For example, most ] are ], like ] who have 22 different types of ]s, each present as two homologous pairs, and two ]. This gives 46 chromosomes in total. Other organisms have more than two copies of their chromosome types, such as ], which is ''hexaploid'' and has six copies of seven different chromosome types – 42 chromosomes in total. | |||
The tables below give the total number of chromosomes (including sex chromosomes) in a cell nucleus for various eukaryotes. Most are ], such as ] who have 22 different types of ]s—each present as two homologous pairs—and two ]s, giving 46 chromosomes in total. Some other organisms have more than two copies of their chromosome types, for example ] which is ''hexaploid'', having six copies of seven different chromosome types for a total of 42 chromosomes. | |||
{| border="0" | {| border="0" | ||
| STYLE="vertical-align: top"| | | STYLE="vertical-align: top"| | ||
Line 314: | Line 269: | ||
|+ Chromosome numbers in some plants | |+ Chromosome numbers in some plants | ||
|- | |- | ||
! Plant |
! Plant species !! # | ||
|- | |- | ||
| |
| ] (diploid)<ref>{{cite journal | vauthors = Armstrong SJ, Jones GH | title = Meiotic cytology and chromosome behaviour in wild-type Arabidopsis thaliana | journal = Journal of Experimental Botany | volume = 54 | issue = 380 | pages = 1–10 | date = January 2003 | pmid = 12456750 | doi = 10.1093/jxb/54.380.1 | doi-access = free }}</ref> || 10 | ||
|- | |- | ||
| ] (diploid)<ref>{{cite journal | vauthors = Gill BS, Kimber G | title = The Giemsa C-banded karyotype of rye | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 71 | issue = 4 | pages = 1247–9 | date = April 1974 | pmid = 4133848 | pmc = 388202 | doi = 10.1073/pnas.71.4.1247 | bibcode = 1974PNAS...71.1247G }}</ref> || 14 | | ] (diploid)<ref>{{cite journal | vauthors = Gill BS, Kimber G | title = The Giemsa C-banded karyotype of rye | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 71 | issue = 4 | pages = 1247–9 | date = April 1974 | pmid = 4133848 | pmc = 388202 | doi = 10.1073/pnas.71.4.1247 | bibcode = 1974PNAS...71.1247G | doi-access = free }}</ref> || 14 | ||
|- | |- | ||
| ] (diploid)<ref name=Dubcovsky>{{cite journal | vauthors = Dubcovsky J, Luo MC, Zhong GY, Bransteitter R, Desai A, Kilian A, Kleinhofs A, Dvorák J | title = Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L | journal = Genetics | volume = 143 | issue = 2 | pages = 983–99 | date = June 1996 | doi = 10.1093/genetics/143.2.983 | pmid = 8725244 | pmc = 1207354 }}</ref> || 14 | | ] (diploid)<ref name="Dubcovsky-1996">{{cite journal | vauthors = Dubcovsky J, Luo MC, Zhong GY, Bransteitter R, Desai A, Kilian A, Kleinhofs A, Dvorák J | title = Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L | journal = Genetics | volume = 143 | issue = 2 | pages = 983–99 | date = June 1996 | doi = 10.1093/genetics/143.2.983 | pmid = 8725244 | pmc = 1207354 }}</ref> || 14 | ||
|- | |- | ||
| Maize (diploid or palaeotetraploid)<ref>{{cite journal | vauthors = Kato A, Lamb JC, Birchler JA | title = Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 101 | issue = 37 | pages = 13554–9 | date = September 2004 | pmid = 15342909 | pmc = 518793 | doi = 10.1073/pnas.0403659101 | bibcode = 2004PNAS..10113554K }}</ref> || 20 | | ] (diploid or palaeotetraploid)<ref>{{cite journal | vauthors = Kato A, Lamb JC, Birchler JA | title = Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 101 | issue = 37 | pages = 13554–9 | date = September 2004 | pmid = 15342909 | pmc = 518793 | doi = 10.1073/pnas.0403659101 | bibcode = 2004PNAS..10113554K | doi-access = free }}</ref> || 20 | ||
|- | |- | ||
| ] (tetraploid)<ref name=Dubcovsky/> || 28 | | ] (tetraploid)<ref name="Dubcovsky-1996"/> || 28 | ||
|- | |- | ||
| ] (hexaploid)<ref name=Dubcovsky/> || 42 | | ] (hexaploid)<ref name="Dubcovsky-1996"/> || 42 | ||
|- | |- | ||
| ] (tetraploid)<ref>{{cite journal | vauthors = Kenton A, Parokonny AS, Gleba YY, Bennett MD | title = Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics | journal = Molecular & General Genetics | volume = 240 | issue = 2 | pages = 159–69 | date = August 1993 | pmid = 8355650 | doi = 10.1007/BF00277053 | s2cid = 6953185 }}</ref> || 48 | | ] (tetraploid)<ref>{{cite journal | vauthors = Kenton A, Parokonny AS, Gleba YY, Bennett MD | title = Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics | journal = Molecular & General Genetics | volume = 240 | issue = 2 | pages = 159–69 | date = August 1993 | pmid = 8355650 | doi = 10.1007/BF00277053 | s2cid = 6953185 }}</ref> || 48 | ||
|- | |- | ||
| ] (polyploid)<ref>{{cite journal | vauthors = Leitch IJ, Soltis DE, Soltis PS, Bennett MD | title = Evolution of DNA amounts across land plants (embryophyta) | journal = Annals of Botany | volume = 95 | issue = 1 | pages = 207–17 | date = January 2005 | pmid = 15596468 | doi = 10.1093/aob/mci014 | author-link3 = Pamela S. Soltis | pmc = 4246719 }}</ref> || approx. 1,200 | | ] (polyploid)<ref>{{cite journal | vauthors = Leitch IJ, Soltis DE, Soltis PS, Bennett MD | title = Evolution of DNA amounts across land plants (embryophyta) | journal = Annals of Botany | volume = 95 | issue = 1 | pages = 207–17 | date = January 2005 | pmid = 15596468 | doi = 10.1093/aob/mci014 | author-link3 = Pamela S. Soltis | pmc = 4246719 }}</ref> || approx. 1,200 | ||
|} | |} | ||
| STYLE="vertical-align: top"| | | STYLE="vertical-align: top"| | ||
Line 338: | Line 293: | ||
! Species !! # | ! Species !! # | ||
|- | |- | ||
| ] || |
| ] || 6♀, 7♂ | ||
|- | |- | ||
| ] || 8 | | ] || 8 | ||
|- | |- | ||
| ] |
| ]<ref>{{cite journal |author1=Ambarish, C.N. |author2=Sridhar, K.R.|title=Cytological and karyological observations on two endemic giant pill-millipedes ''Arthrosphaera'' (Pocock 1895) (Diplopoda: Sphaerotheriida) of the Western Ghats of India | doi = 10.1080/00087114.2014.891700 |journal=Caryologia |volume=67 |issue=1|year=2014|pages=49–56|s2cid=219554731 }}</ref> || 30 | ||
|- | |- | ||
| ] |
| ]<ref>{{cite journal | vauthors = Vitturi R, Colomba MS, Pirrone AM, Mandrioli M | title = rDNA (18S–28S and 5S) colocalization and linkage between ribosomal genes and (TTAGGG)(n) telomeric sequence in the earthworm, ''Octodrilus complanatus'' (Annelida: Oligochaeta: Lumbricidae), revealed by single- and double-color FISH | journal = The Journal of Heredity | volume = 93 | issue = 4 | pages = 279–82 | year = 2002 | pmid = 12407215 | doi = 10.1093/jhered/93.4.279 | doi-access = free }}</ref> || 36 | ||
|- | |- | ||
| ] || 36 | | ] || 36 | ||
|- | |- | ||
| ]<ref>{{cite journal | vauthors = Nie W, Wang J, O'Brien PC, Fu B, Ying T, Ferguson-Smith MA, Yang F | title = The genome phylogeny of domestic cat, red panda and five mustelid species revealed by comparative chromosome painting and G-banding | journal = Chromosome Research | volume = 10 | issue = 3 | pages = 209–22 | |
| ]<ref>{{cite journal | vauthors = Nie W, Wang J, O'Brien PC, Fu B, Ying T, Ferguson-Smith MA, Yang F | title = The genome phylogeny of domestic cat, red panda and five mustelid species revealed by comparative chromosome painting and G-banding | journal = Chromosome Research | volume = 10 | issue = 3 | pages = 209–22 | year = 2002 | pmid = 12067210 | doi = 10.1023/A:1015292005631 | s2cid = 9660694 }}</ref> || 38 | ||
|- | |- | ||
| ] || 38 | | ] || 38 | ||
|- | |- | ||
| ]<ref name=Romanenko>{{cite journal | vauthors = Romanenko SA, Perelman PL, Serdukova NA, Trifonov VA, Biltueva LS, Wang J, Li T, Nie W, O'Brien PC, Volobouev VT, Stanyon R, Ferguson-Smith MA, Yang F, Graphodatsky AS | title = Reciprocal chromosome painting between three laboratory rodent species | journal = Mammalian Genome | volume = 17 | issue = 12 | pages = 1183–92 | date = December 2006 | pmid = 17143584 | doi = 10.1007/s00335-006-0081-z | s2cid = 41546146 }}</ref><ref name=Painter>{{cite journal | vauthors = Painter TS | title = A Comparison of the Chromosomes of the Rat and Mouse with Reference to the Question of Chromosome Homology in Mammals | journal = Genetics | volume = 13 | issue = 2 | pages = 180–9 | date = March 1928 | doi = 10.1093/genetics/13.2.180 | pmid = 17246549 | pmc = 1200977 }}</ref> || 40 | | ]<ref name="Romanenko-2006">{{cite journal | vauthors = Romanenko SA, Perelman PL, Serdukova NA, Trifonov VA, Biltueva LS, Wang J, Li T, Nie W, O'Brien PC, Volobouev VT, Stanyon R, Ferguson-Smith MA, Yang F, Graphodatsky AS | title = Reciprocal chromosome painting between three laboratory rodent species | journal = Mammalian Genome | volume = 17 | issue = 12 | pages = 1183–92 | date = December 2006 | pmid = 17143584 | doi = 10.1007/s00335-006-0081-z | s2cid = 41546146 }}</ref><ref name="Painter-1928">{{cite journal | vauthors = Painter TS | title = A Comparison of the Chromosomes of the Rat and Mouse with Reference to the Question of Chromosome Homology in Mammals | journal = Genetics | volume = 13 | issue = 2 | pages = 180–9 | date = March 1928 | doi = 10.1093/genetics/13.2.180 | pmid = 17246549 | pmc = 1200977 }}</ref> || 40 | ||
|- | |- | ||
| ]<ref name=Painter/> || 42 | | ]<ref name="Painter-1928"/> || 42 | ||
|- | |- | ||
| Rabbit |
| ]<ref>{{cite journal | vauthors = Hayes H, Rogel-Gaillard C, Zijlstra C, De Haan NA, Urien C, Bourgeaux N, Bertaud M, Bosma AA | title = Establishment of an R-banded rabbit karyotype nomenclature by FISH localization of 23 chromosome-specific genes on both G- and R-banded chromosomes | journal = Cytogenetic and Genome Research | volume = 98 | issue = 2–3 | pages = 199–205 | year = 2002 | pmid = 12698004 | doi = 10.1159/000069807 | s2cid = 29849096 }}</ref> || 44 | ||
|- | |- | ||
| ]<ref name=Romanenko/> || 44 | | ]<ref name="Romanenko-2006"/> || 44 | ||
|- | |- | ||
| ] |
| ]<ref>{{cite web |url=http://fancyguppy.webs.com/genetics.htm |title=The Genetics of the Popular Aquarium Pet – Guppy Fish |access-date=6 December 2009 |archive-date=31 May 2023 |archive-url=https://web.archive.org/web/20230531003513/https://fancyguppy.webs.com/genetics.htm |url-status=dead }}</ref> || 46 | ||
|- | |- | ||
| Human<ref name=Grouchy/> ||46 | | Human<ref name="De Grouchy-1987"/> ||46 | ||
|- | |- | ||
| ] |
| ]<ref>{{cite journal | vauthors = Robinson TJ, Yang F, Harrison WR | title = Chromosome painting refines the history of genome evolution in hares and rabbits (order Lagomorpha) | journal = Cytogenetic and Genome Research | volume = 96 | issue = 1–4 | pages = 223–7 | year = 2002 | pmid = 12438803 | doi = 10.1159/000063034 | s2cid = 19327437 }}</ref><ref>{{citation |url=https://books.google.com/books?id=Q994k86i0zYC|title=Rabbits, Hares and Pikas. Status Survey and Conservation Action Plan |section= section 4.W4 |pages= 61–94|isbn=9782831700199 | last1 = Chapman | first1 = Joseph A |last2=Flux |first2=John E. C | name-list-style = vanc | year=1990 }}</ref>|| 48 | ||
|- | |- | ||
| ] |
| ]<ref name="De Grouchy-1987">{{cite journal | vauthors = De Grouchy J | title = Chromosome phylogenies of man, great apes, and Old World monkeys | journal = Genetica | volume = 73 | issue = 1–2 | pages = 37–52 | date = August 1987 | pmid = 3333352 | doi = 10.1007/bf00057436 | s2cid = 1098866 }}</ref> || 48 | ||
|- | |||
| ] | |||
|48 | |||
|- | |- | ||
| ] || 54 | | ] || 54 | ||
|- | |- | ||
| ]<ref>{{cite journal | vauthors = Vitturi R, Libertini A, Sineo L, Sparacio I, Lannino A, Gregorini A, Colomba M | title = Cytogenetics of the land snails Cantareus aspersus and C. mazzullii (Mollusca: Gastropoda: Pulmonata) | journal = Micron | volume = 36 | issue = 4 | pages = 351–7 | |
| ]<ref>{{cite journal | vauthors = Vitturi R, Libertini A, Sineo L, Sparacio I, Lannino A, Gregorini A, Colomba M | title = Cytogenetics of the land snails Cantareus aspersus and C. mazzullii (Mollusca: Gastropoda: Pulmonata) | journal = Micron | volume = 36 | issue = 4 | pages = 351–7 | year = 2005 | pmid = 15857774 | doi = 10.1016/j.micron.2004.12.010 }}</ref> || 54 | ||
|- | |- | ||
| ]<ref>{{cite journal | vauthors = Yasukochi Y, Ashakumary LA, Baba K, Yoshido A, Sahara K | title = A second-generation integrated map of the silkworm reveals synteny and conserved gene order between lepidopteran insects | journal = Genetics | volume = 173 | issue = 3 | pages = 1319–28 | date = July 2006 | pmid = 16547103 | pmc = 1526672 | doi = 10.1534/genetics.106.055541 }}</ref> || 56 | | ]<ref>{{cite journal | vauthors = Yasukochi Y, Ashakumary LA, Baba K, Yoshido A, Sahara K | title = A second-generation integrated map of the silkworm reveals synteny and conserved gene order between lepidopteran insects | journal = Genetics | volume = 173 | issue = 3 | pages = 1319–28 | date = July 2006 | pmid = 16547103 | pmc = 1526672 | doi = 10.1534/genetics.106.055541 }}</ref> || 56 | ||
|- | |- | ||
| ]<ref>{{cite journal | vauthors = Houck ML, Kumamoto AT, Gallagher DS, Benirschke K | title = Comparative cytogenetics of the African elephant (Loxodonta africana) and Asiatic elephant (Elephas maximus) | journal = Cytogenetics and Cell Genetics | volume = 93 | issue = 3–4 | pages = 249–52 | |
| ]<ref>{{cite journal | vauthors = Houck ML, Kumamoto AT, Gallagher DS, Benirschke K | title = Comparative cytogenetics of the African elephant (Loxodonta africana) and Asiatic elephant (Elephas maximus) | journal = Cytogenetics and Cell Genetics | volume = 93 | issue = 3–4 | pages = 249–52 | year = 2001 | pmid = 11528120 | doi = 10.1159/000056992 | s2cid = 23529399 }}</ref> || 56<!-- taxon? --> | ||
|- | |- | ||
| ] || 60 | | ] || 60 | ||
|- | |- | ||
| ] || 62 | | ] || 62 | ||
Line 384: | Line 342: | ||
| ] || 64 | | ] || 64 | ||
|- | |- | ||
| ]<ref>{{cite journal | vauthors = Wayne RK, Ostrander EA | title = Origin, genetic diversity, and genome structure of the domestic dog | journal = BioEssays | volume = 21 | issue = 3 | pages = 247–57 | date = March 1999 | pmid = 10333734 | doi = 10.1002/(SICI)1521-1878(199903)21:3<247::AID-BIES9>3.0.CO;2-Z }}</ref> || 78 | | ]<ref>{{cite journal | vauthors = Wayne RK, Ostrander EA | title = Origin, genetic diversity, and genome structure of the domestic dog | journal = BioEssays | volume = 21 | issue = 3 | pages = 247–57 | date = March 1999 | pmid = 10333734 | doi = 10.1002/(SICI)1521-1878(199903)21:3<247::AID-BIES9>3.0.CO;2-Z | s2cid = 5547543 }}</ref> || 78 | ||
|- | |- | ||
| ] || 90 | | ] || 90 | ||
|- | |- | ||
| ]<ref>{{cite journal | vauthors = Ciudad J, Cid E, Velasco A, Lara JM, Aijón J, Orfao A | title = Flow cytometry measurement of the DNA contents of G0/G1 diploid cells from three different teleost fish species | journal = Cytometry | volume = 48 | issue = 1 | pages = 20–5 | date = May 2002 | pmid = 12116377 | doi = 10.1002/cyto.10100 | doi-access = |
| ]<ref>{{cite journal | vauthors = Ciudad J, Cid E, Velasco A, Lara JM, Aijón J, Orfao A | title = Flow cytometry measurement of the DNA contents of G0/G1 diploid cells from three different teleost fish species | journal = Cytometry | volume = 48 | issue = 1 | pages = 20–5 | date = May 2002 | pmid = 12116377 | doi = 10.1002/cyto.10100 | doi-access = }}</ref> || 100–104 | ||
|- | |- | ||
| ]<ref>{{cite journal | vauthors = Burt DW | title = Origin and evolution of avian microchromosomes | journal = Cytogenetic and Genome Research | volume = 96 | issue = 1–4 | pages = 97–112 | |
| ]<ref>{{cite journal | vauthors = Burt DW | title = Origin and evolution of avian microchromosomes | journal = Cytogenetic and Genome Research | volume = 96 | issue = 1–4 | pages = 97–112 | year = 2002 | pmid = 12438785 | doi = 10.1159/000063018 | s2cid = 26017998 }}</ref> || 132 | ||
|} | |} | ||
| STYLE="vertical-align: top"| | | STYLE="vertical-align: top"| | ||
Line 396: | Line 354: | ||
|+ Chromosome numbers in other organisms | |+ Chromosome numbers in other organisms | ||
|- | |- | ||
! Species !! Large<br /> |
! Species !! Large<br />chromosomes !! Intermediate<br />chromosomes !! ]s | ||
|- | |- | ||
| '']'' || 11 || 6 || ≈100 | | '']'' || 11 || 6 || ≈100 | ||
|- | |- | ||
|] |
| ]<ref>{{cite journal |doi=10.1266/jjg.44.163 |title=A Comparative Karyotype Study in Fourteen Species of Birds |year=1969 |last1=Itoh |first1=Masahiro |last2=Ikeuchi |first2=Tatsuro |last3=Shimba |first3=Hachiro |last4=Mori |first4=Michiko |last5=Sasaki |first5=Motomichi |last6=Makino |first6=Sajiro | name-list-style = vanc |journal=The Japanese Journal of Genetics |volume=44 |issue=3 |pages=163–170|url=https://www.jstage.jst.go.jp/article/ggs1921/44/3/44_3_163/_pdf |doi-access=free }}</ref> || 18 || – || 59–63 | ||
|- | |- | ||
| Chicken<ref>{{cite journal | vauthors = Smith J, Burt DW | title = Parameters of the chicken genome (Gallus gallus) | journal = Animal Genetics | volume = 29 | issue = 4 | pages = 290–4 | date = August 1998 | pmid = 9745667 | doi = 10.1046/j.1365-2052.1998.00334.x }}</ref> || 8 || 2 sex chromosomes || 60 | | Chicken<ref>{{cite journal | vauthors = Smith J, Burt DW | title = Parameters of the chicken genome (Gallus gallus) | journal = Animal Genetics | volume = 29 | issue = 4 | pages = 290–4 | date = August 1998 | pmid = 9745667 | doi = 10.1046/j.1365-2052.1998.00334.x }}</ref> || 8 || 2 sex chromosomes || 60 | ||
Line 406: | Line 364: | ||
|} | |} | ||
Normal members of a particular eukaryotic |
Normal members of a particular eukaryotic species all have the same number of nuclear chromosomes. Other eukaryotic chromosomes, i.e., mitochondrial and plasmid-like small chromosomes, are much more variable in number, and there may be thousands of copies per cell. | ||
] during ] in ] cells]] | ] during ] in ] cells]] | ||
] species have one set of chromosomes that are the same in all body cells. However, asexual species can be either haploid or diploid. | ] species have one set of chromosomes that are the same in all body cells. However, asexual species can be either haploid or diploid. | ||
] species have ]s (body cells) |
] species have ]s (body cells) that are ] , having two sets of chromosomes (23 pairs in humans), one set from the mother and one from the father. ]s (reproductive cells) are ] , having one set of chromosomes. Gametes are produced by ] of a diploid ] cell, during which the matching chromosomes of father and mother can exchange small parts of themselves (]) and thus create new chromosomes that are not inherited solely from either parent. When a male and a female gamete merge during ], a new diploid organism is formed. | ||
Some animal and plant species are ] |
Some animal and plant species are ] , having more than two sets of ]s. Important crops such as tobacco or wheat are often polyploid, compared to their ancestral species. Wheat has a haploid number of seven chromosomes, still seen in some ]s as well as the wild progenitors. The more common types of pasta and bread are polyploid, having 28 (tetraploid) and 42 (hexaploid) chromosomes, compared to the 14 (diploid) chromosomes in wild wheat.<ref>{{cite journal |last1=Sakamura |first1=Tetsu |year=1918 |title= Kurze Mitteilung über die Chromosomenzahlen und die Verwandtschaftsverhältnisse der Triticum-Arten |journal= Shokubutsugaku Zasshi |volume=32 |issue=379 |pages=150–3 |doi=10.15281/jplantres1887.32.379_150|url=https://www.jstage.jst.go.jp/article/jplantres1887/32/379/32_379_150/_pdf |doi-access=free }}</ref> | ||
=== In prokaryotes === | === In prokaryotes === | ||
] |
] species generally have one copy of each major chromosome, but most cells can easily survive with multiple copies.<ref>Charlebois R.L. (ed) 1999. ''Organization of the prokaryote genome''. ASM Press, Washington DC.</ref> For example, '']'', a ] of ]s has multiple copies of its chromosome, ranging from 10 to 400 copies per cell.<ref>{{cite journal | vauthors = Komaki K, Ishikawa H | title = Genomic copy number of intracellular bacterial symbionts of aphids varies in response to developmental stage and morph of their host | journal = Insect Biochemistry and Molecular Biology | volume = 30 | issue = 3 | pages = 253–8 | date = March 2000 | pmid = 10732993 | doi = 10.1016/S0965-1748(99)00125-3 | bibcode = 2000IBMB...30..253K }}</ref> However, in some large bacteria, such as '']'' up to 100,000 copies of the chromosome can be present.<ref>{{cite journal | vauthors = Mendell JE, Clements KD, Choat JH, Angert ER | title = Extreme polyploidy in a large bacterium | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 105 | issue = 18 | pages = 6730–4 | date = May 2008 | pmid = 18445653 | pmc = 2373351 | doi = 10.1073/pnas.0707522105 | bibcode = 2008PNAS..105.6730M | doi-access = free }}</ref> Plasmids and plasmid-like small chromosomes are, as in eukaryotes, highly variable in copy number. The number of plasmids in the cell is almost entirely determined by the rate of division of the plasmid – fast division causes high copy number. | ||
== Karyotype == | |||
{{main|Karyotype}} | |||
] | |||
In general, the ] is the characteristic chromosome complement of a ] ].<ref>{{cite book |author=White, M. J. D. |title=The chromosomes |url=https://archive.org/details/chromosomes01whit |url-access=registration |publisher=Chapman and Hall, distributed by Halsted Press, New York |location=London |date=1973 |page=28 |isbn=978-0-412-11930-9 |edition=6th}}</ref> The preparation and study of karyotypes is part of ]. | |||
Although the ] and ] of ] is highly standardized in ], the same cannot be said for their karyotypes, which are often highly variable. There may be variation between species in chromosome number and in detailed organization. | |||
In some cases, there is significant variation within species. Often there is: | |||
:1. variation between the two sexes | |||
:2. variation between the ] and ] (between ]s and the rest of the body) | |||
:3. variation between members of a population, due to ] | |||
:4. ] between ] | |||
:5. ] or otherwise abnormal individuals. | |||
Also, variation in karyotype may occur during development from the fertilized egg. | |||
The technique of determining the karyotype is usually called ''karyotyping''. Cells can be locked part-way through division (in metaphase) ] (in a reaction vial) with ]. These cells are then stained, photographed, and arranged into a ''karyogram'', with the set of chromosomes arranged, autosomes in order of length, and sex chromosomes (here X/Y) at the end. | |||
Like many sexually reproducing species, humans have special ] (sex chromosomes, in contrast to ]s). These are XX in females and XY in males. <!--- Irrelevant in this section:"In females, one of the two X chromosomes is inactive and can be seen under a microscope as ]."---> | |||
=== History and analysis techniques === | |||
{{see also|Argument from authority#Use in science}} | |||
Investigation into the human karyotype took many years to settle the most basic question: ''How many chromosomes does a normal ] human cell contain?'' In 1912, ] reported 47 chromosomes in ] and 48 in ], concluding an ] ].<ref>{{cite journal |author=von Winiwarter H |title=Études sur la spermatogenèse humaine |journal=Archives de Biologie |volume=27 |issue=93 |pages=147–9 |date=1912}}</ref> ] in 1922 was not certain whether the diploid number of man is 46 or 48, at first favouring 46.<ref>{{cite journal |author=Painter TS |title=The spermatogenesis of man |journal=Anat. Res.|volume=23 |page=129 |date=1922}}</ref> He revised his opinion later from 46 to 48, and he correctly insisted on humans having an ] system.<ref>{{cite journal|last1=Painter|first1=Theophilus S.|title=Studies in mammalian spermatogenesis. II. The spermatogenesis of man|journal=Journal of Experimental Zoology|date=April 1923|volume=37|issue=3|pages=291–336|doi=10.1002/jez.1400370303}}</ref> | |||
New techniques were needed to definitively solve the problem: | |||
# Using cells in culture | |||
# Arresting ] in ] by a solution of ] | |||
# Pretreating cells in a ] 0.075 M KCl, which swells them and spreads the chromosomes | |||
# Squashing the preparation on the slide forcing the chromosomes into a single plane | |||
# Cutting up a photomicrograph and arranging the result into an indisputable karyogram. | |||
It took until 1954 before the human diploid number was confirmed as 46.<ref>{{cite journal |doi=10.1111/j.1601-5223.1956.tb03010.x | vauthors = Tjio JH, Levan A | title=The chromosome number of man |journal=Hereditas |volume=42 |pages=723–4 |date=1956 |issue=1–2| pmid = 345813 |hdl=10261/15776 |doi-access=free }}</ref><ref>{{cite journal | vauthors = Ford CE, Hamerton JL | title = The chromosomes of man | journal = Nature | volume = 178 | issue = 4541 | pages = 1020–3 | date = November 1956 | pmid = 13378517 | doi = 10.1038/1781020a0 | bibcode = 1956Natur.178.1020F | s2cid = 4155320 }}</ref> Considering the techniques of Winiwarter and Painter, their results were quite remarkable.<ref>Hsu T.C. (1979) ''Human and mammalian cytogenetics: a historical perspective''. Springer-Verlag, N.Y. {{ISBN|9780387903644}} p. 10: "It's amazing that he even came close!"</ref> ]s, the closest living relatives to modern humans, have 48 chromosomes as do the other ]: in humans two chromosomes fused to form ]. | |||
== Aberrations == | |||
] | |||
Chromosomal aberrations are disruptions in the normal chromosomal content of a cell and are a major cause of genetic conditions in humans, such as ], although most aberrations have little to no effect. Some chromosome abnormalities do not cause disease in carriers, such as ], or ], although they may lead to a higher chance of bearing a child with a chromosome disorder. Abnormal numbers of chromosomes or chromosome sets, called ], may be lethal or may give rise to genetic disorders.<ref>{{cite journal | vauthors = Santaguida S, Amon A | title = Short- and long-term effects of chromosome mis-segregation and aneuploidy | journal = Nature Reviews. Molecular Cell Biology | volume = 16 | issue = 8 | pages = 473–85 | date = August 2015 | pmid = 26204159 | doi = 10.1038/nrm4025 | hdl = 1721.1/117201 | s2cid = 205495880 | url = http://dspace.mit.edu/bitstream/1721.1/117201/1/Amon1.pdf }}</ref> ] is offered for families that may carry a chromosome rearrangement. | |||
The gain or loss of DNA from chromosomes can lead to a variety of ]. Human examples include: | |||
* ], which is caused by the ] of part of the short arm of chromosome 5. "Cri du chat" means "cry of the cat" in French; the condition was so-named because affected babies make high-pitched cries that sound like those of a cat. Affected individuals have wide-set eyes, a small head and jaw, moderate to severe mental health problems, and are very short. | |||
* ], the most common trisomy, usually caused by an extra copy of chromosome 21 (]). Characteristics include decreased muscle tone, stockier build, asymmetrical skull, slanting eyes and mild to moderate developmental disability.<ref>{{cite book|last=Miller|first=Kenneth R. | name-list-style = vanc | title=Biology|url=https://archive.org/details/biology0000mill|url-access=limited|publisher=Prentice Hall|location=Upper Saddle River, New Jersey|date=2000|edition=5th |pages=–5|chapter=Chapter 9-3|isbn=978-0-13-436265-6}}</ref> | |||
* ], or trisomy-18, the second most common trisomy.<ref>{{cite web|title=What is Trisomy 18?|url=http://www.trisomy18.org/what-is-trisomy-18/|website=Trisomy 18 Foundation|access-date=4 February 2017}}</ref> Symptoms include motor retardation, developmental disability and numerous congenital anomalies causing serious health problems. Ninety percent of those affected die in infancy. They have characteristic clenched hands and overlapping fingers. | |||
* ], also called idic(15), partial tetrasomy 15q, or inverted duplication 15 (inv dup 15). | |||
* ], which is very rare. It is also called the terminal 11q deletion disorder.<ref>{{failed verification|date=November 2013}}</ref> Those affected have normal intelligence or mild developmental disability, with poor expressive language skills. Most have a bleeding disorder called ]. | |||
* ] (XXY). Men with Klinefelter syndrome are usually sterile and tend to be taller and have longer arms and legs than their peers. Boys with the syndrome are often shy and quiet and have a higher incidence of ] and ]. Without testosterone treatment, some may develop ] during puberty. | |||
* ], also called D-Syndrome or trisomy-13. Symptoms are somewhat similar to those of trisomy-18, without the characteristic folded hand. | |||
* ]. This means there is an extra, abnormal chromosome. Features depend on the origin of the extra genetic material. ] and ] (or Idic15) are both caused by a supernumerary marker chromosome, as is ]. | |||
* ] (XXX). XXX girls tend to be tall and thin and have a higher incidence of dyslexia. | |||
* ] (X instead of XX or XY). In Turner syndrome, female sexual characteristics are present but underdeveloped. Females with Turner syndrome often have a short stature, low hairline, abnormal eye features and bone development and a "caved-in" appearance to the chest. | |||
* ], which is caused by partial deletion of the short arm of chromosome 4. It is characterized by growth retardation, delayed motor skills development, "Greek Helmet" facial features, and mild to profound mental health problems. | |||
* ]. XYY boys are usually taller than their siblings. Like XXY boys and XXX girls, they are more likely to have learning difficulties. | |||
===Sperm aneuploidy=== | |||
Exposure of males to certain lifestyle, environmental and/or occupational hazards may increase the risk of aneuploid spermatozoa.<ref name="pmid23720770">{{cite journal | vauthors = Templado C, Uroz L, Estop A | title = New insights on the origin and relevance of aneuploidy in human spermatozoa | journal = Molecular Human Reproduction | volume = 19 | issue = 10 | pages = 634–43 | date = October 2013 | pmid = 23720770 | doi = 10.1093/molehr/gat039 | doi-access = free }}</ref> In particular, risk of aneuploidy is increased by tobacco smoking,<ref name="pmid11468778">{{cite journal | vauthors = Shi Q, Ko E, Barclay L, Hoang T, Rademaker A, Martin R | title = Cigarette smoking and aneuploidy in human sperm | journal = Molecular Reproduction and Development | volume = 59 | issue = 4 | pages = 417–21 | date = August 2001 | pmid = 11468778 | doi = 10.1002/mrd.1048 | s2cid = 35230655 }}</ref><ref name="pmid9797104">{{cite journal | vauthors = Rubes J, Lowe X, Moore D, Perreault S, Slott V, Evenson D, Selevan SG, Wyrobek AJ | title = Smoking cigarettes is associated with increased sperm disomy in teenage men | journal = Fertility and Sterility | volume = 70 | issue = 4 | pages = 715–23 | date = October 1998 | pmid = 9797104 | doi = 10.1016/S0015-0282(98)00261-1 }}</ref> and occupational exposure to benzene,<ref name="pmid20418200">{{cite journal | vauthors = Xing C, Marchetti F, Li G, Weldon RH, Kurtovich E, Young S, Schmid TE, Zhang L, Rappaport S, Waidyanatha S, Wyrobek AJ, Eskenazi B | title = Benzene exposure near the U.S. permissible limit is associated with sperm aneuploidy | journal = Environmental Health Perspectives | volume = 118 | issue = 6 | pages = 833–9 | date = June 2010 | pmid = 20418200 | pmc = 2898861 | doi = 10.1289/ehp.0901531 }}</ref> insecticides,<ref name="pmid15363581">{{cite journal | vauthors = Xia Y, Bian Q, Xu L, Cheng S, Song L, Liu J, Wu W, Wang S, Wang X | title = Genotoxic effects on human spermatozoa among pesticide factory workers exposed to fenvalerate | journal = Toxicology | volume = 203 | issue = 1–3 | pages = 49–60 | date = October 2004 | pmid = 15363581 | doi = 10.1016/j.tox.2004.05.018 }}</ref><ref name="pmid15615886">{{cite journal | vauthors = Xia Y, Cheng S, Bian Q, Xu L, Collins MD, Chang HC, Song L, Liu J, Wang S, Wang X | title = Genotoxic effects on spermatozoa of carbaryl-exposed workers | journal = Toxicological Sciences | volume = 85 | issue = 1 | pages = 615–23 | date = May 2005 | pmid = 15615886 | doi = 10.1093/toxsci/kfi066 | doi-access = free }}</ref> and perfluorinated compounds.<ref name="pmid25382683">{{cite journal | vauthors = Governini L, Guerranti C, De Leo V, Boschi L, Luddi A, Gori M, Orvieto R, Piomboni P | title = Chromosomal aneuploidies and DNA fragmentation of human spermatozoa from patients exposed to perfluorinated compounds | journal = Andrologia | volume = 47 | issue = 9 | pages = 1012–9 | date = November 2015 | pmid = 25382683 | doi = 10.1111/and.12371 | s2cid = 13484513 }}</ref> Increased aneuploidy is often associated with increased DNA damage in spermatozoa. | |||
== See also == | == See also == | ||
{{div col}} | |||
* ] | |||
* ] | * ] | ||
* ] | |||
* ] | * ] | ||
* ] | |||
* ] | |||
* ] | |||
* ] | * ] | ||
* For information about chromosomes in ]s, see ] | |||
* ] | * ] | ||
** ] | |||
* ] | * ] | ||
* ] – explains gene location nomenclature | |||
* ] | |||
* ] | |||
* ] (explains gene location nomenclature) | |||
* ] | |||
* ] | |||
* ] | |||
** ] | |||
*** ] | |||
**** ] | |||
*** ] | |||
**** ] | |||
**** ] | |||
* ] | |||
* ] | |||
* ] | * ] | ||
* ] | |||
* ] | * ] | ||
* ] | |||
* ] | |||
* ] | |||
** ] | |||
** ] | |||
{{div col end}} | |||
== Notes and references == | == Notes and references == | ||
Line 515: | Line 409: | ||
* | * | ||
* , European network for Rare Chromosome Disorders on the Internet | * , European network for Rare Chromosome Disorders on the Internet | ||
* , ] project, presenting chromosomes, their ]s and ] loci graphically via the web | * , ] project, presenting chromosomes, their ]s and ] loci graphically via the web | ||
* | * {{Webarchive|url=https://web.archive.org/web/20070712035011/https://www3.nationalgeographic.com/genographic/index.html |date=12 July 2007 }} | ||
* from the U.S. National Library of Medicine | * from the U.S. National Library of Medicine | ||
* and comparison to other species | * and comparison to other species |
Latest revision as of 10:54, 23 December 2024
DNA molecule containing genetic material of a cell This article is about the DNA molecule. For the genetic algorithm, see Chromosome (genetic algorithm).
Chromosome (10 - 10 bp) DNA Gene (10 - 10 bp ) Function A chromosome and its packaged long strand of DNA unraveled. The DNA's base pairs encode genes, which provide functions. A human DNA can have up to 500 million base pairs with thousands of genes. |
Part of a series on |
Genetics |
---|
Key components
|
History and topics |
Research
|
Fields |
Personalized medicine |
A chromosome is a package of DNA containing part or all of the genetic material of an organism. In most chromosomes, the very long thin DNA fibers are coated with nucleosome-forming packaging proteins; in eukaryotic cells, the most important of these proteins are the histones. Aided by chaperone proteins, the histones bind to and condense the DNA molecule to maintain its integrity. These eukaryotic chromosomes display a complex three-dimensional structure that has a significant role in transcriptional regulation.
Normally, chromosomes are visible under a light microscope only during the metaphase of cell division, where all chromosomes are aligned in the center of the cell in their condensed form. Before this stage occurs, each chromosome is duplicated (S phase), and the two copies are joined by a centromere—resulting in either an X-shaped structure if the centromere is located equatorially, or a two-armed structure if the centromere is located distally; the joined copies are called 'sister chromatids'. During metaphase, the duplicated structure (called a 'metaphase chromosome') is highly condensed and thus easiest to distinguish and study. In animal cells, chromosomes reach their highest compaction level in anaphase during chromosome segregation.
Chromosomal recombination during meiosis and subsequent sexual reproduction plays a crucial role in genetic diversity. If these structures are manipulated incorrectly, through processes known as chromosomal instability and translocation, the cell may undergo mitotic catastrophe. This will usually cause the cell to initiate apoptosis, leading to its own death, but the process is occasionally hampered by cell mutations that result in the progression of cancer.
The term 'chromosome' is sometimes used in a wider sense to refer to the individualized portions of chromatin in cells, which may or may not be visible under light microscopy. In a narrower sense, 'chromosome' can be used to refer to the individualized portions of chromatin during cell division, which are visible under light microscopy due to high condensation.
Etymology
The word chromosome (/ˈkroʊməˌsoʊm, -ˌzoʊm/) comes from the Greek words χρῶμα (chroma, "colour") and σῶμα (soma, "body"), describing the strong staining produced by particular dyes. The term was coined by the German anatomist Heinrich Wilhelm Waldeyer, referring to the term 'chromatin', which was introduced by Walther Flemming.
Some of the early karyological terms have become outdated. For example, 'chromatin' (Flemming 1880) and 'chromosom' (Waldeyer 1888) both ascribe color to a non-colored state.
History of discovery
Walter Sutton (left) and Theodor Boveri (right) independently developed the chromosome theory of inheritance in 1902.Otto Bütschli was the first scientist to recognize the structures now known as chromosomes.
In a series of experiments beginning in the mid-1880s, Theodor Boveri gave definitive contributions to elucidating that chromosomes are the vectors of heredity, with two notions that became known as 'chromosome continuity' and 'chromosome individuality'.
Wilhelm Roux suggested that every chromosome carries a different genetic configuration, and Boveri was able to test and confirm this hypothesis. Aided by the rediscovery at the start of the 1900s of Gregor Mendel's earlier experimental work, Boveri identified the connection between the rules of inheritance and the behaviour of the chromosomes. Two generations of American cytologists were influenced by Boveri: Edmund Beecher Wilson, Nettie Stevens, Walter Sutton and Theophilus Painter (Wilson, Stevens, and Painter actually worked with him).
In his famous textbook, The Cell in Development and Heredity, Wilson linked together the independent work of Boveri and Sutton (both around 1902) by naming the chromosome theory of inheritance the 'Boveri–Sutton chromosome theory' (sometimes known as the 'Sutton–Boveri chromosome theory'). Ernst Mayr remarks that the theory was hotly contested by some famous geneticists, including William Bateson, Wilhelm Johannsen, Richard Goldschmidt and T.H. Morgan, all of a rather dogmatic mindset. Eventually, absolute proof came from chromosome maps in Morgan's own laboratory.
The number of human chromosomes was published by Painter in 1923. By inspection through a microscope, he counted 24 pairs of chromosomes, giving 48 in total. His error was copied by others, and it was not until 1956 that the true number (46) was determined by Indonesian-born cytogeneticist Joe Hin Tjio.
Prokaryotes
Main article: NucleoidThe prokaryotes – bacteria and archaea – typically have a single circular chromosome. The chromosomes of most bacteria (also called genophores), can range in size from only 130,000 base pairs in the endosymbiotic bacteria Candidatus Hodgkinia cicadicola and Candidatus Tremblaya princeps, to more than 14,000,000 base pairs in the soil-dwelling bacterium Sorangium cellulosum.
Some bacteria have more than one chromosome. For instance, Spirochaetes such as Borrelia burgdorferi (causing Lyme disease), contain a single linear chromosome. Vibrios typically carry two chromosomes of very different size. Genomes of the genus Burkholderia carry one, two, or three chromosomes.
Structure in sequences
Prokaryotic chromosomes have less sequence-based structure than eukaryotes. Bacteria typically have a one-point (the origin of replication) from which replication starts, whereas some archaea contain multiple replication origins. The genes in prokaryotes are often organized in operons and do not usually contain introns, unlike eukaryotes.
DNA packaging
Prokaryotes do not possess nuclei. Instead, their DNA is organized into a structure called the nucleoid. The nucleoid is a distinct structure and occupies a defined region of the bacterial cell. This structure is, however, dynamic and is maintained and remodeled by the actions of a range of histone-like proteins, which associate with the bacterial chromosome. In archaea, the DNA in chromosomes is even more organized, with the DNA packaged within structures similar to eukaryotic nucleosomes.
Certain bacteria also contain plasmids or other extrachromosomal DNA. These are circular structures in the cytoplasm that contain cellular DNA and play a role in horizontal gene transfer. In prokaryotes and viruses, the DNA is often densely packed and organized; in the case of archaea, by homology to eukaryotic histones, and in the case of bacteria, by histone-like proteins.
Bacterial chromosomes tend to be tethered to the plasma membrane of the bacteria. In molecular biology application, this allows for its isolation from plasmid DNA by centrifugation of lysed bacteria and pelleting of the membranes (and the attached DNA).
Prokaryotic chromosomes and plasmids are, like eukaryotic DNA, generally supercoiled. The DNA must first be released into its relaxed state for access for transcription, regulation, and replication.
Eukaryotes
Main article: Chromatin See also: DNA condensation, Nucleosome, Histone, and Protamine See also: Eukaryotic chromosome fine structureEach eukaryotic chromosome consists of a long linear DNA molecule associated with proteins, forming a compact complex of proteins and DNA called chromatin. Chromatin contains the vast majority of the DNA in an organism, but a small amount inherited maternally can be found in the mitochondria. It is present in most cells, with a few exceptions, for example, red blood cells.
Histones are responsible for the first and most basic unit of chromosome organization, the nucleosome.
Eukaryotes (cells with nuclei such as those found in plants, fungi, and animals) possess multiple large linear chromosomes contained in the cell's nucleus. Each chromosome has one centromere, with one or two arms projecting from the centromere, although, under most circumstances, these arms are not visible as such. In addition, most eukaryotes have a small circular mitochondrial genome, and some eukaryotes may have additional small circular or linear cytoplasmic chromosomes.
In the nuclear chromosomes of eukaryotes, the uncondensed DNA exists in a semi-ordered structure, where it is wrapped around histones (structural proteins), forming a composite material called chromatin.
Interphase chromatin
The packaging of DNA into nucleosomes causes a 10 nanometer fibre which may further condense up to 30 nm fibres Most of the euchromatin in interphase nuclei appears to be in the form of 30-nm fibers. Chromatin structure is the more decondensed state, i.e. the 10-nm conformation allows transcription.
During interphase (the period of the cell cycle where the cell is not dividing), two types of chromatin can be distinguished:
- Euchromatin, which consists of DNA that is active, e.g., being expressed as protein.
- Heterochromatin, which consists of mostly inactive DNA. It seems to serve structural purposes during the chromosomal stages. Heterochromatin can be further distinguished into two types:
- Constitutive heterochromatin, which is never expressed. It is located around the centromere and usually contains repetitive sequences.
- Facultative heterochromatin, which is sometimes expressed.
Metaphase chromatin and division
See also: mitosis and meiosisIn the early stages of mitosis or meiosis (cell division), the chromatin double helix becomes more and more condensed. They cease to function as accessible genetic material (transcription stops) and become a compact transportable form. The loops of thirty-nanometer chromatin fibers are thought to fold upon themselves further to form the compact metaphase chromosomes of mitotic cells. The DNA is thus condensed about ten-thousand-fold.
The chromosome scaffold, which is made of proteins such as condensin, TOP2A and KIF4, plays an important role in holding the chromatin into compact chromosomes. Loops of thirty-nanometer structure further condense with scaffold into higher order structures.
This highly compact form makes the individual chromosomes visible, and they form the classic four-arm structure, a pair of sister chromatids attached to each other at the centromere. The shorter arms are called p arms (from the French petit, small) and the longer arms are called q arms (q follows p in the Latin alphabet; q-g "grande"; alternatively it is sometimes said q is short for queue meaning tail in French). This is the only natural context in which individual chromosomes are visible with an optical microscope.
Mitotic metaphase chromosomes are best described by a linearly organized longitudinally compressed array of consecutive chromatin loops.
During mitosis, microtubules grow from centrosomes located at opposite ends of the cell and also attach to the centromere at specialized structures called kinetochores, one of which is present on each sister chromatid. A special DNA base sequence in the region of the kinetochores provides, along with special proteins, longer-lasting attachment in this region. The microtubules then pull the chromatids apart toward the centrosomes, so that each daughter cell inherits one set of chromatids. Once the cells have divided, the chromatids are uncoiled and DNA can again be transcribed. In spite of their appearance, chromosomes are structurally highly condensed, which enables these giant DNA structures to be contained within a cell nucleus.
Human chromosomes
Chromosomes in humans can be divided into two types: autosomes (body chromosome(s)) and allosome (sex chromosome(s)). Certain genetic traits are linked to a person's sex and are passed on through the sex chromosomes. The autosomes contain the rest of the genetic hereditary information. All act in the same way during cell division. Human cells have 23 pairs of chromosomes (22 pairs of autosomes and one pair of sex chromosomes), giving a total of 46 per cell. In addition to these, human cells have many hundreds of copies of the mitochondrial genome. Sequencing of the human genome has provided a great deal of information about each of the chromosomes. Below is a table compiling statistics for the chromosomes, based on the Sanger Institute's human genome information in the Vertebrate Genome Annotation (VEGA) database. Number of genes is an estimate, as it is in part based on gene predictions. Total chromosome length is an estimate as well, based on the estimated size of unsequenced heterochromatin regions.
Chromosome | Genes | Total base pairs | % of bases |
---|---|---|---|
1 | 2000 | 247,199,719 | 8.0 |
2 | 1300 | 242,751,149 | 7.9 |
3 | 1000 | 199,446,827 | 6.5 |
4 | 1000 | 191,263,063 | 6.2 |
5 | 900 | 180,837,866 | 5.9 |
6 | 1000 | 170,896,993 | 5.5 |
7 | 900 | 158,821,424 | 5.2 |
8 | 700 | 146,274,826 | 4.7 |
9 | 800 | 140,442,298 | 4.6 |
10 | 700 | 135,374,737 | 4.4 |
11 | 1300 | 134,452,384 | 4.4 |
12 | 1100 | 132,289,534 | 4.3 |
13 | 300 | 114,127,980 | 3.7 |
14 | 800 | 106,360,585 | 3.5 |
15 | 600 | 100,338,915 | 3.3 |
16 | 800 | 88,822,254 | 2.9 |
17 | 1200 | 78,654,742 | 2.6 |
18 | 200 | 76,117,153 | 2.5 |
19 | 1500 | 63,806,651 | 2.1 |
20 | 500 | 62,435,965 | 2.0 |
21 | 200 | 46,944,323 | 1.5 |
22 | 500 | 49,528,953 | 1.6 |
X (sex chromosome) | 800 | 154,913,754 | 5.0 |
Y (sex chromosome) | 200 | 57,741,652 | 1.9 |
Total | 21,000 | 3,079,843,747 | 100.0 |
Based on the micrographic characteristics of size, position of the centromere and sometimes the presence of a chromosomal satellite, the human chromosomes are classified into the following groups:
Group | Chromosomes | Features |
---|---|---|
A | 1–3 | Large, metacentric or submetacentric |
B | 4–5 | Large, submetacentric |
C | 6–12, X | Medium-sized, submetacentric |
D | 13–15 | Medium-sized, acrocentric, with satellite |
E | 16–18 | Small, metacentric or submetacentric |
F | 19–20 | Very small, metacentric |
G | 21–22, Y | Very small, acrocentric (and 21, 22 with satellite) |
Karyotype
Main article: KaryotypeIn general, the karyotype is the characteristic chromosome complement of a eukaryote species. The preparation and study of karyotypes is part of cytogenetics.
Although the replication and transcription of DNA is highly standardized in eukaryotes, the same cannot be said for their karyotypes, which are often highly variable. There may be variation between species in chromosome number and in detailed organization. In some cases, there is significant variation within species. Often there is:
- 1. variation between the two sexes
- 2. variation between the germline and soma (between gametes and the rest of the body)
- 3. variation between members of a population, due to balanced genetic polymorphism
- 4. geographical variation between races
- 5. mosaics or otherwise abnormal individuals.
Also, variation in karyotype may occur during development from the fertilized egg.
The technique of determining the karyotype is usually called karyotyping. Cells can be locked part-way through division (in metaphase) in vitro (in a reaction vial) with colchicine. These cells are then stained, photographed, and arranged into a karyogram, with the set of chromosomes arranged, autosomes in order of length, and sex chromosomes (here X/Y) at the end.
Like many sexually reproducing species, humans have special gonosomes (sex chromosomes, in contrast to autosomes). These are XX in females and XY in males.
History and analysis techniques
See also: Argument from authority § Use in scienceInvestigation into the human karyotype took many years to settle the most basic question: How many chromosomes does a normal diploid human cell contain? In 1912, Hans von Winiwarter reported 47 chromosomes in spermatogonia and 48 in oogonia, concluding an XX/XO sex determination mechanism. In 1922, Painter was not certain whether the diploid number of man is 46 or 48, at first favouring 46. He revised his opinion later from 46 to 48, and he correctly insisted on humans having an XX/XY system.
New techniques were needed to definitively solve the problem:
- Using cells in culture
- Arresting mitosis in metaphase by a solution of colchicine
- Pretreating cells in a hypotonic solution 0.075 M KCl, which swells them and spreads the chromosomes
- Squashing the preparation on the slide forcing the chromosomes into a single plane
- Cutting up a photomicrograph and arranging the result into an indisputable karyogram.
It took until 1954 before the human diploid number was confirmed as 46. Considering the techniques of Winiwarter and Painter, their results were quite remarkable. Chimpanzees, the closest living relatives to modern humans, have 48 chromosomes as do the other great apes: in humans two chromosomes fused to form chromosome 2.
Aberrations
Main article: Chromosome abnormalityChromosomal aberrations are disruptions in the normal chromosomal content of a cell. They can cause genetic conditions in humans, such as Down syndrome, although most aberrations have little to no effect. Some chromosome abnormalities do not cause disease in carriers, such as translocations, or chromosomal inversions, although they may lead to a higher chance of bearing a child with a chromosome disorder. Abnormal numbers of chromosomes or chromosome sets, called aneuploidy, may be lethal or may give rise to genetic disorders. Genetic counseling is offered for families that may carry a chromosome rearrangement.
The gain or loss of DNA from chromosomes can lead to a variety of genetic disorders. Human examples include:
- Cri du chat, caused by the deletion of part of the short arm of chromosome 5. "Cri du chat" means "cry of the cat" in French; the condition was so-named because affected babies make high-pitched cries that sound like those of a cat. Affected individuals have wide-set eyes, a small head and jaw, moderate to severe mental health problems, and are very short.
- DiGeorge syndrome, also known as 22q11.2 deletion syndrome. Symptoms are mild learning disabilities in children, with adults having an increased risk of schizophrenia. Infections are also common in children because of problems with the immune system's T cell-mediated response due to an absence of hypoplastic thymus.
- Down syndrome, the most common trisomy, usually caused by an extra copy of chromosome 21 (trisomy 21). Characteristics include decreased muscle tone, stockier build, asymmetrical skull, slanting eyes, and mild to moderate developmental disability.
- Edwards syndrome, or trisomy-18, the second most common trisomy. Symptoms include motor retardation, developmental disability, and numerous congenital anomalies causing serious health problems. Ninety percent of those affected die in infancy. They have characteristic clenched hands and overlapping fingers.
- Isodicentric 15, also called idic(15), partial tetrasomy 15q, or inverted duplication 15 (inv dup 15).
- Jacobsen syndrome, which is very rare. It is also called the 11q terminal deletion disorder. Those affected have normal intelligence or mild developmental disability, with poor expressive language skills. Most have a bleeding disorder called Paris-Trousseau syndrome.
- Klinefelter syndrome (XXY). Men with Klinefelter syndrome are usually sterile, and tend to be taller than their peers, with longer arms and legs. Boys with the syndrome are often shy and quiet, and have a higher incidence of speech delay and dyslexia. Without testosterone treatment, some may develop gynecomastia during puberty.
- Patau Syndrome, also called D-Syndrome or trisomy-13. Symptoms are somewhat similar to those of trisomy-18, without the characteristic folded hand.
- Small supernumerary marker chromosome. This means there is an extra, abnormal chromosome. Features depend on the origin of the extra genetic material. Cat-eye syndrome and isodicentric chromosome 15 syndrome (or Idic15) are both caused by a supernumerary marker chromosome, as is Pallister–Killian syndrome.
- Triple-X syndrome (XXX). XXX girls tend to be tall and thin, and have a higher incidence of dyslexia.
- Turner syndrome (X instead of XX or XY). In Turner syndrome, female sexual characteristics are present but underdeveloped. Females with Turner syndrome often have a short stature, low hairline, abnormal eye features and bone development, and a "caved-in" appearance to the chest.
- Wolf–Hirschhorn syndrome, caused by partial deletion of the short arm of chromosome 4. It is characterized by growth retardation, delayed motor skills development, "Greek Helmet" facial features, and mild to profound mental health problems.
- XYY syndrome. XYY boys are usually taller than their siblings. Like XXY boys and XXX girls, they are more likely to have learning difficulties.
Sperm aneuploidy
Exposure of males to certain lifestyle, environmental and/or occupational hazards may increase the risk of aneuploid spermatozoa. In particular, risk of aneuploidy is increased by tobacco smoking, and occupational exposure to benzene, insecticides, and perfluorinated compounds. Increased aneuploidy is often associated with increased DNA damage in spermatozoa.
Number in various organisms
Main article: List of organisms by chromosome countIn eukaryotes
The number of chromosomes in eukaryotes is highly variable. It is possible for chromosomes to fuse or break and thus evolve into novel karyotypes. Chromosomes can also be fused artificially. For example, when the 16 chromosomes of yeast were fused into one giant chromosome, it was found that the cells were still viable with only somewhat reduced growth rates.
The tables below give the total number of chromosomes (including sex chromosomes) in a cell nucleus for various eukaryotes. Most are diploid, such as humans who have 22 different types of autosomes—each present as two homologous pairs—and two sex chromosomes, giving 46 chromosomes in total. Some other organisms have more than two copies of their chromosome types, for example bread wheat which is hexaploid, having six copies of seven different chromosome types for a total of 42 chromosomes.
|
|
|
Normal members of a particular eukaryotic species all have the same number of nuclear chromosomes. Other eukaryotic chromosomes, i.e., mitochondrial and plasmid-like small chromosomes, are much more variable in number, and there may be thousands of copies per cell.
Asexually reproducing species have one set of chromosomes that are the same in all body cells. However, asexual species can be either haploid or diploid.
Sexually reproducing species have somatic cells (body cells) that are diploid , having two sets of chromosomes (23 pairs in humans), one set from the mother and one from the father. Gametes (reproductive cells) are haploid , having one set of chromosomes. Gametes are produced by meiosis of a diploid germline cell, during which the matching chromosomes of father and mother can exchange small parts of themselves (crossover) and thus create new chromosomes that are not inherited solely from either parent. When a male and a female gamete merge during fertilization, a new diploid organism is formed.
Some animal and plant species are polyploid , having more than two sets of homologous chromosomes. Important crops such as tobacco or wheat are often polyploid, compared to their ancestral species. Wheat has a haploid number of seven chromosomes, still seen in some cultivars as well as the wild progenitors. The more common types of pasta and bread are polyploid, having 28 (tetraploid) and 42 (hexaploid) chromosomes, compared to the 14 (diploid) chromosomes in wild wheat.
In prokaryotes
Prokaryote species generally have one copy of each major chromosome, but most cells can easily survive with multiple copies. For example, Buchnera, a symbiont of aphids has multiple copies of its chromosome, ranging from 10 to 400 copies per cell. However, in some large bacteria, such as Epulopiscium fishelsoni up to 100,000 copies of the chromosome can be present. Plasmids and plasmid-like small chromosomes are, as in eukaryotes, highly variable in copy number. The number of plasmids in the cell is almost entirely determined by the rate of division of the plasmid – fast division causes high copy number.
See also
- Chromomere
- Cohesin
- Epigenetics
- Genetic genealogy
- Lampbrush chromosome
- Locus (genetics) – explains gene location nomenclature
- Minichromosome
- Neochromosome
- Nondisjunction
- Parasitic chromosome
- Polytene chromosome
- Secondary chromosome
- Sex-determination system
Notes and references
- Hammond CM, Strømme CB, Huang H, Patel DJ, Groth A (March 2017). "Histone chaperone networks shaping chromatin function". Nature Reviews. Molecular Cell Biology. 18 (3): 141–158. doi:10.1038/nrm.2016.159. PMC 5319910. PMID 28053344.
- Wilson, John (2002). Molecular biology of the cell : a problems approach. New York: Garland Science. ISBN 978-0-8153-3577-1.
- Bonev, Boyan; Cavalli, Giacomo (14 October 2016). "Organization and function of the 3D genome". Nature Reviews Genetics. 17 (11): 661–678. doi:10.1038/nrg.2016.112. hdl:2027.42/151884. PMID 27739532. S2CID 31259189.
- Alberts B, Bray D, Hopkin K, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2014). Essential Cell Biology (Fourth ed.). New York, New York, US: Garland Science. pp. 621–626. ISBN 978-0-8153-4454-4.
- ^ Schleyden, M. J. (1847). Microscopical researches into the accordance in the structure and growth of animals and plants. Printed for the Sydenham Society.
- Antonin W, Neumann H (June 2016). "Chromosome condensation and decondensation during mitosis" (PDF). Current Opinion in Cell Biology. 40: 15–22. doi:10.1016/j.ceb.2016.01.013. PMID 26895139.
- Jones, Daniel (2003) , Peter Roach; James Hartmann; Jane Setter (eds.), English Pronouncing Dictionary, Cambridge: Cambridge University Press, ISBN 978-3-12-539683-8
- "Chromosome". Merriam-Webster.com Dictionary. Merriam-Webster.
- Coxx, H. J. (1925). Biological Stains – A Handbook on the Nature and Uses of the Dyes Employed in the Biological Laboratory. Commission on Standardization of Biological Stains.
- Waldeyer-Hartz (1888). "Über Karyokinese und ihre Beziehungen zu den Befruchtungsvorgängen". Archiv für Mikroskopische Anatomie und Entwicklungsmechanik. 32: 27.
- Garbari F, Bedini G, Peruzzi L (2012). "Chromosome numbers of the Italian flora. From the Caryologia foundation to present". Caryologia – International Journal of Cytology, Cytosystematics and Cytogenetics. 65 (1): 65–66. doi:10.1080/00087114.2012.678090. S2CID 83748967.
- Peruzzi L, Garbari F, Bedini G (2012). "New trends in plant cytogenetics and cytoembryology: Dedicated to the memory of Emilio Battaglia". Plant Biosystems. 146 (3): 674–675. Bibcode:2012PBios.146..674P. doi:10.1080/11263504.2012.712553. S2CID 83749502.
- Battaglia, Emilio (2009). "Caryoneme alternative to chromosome and a new caryological nomenclature" (PDF). Caryologia – International Journal of Cytology, Cytosystematics. 62 (4): 1–80. Retrieved 6 November 2017.
- Fokin SI (2013). "Otto Bütschli (1848–1920) Where we will genuflect?" (PDF). Protistology. 8 (1): 22–35. Archived from the original (PDF) on 21 April 2021.
- Maderspacher, Florian (2008). "Theodor Boveri and the natural experiment". Current Biology. 18 (7): R279 – R286. Bibcode:2008CBio...18.R279M. doi:10.1016/j.cub.2008.02.061. PMID 18397731. S2CID 15479331.
- Carlson, Elof A. (2004). Mendel's Legacy: The Origin of Classical Genetics (PDF). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. p. 88. ISBN 978-087969675-7.
- Wilson, E.B. (1925). The Cell in Development and Heredity, Ed. 3. Macmillan, New York. p. 923.
- Mayr, E. (1982). The growth of biological thought. Harvard. p. 749. ISBN 9780674364462
- Gartler, Stanley M. (1 August 2006). "The chromosome number in humans: a brief history". Nature Reviews Genetics. 7 (8): 655–660. doi:10.1038/nrg1917. PMID 16847465. S2CID 21365693.
- Thanbichler M, Shapiro L (November 2006). "Chromosome organization and segregation in bacteria". Journal of Structural Biology. 156 (2): 292–303. doi:10.1016/j.jsb.2006.05.007. PMID 16860572.
- Van Leuven JT, Meister RC, Simon C, McCutcheon JP (September 2014). "Sympatric speciation in a bacterial endosymbiont results in two genomes with the functionality of one". Cell. 158 (6): 1270–1280. doi:10.1016/j.cell.2014.07.047. PMID 25175626. S2CID 11839535.
- McCutcheon JP, von Dohlen CD (August 2011). "An interdependent metabolic patchwork in the nested symbiosis of mealybugs". Current Biology. 21 (16): 1366–72. Bibcode:2011CBio...21.1366M. doi:10.1016/j.cub.2011.06.051. PMC 3169327. PMID 21835622.
- Han K, Li ZF, Peng R, Zhu LP, Zhou T, Wang LG, Li SG, Zhang XB, Hu W, Wu ZH, Qin N, Li YZ (2013). "Extraordinary expansion of a Sorangium cellulosum genome from an alkaline milieu". Scientific Reports. 3: 2101. Bibcode:2013NatSR...3.2101H. doi:10.1038/srep02101. PMC 3696898. PMID 23812535.
- Hinnebusch J, Tilly K (December 1993). "Linear plasmids and chromosomes in bacteria". Molecular Microbiology. 10 (5): 917–22. doi:10.1111/j.1365-2958.1993.tb00963.x. PMID 7934868. S2CID 23852021.
- Touchon, Marie; Rocha, Eduardo P.C. (January 2016). "Coevolution of the Organization and Structure of Prokaryotic Genomes". Cold Spring Harbor Perspectives in Biology. 8 (1): a018168. doi:10.1101/cshperspect.a018168. ISSN 1943-0264. PMC 4691797. PMID 26729648.
- Kelman LM, Kelman Z (September 2004). "Multiple origins of replication in archaea". Trends in Microbiology. 12 (9): 399–401. doi:10.1016/j.tim.2004.07.001. PMID 15337158.
- Thanbichler M, Wang SC, Shapiro L (October 2005). "The bacterial nucleoid: a highly organized and dynamic structure". Journal of Cellular Biochemistry. 96 (3): 506–21. doi:10.1002/jcb.20519. PMID 15988757. S2CID 25355087.
- Le TB, Imakaev MV, Mirny LA, Laub MT (November 2013). "High-resolution mapping of the spatial organization of a bacterial chromosome". Science. 342 (6159): 731–4. Bibcode:2013Sci...342..731L. doi:10.1126/science.1242059. PMC 3927313. PMID 24158908.
- Sandman K, Pereira SL, Reeve JN (December 1998). "Diversity of prokaryotic chromosomal proteins and the origin of the nucleosome". Cellular and Molecular Life Sciences. 54 (12): 1350–64. doi:10.1007/s000180050259. PMC 11147202. PMID 9893710. S2CID 21101836.
- Sandman K, Reeve JN (March 2000). "Structure and functional relationships of archaeal and eukaryal histones and nucleosomes". Archives of Microbiology. 173 (3): 165–9. Bibcode:2000ArMic.173..165S. doi:10.1007/s002039900122. PMID 10763747. S2CID 28946064.
- Pereira SL, Grayling RA, Lurz R, Reeve JN (November 1997). "Archaeal nucleosomes". Proceedings of the National Academy of Sciences of the United States of America. 94 (23): 12633–7. Bibcode:1997PNAS...9412633P. doi:10.1073/pnas.94.23.12633. PMC 25063. PMID 9356501.
- Johnson JE, Chiu W (April 2000). "Structures of virus and virus-like particles". Current Opinion in Structural Biology. 10 (2): 229–35. doi:10.1016/S0959-440X(00)00073-7. PMID 10753814.
- ^ Cooper, G.M. (2019). The Cell (8 ed.). Oxford University Press. ISBN 978-1605357072.
- Poonperm, Rawin; Takata, Hideaki; Hamano, Tohru; Matsuda, Atsushi; Uchiyama, Susumu; Hiraoka, Yasushi; Fukui, Kiichi (1 July 2015). "Chromosome Scaffold is a Double-Stranded Assembly of Scaffold Proteins". Scientific Reports. 5 (1): 11916. Bibcode:2015NatSR...511916P. doi:10.1038/srep11916. PMC 4487240. PMID 26132639.
- Lodish, U.H.; Lodish, H.; Berk, A.; Kaiser, C.A.; Kaiser, C.; Kaiser, U.C.A.; Krieger, M.; Scott, M.P.; Bretscher, A.; Ploegh, H.; others (2008). Molecular Cell Biology. W. H. Freeman. ISBN 978-0-7167-7601-7.
- "Chromosome Mapping: Idiograms" Nature Education – 13 August 2013
- Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR, Mirny LA, Dekker J (November 2013). "Organization of the mitotic chromosome". Science. 342 (6161): 948–53. Bibcode:2013Sci...342..948N. doi:10.1126/science.1236083. PMC 4040465. PMID 24200812.
- Vega.sanger.ad.uk, all data in this table was derived from this database, 11 November 2008.
- "Ensembl genome browser 71: Homo sapiens – Chromosome summary – Chromosome 1: 1–1,000,000". apr2013.archive.ensembl.org. Retrieved 11 April 2016.
- "Chromosome Map". Genes and Disease. Bethesda, Maryland: National Center for Biotechnology Information. 1998.
- The colors of each row match those of the karyogram (see Karyotype section)
- Erwinsyah, R.; Riandi; Nurjhani, M. (2017). "Relevance of human chromosome analysis activities against mutation concept in genetics course. IOP Conference Series". Materials Science and Engineering. doi:10.1088/1757-899x/180/1/012285. S2CID 90739754.
- White, M. J. D. (1973). The chromosomes (6th ed.). London: Chapman and Hall, distributed by Halsted Press, New York. p. 28. ISBN 978-0-412-11930-9.
- von Winiwarter H (1912). "Études sur la spermatogenèse humaine". Archives de Biologie. 27 (93): 147–9.
- Painter TS (1922). "The spermatogenesis of man". Anat. Res. 23: 129.
- Painter, Theophilus S. (April 1923). "Studies in mammalian spermatogenesis. II. The spermatogenesis of man". Journal of Experimental Zoology. 37 (3): 291–336. Bibcode:1923JEZ....37..291P. doi:10.1002/jez.1400370303.
- Tjio JH, Levan A (1956). "The chromosome number of man". Hereditas. 42 (1–2): 723–4. doi:10.1111/j.1601-5223.1956.tb03010.x. hdl:10261/15776. PMID 345813.
- Ford CE, Hamerton JL (November 1956). "The chromosomes of man". Nature. 178 (4541): 1020–3. Bibcode:1956Natur.178.1020F. doi:10.1038/1781020a0. PMID 13378517. S2CID 4155320.
- Hsu T.C. (1979) Human and mammalian cytogenetics: a historical perspective. Springer-Verlag, N.Y. ISBN 9780387903644 p. 10: "It's amazing that he even came close!"
- "Chromosomal Abnormalities", Understanding Genetics: A New York, Mid-Atlantic Guide for Patients and Health Professionals, Genetic Alliance, 8 July 2009, retrieved 27 September 2023
- Santaguida S, Amon A (August 2015). "Short- and long-term effects of chromosome mis-segregation and aneuploidy" (PDF). Nature Reviews. Molecular Cell Biology. 16 (8): 473–85. doi:10.1038/nrm4025. hdl:1721.1/117201. PMID 26204159. S2CID 205495880.
- "Genetic Disorders". medlineplus.gov. Retrieved 27 April 2022.
- "DiGeorge Syndrome". www.ncbi.nlm.nih.gov. Retrieved 8 August 2023.
- Miller KR (2000). "Chapter 9-3". Biology (5th ed.). Upper Saddle River, New Jersey: Prentice Hall. pp. 194–5. ISBN 978-0-13-436265-6.
- "What is Trisomy 18?". Trisomy 18 Foundation. Archived from the original on 30 January 2017. Retrieved 4 February 2017.
- "Terminal deletion". European Chromosome 11 Network. Retrieved 20 February 2023.
- Templado C, Uroz L, Estop A (October 2013). "New insights on the origin and relevance of aneuploidy in human spermatozoa". Molecular Human Reproduction. 19 (10): 634–43. doi:10.1093/molehr/gat039. PMID 23720770.
- Shi Q, Ko E, Barclay L, Hoang T, Rademaker A, Martin R (August 2001). "Cigarette smoking and aneuploidy in human sperm". Molecular Reproduction and Development. 59 (4): 417–21. doi:10.1002/mrd.1048. PMID 11468778. S2CID 35230655.
- Rubes J, Lowe X, Moore D, Perreault S, Slott V, Evenson D, Selevan SG, Wyrobek AJ (October 1998). "Smoking cigarettes is associated with increased sperm disomy in teenage men". Fertility and Sterility. 70 (4): 715–23. doi:10.1016/S0015-0282(98)00261-1. PMID 9797104.
- Xing C, Marchetti F, Li G, Weldon RH, Kurtovich E, Young S, Schmid TE, Zhang L, Rappaport S, Waidyanatha S, Wyrobek AJ, Eskenazi B (June 2010). "Benzene exposure near the U.S. permissible limit is associated with sperm aneuploidy". Environmental Health Perspectives. 118 (6): 833–9. Bibcode:2010EnvHP.118..833X. doi:10.1289/ehp.0901531. PMC 2898861. PMID 20418200.
- Xia Y, Bian Q, Xu L, Cheng S, Song L, Liu J, Wu W, Wang S, Wang X (October 2004). "Genotoxic effects on human spermatozoa among pesticide factory workers exposed to fenvalerate". Toxicology. 203 (1–3): 49–60. Bibcode:2004Toxgy.203...49X. doi:10.1016/j.tox.2004.05.018. PMID 15363581. S2CID 36073841.
- Xia Y, Cheng S, Bian Q, Xu L, Collins MD, Chang HC, Song L, Liu J, Wang S, Wang X (May 2005). "Genotoxic effects on spermatozoa of carbaryl-exposed workers". Toxicological Sciences. 85 (1): 615–23. doi:10.1093/toxsci/kfi066. PMID 15615886.
- Governini L, Guerranti C, De Leo V, Boschi L, Luddi A, Gori M, Orvieto R, Piomboni P (November 2015). "Chromosomal aneuploidies and DNA fragmentation of human spermatozoa from patients exposed to perfluorinated compounds". Andrologia. 47 (9): 1012–9. doi:10.1111/and.12371. hdl:11365/982323. PMID 25382683. S2CID 13484513.
- Shao, Yangyang; Lu, Ning; Wu, Zhenfang; Cai, Chen; Wang, Shanshan; Zhang, Ling-Li; Zhou, Fan; Xiao, Shijun; Liu, Lin; Zeng, Xiaofei; Zheng, Huajun (August 2018). "Creating a functional single-chromosome yeast". Nature. 560 (7718): 331–335. Bibcode:2018Natur.560..331S. doi:10.1038/s41586-018-0382-x. ISSN 1476-4687. PMID 30069045. S2CID 51894920.
- Armstrong SJ, Jones GH (January 2003). "Meiotic cytology and chromosome behaviour in wild-type Arabidopsis thaliana". Journal of Experimental Botany. 54 (380): 1–10. doi:10.1093/jxb/54.380.1. PMID 12456750.
- Gill BS, Kimber G (April 1974). "The Giemsa C-banded karyotype of rye". Proceedings of the National Academy of Sciences of the United States of America. 71 (4): 1247–9. Bibcode:1974PNAS...71.1247G. doi:10.1073/pnas.71.4.1247. PMC 388202. PMID 4133848.
- ^ Dubcovsky J, Luo MC, Zhong GY, Bransteitter R, Desai A, Kilian A, Kleinhofs A, Dvorák J (June 1996). "Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L". Genetics. 143 (2): 983–99. doi:10.1093/genetics/143.2.983. PMC 1207354. PMID 8725244.
- Kato A, Lamb JC, Birchler JA (September 2004). "Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize". Proceedings of the National Academy of Sciences of the United States of America. 101 (37): 13554–9. Bibcode:2004PNAS..10113554K. doi:10.1073/pnas.0403659101. PMC 518793. PMID 15342909.
- Kenton A, Parokonny AS, Gleba YY, Bennett MD (August 1993). "Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics". Molecular & General Genetics. 240 (2): 159–69. doi:10.1007/BF00277053. PMID 8355650. S2CID 6953185.
- Leitch IJ, Soltis DE, Soltis PS, Bennett MD (January 2005). "Evolution of DNA amounts across land plants (embryophyta)". Annals of Botany. 95 (1): 207–17. doi:10.1093/aob/mci014. PMC 4246719. PMID 15596468.
- Ambarish, C.N.; Sridhar, K.R. (2014). "Cytological and karyological observations on two endemic giant pill-millipedes Arthrosphaera (Pocock 1895) (Diplopoda: Sphaerotheriida) of the Western Ghats of India". Caryologia. 67 (1): 49–56. doi:10.1080/00087114.2014.891700. S2CID 219554731.
- Vitturi R, Colomba MS, Pirrone AM, Mandrioli M (2002). "rDNA (18S–28S and 5S) colocalization and linkage between ribosomal genes and (TTAGGG)(n) telomeric sequence in the earthworm, Octodrilus complanatus (Annelida: Oligochaeta: Lumbricidae), revealed by single- and double-color FISH". The Journal of Heredity. 93 (4): 279–82. doi:10.1093/jhered/93.4.279. PMID 12407215.
- Nie W, Wang J, O'Brien PC, Fu B, Ying T, Ferguson-Smith MA, Yang F (2002). "The genome phylogeny of domestic cat, red panda and five mustelid species revealed by comparative chromosome painting and G-banding". Chromosome Research. 10 (3): 209–22. doi:10.1023/A:1015292005631. PMID 12067210. S2CID 9660694.
- ^ Romanenko SA, Perelman PL, Serdukova NA, Trifonov VA, Biltueva LS, Wang J, Li T, Nie W, O'Brien PC, Volobouev VT, Stanyon R, Ferguson-Smith MA, Yang F, Graphodatsky AS (December 2006). "Reciprocal chromosome painting between three laboratory rodent species". Mammalian Genome. 17 (12): 1183–92. doi:10.1007/s00335-006-0081-z. PMID 17143584. S2CID 41546146.
- ^ Painter TS (March 1928). "A Comparison of the Chromosomes of the Rat and Mouse with Reference to the Question of Chromosome Homology in Mammals". Genetics. 13 (2): 180–9. doi:10.1093/genetics/13.2.180. PMC 1200977. PMID 17246549.
- Hayes H, Rogel-Gaillard C, Zijlstra C, De Haan NA, Urien C, Bourgeaux N, Bertaud M, Bosma AA (2002). "Establishment of an R-banded rabbit karyotype nomenclature by FISH localization of 23 chromosome-specific genes on both G- and R-banded chromosomes". Cytogenetic and Genome Research. 98 (2–3): 199–205. doi:10.1159/000069807. PMID 12698004. S2CID 29849096.
- "The Genetics of the Popular Aquarium Pet – Guppy Fish". Archived from the original on 31 May 2023. Retrieved 6 December 2009.
- ^ De Grouchy J (August 1987). "Chromosome phylogenies of man, great apes, and Old World monkeys". Genetica. 73 (1–2): 37–52. doi:10.1007/bf00057436. PMID 3333352. S2CID 1098866.
- Robinson TJ, Yang F, Harrison WR (2002). "Chromosome painting refines the history of genome evolution in hares and rabbits (order Lagomorpha)". Cytogenetic and Genome Research. 96 (1–4): 223–7. doi:10.1159/000063034. PMID 12438803. S2CID 19327437.
- Chapman JA, Flux JE (1990), "section 4.W4", Rabbits, Hares and Pikas. Status Survey and Conservation Action Plan, pp. 61–94, ISBN 9782831700199
- Vitturi R, Libertini A, Sineo L, Sparacio I, Lannino A, Gregorini A, Colomba M (2005). "Cytogenetics of the land snails Cantareus aspersus and C. mazzullii (Mollusca: Gastropoda: Pulmonata)". Micron. 36 (4): 351–7. doi:10.1016/j.micron.2004.12.010. PMID 15857774.
- Yasukochi Y, Ashakumary LA, Baba K, Yoshido A, Sahara K (July 2006). "A second-generation integrated map of the silkworm reveals synteny and conserved gene order between lepidopteran insects". Genetics. 173 (3): 1319–28. doi:10.1534/genetics.106.055541. PMC 1526672. PMID 16547103.
- Houck ML, Kumamoto AT, Gallagher DS, Benirschke K (2001). "Comparative cytogenetics of the African elephant (Loxodonta africana) and Asiatic elephant (Elephas maximus)". Cytogenetics and Cell Genetics. 93 (3–4): 249–52. doi:10.1159/000056992. PMID 11528120. S2CID 23529399.
- Semba U, Umeda Y, Shibuya Y, Okabe H, Tanase S, Yamamoto T (October 2004). "Primary structures of guinea pig high- and low-molecular-weight kininogens". International Immunopharmacology. 4 (10–11): 1391–400. doi:10.1016/j.intimp.2004.06.003. PMID 15313436.
- Wayne RK, Ostrander EA (March 1999). "Origin, genetic diversity, and genome structure of the domestic dog". BioEssays. 21 (3): 247–57. doi:10.1002/(SICI)1521-1878(199903)21:3<247::AID-BIES9>3.0.CO;2-Z. PMID 10333734. S2CID 5547543.
- Ciudad J, Cid E, Velasco A, Lara JM, Aijón J, Orfao A (May 2002). "Flow cytometry measurement of the DNA contents of G0/G1 diploid cells from three different teleost fish species". Cytometry. 48 (1): 20–5. doi:10.1002/cyto.10100. PMID 12116377.
- Burt DW (2002). "Origin and evolution of avian microchromosomes". Cytogenetic and Genome Research. 96 (1–4): 97–112. doi:10.1159/000063018. PMID 12438785. S2CID 26017998.
- Itoh M, Ikeuchi T, Shimba H, Mori M, Sasaki M, Makino S (1969). "A Comparative Karyotype Study in Fourteen Species of Birds". The Japanese Journal of Genetics. 44 (3): 163–170. doi:10.1266/jjg.44.163.
- Smith J, Burt DW (August 1998). "Parameters of the chicken genome (Gallus gallus)". Animal Genetics. 29 (4): 290–4. doi:10.1046/j.1365-2052.1998.00334.x. PMID 9745667.
- Sakamura, Tetsu (1918). "Kurze Mitteilung über die Chromosomenzahlen und die Verwandtschaftsverhältnisse der Triticum-Arten". Shokubutsugaku Zasshi. 32 (379): 150–3. doi:10.15281/jplantres1887.32.379_150.
- Charlebois R.L. (ed) 1999. Organization of the prokaryote genome. ASM Press, Washington DC.
- Komaki K, Ishikawa H (March 2000). "Genomic copy number of intracellular bacterial symbionts of aphids varies in response to developmental stage and morph of their host". Insect Biochemistry and Molecular Biology. 30 (3): 253–8. Bibcode:2000IBMB...30..253K. doi:10.1016/S0965-1748(99)00125-3. PMID 10732993.
- Mendell JE, Clements KD, Choat JH, Angert ER (May 2008). "Extreme polyploidy in a large bacterium". Proceedings of the National Academy of Sciences of the United States of America. 105 (18): 6730–4. Bibcode:2008PNAS..105.6730M. doi:10.1073/pnas.0707522105. PMC 2373351. PMID 18445653.
External links
- An Introduction to DNA and Chromosomes from HOPES: Huntington's Outreach Project for Education at Stanford
- Chromosome Abnormalities at AtlasGeneticsOncology
- On-line exhibition on chromosomes and genome (SIB)
- What Can Our Chromosomes Tell Us?, from the University of Utah's Genetic Science Learning Center
- Try making a karyotype yourself, from the University of Utah's Genetic Science Learning Center
- Kimballs Chromosome pages
- Chromosome News from Genome News Network
- Eurochromnet, European network for Rare Chromosome Disorders on the Internet
- Ensembl.org, Ensembl project, presenting chromosomes, their genes and syntenic loci graphically via the web
- Genographic Project Archived 12 July 2007 at the Wayback Machine
- Home reference on Chromosomes from the U.S. National Library of Medicine
- Visualisation of human chromosomes and comparison to other species
- Unique – The Rare Chromosome Disorder Support Group Support for people with rare chromosome disorders
Cytogenetics: chromosomes | |||||
---|---|---|---|---|---|
Basic concepts | |||||
Types |
| ||||
Processes and evolution | |||||
Structures |
| ||||
See also |
Self-replicating organic structures | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cellular life | |||||||||||
Virus | |||||||||||
Subviral agents |
| ||||||||||
Nucleic acid self-replication |
| ||||||||||
Endosymbiosis | |||||||||||
Abiogenesis | |||||||||||
See also |