Revision as of 13:12, 10 August 2023 edit2607:fb91:1993:15c9:657c:410f:dbd3:1041 (talk) →Supermassive black hole← Previous edit |
Latest revision as of 21:13, 5 September 2024 edit undoLoooke (talk | contribs)Extended confirmed users18,125 editsm →Dark Matter: un-capitalize |
(4 intermediate revisions by 3 users not shown) |
Line 33: |
Line 33: |
|
'''NGC 1277''' is a ] in the constellation of ]. It is a member of the ] of galaxies and is located approximately 73 Mpc (])<ref name=trujilo>{{cite journal|last1=Trujillo|first1=Ignacio|last2=Ferré-Mateu|first2=Anna|last3=Balcells|first3=Marc|last4=Vazdekis|first4=Alexandre|last5=Sánchez-Blázquez|first5=Patricia|title=NGC 1277: A Massive Compact Relic Galaxy in the Nearby Universe|journal=The Astrophysical Journal Letters|date=1 January 2014|volume=780|issue=2|pages=L20|doi=10.1088/2041-8205/780/2/L20|issn=0004-637X|bibcode=2014ApJ...780L..20T|arxiv = 1310.6367 |s2cid=53866417}}</ref> or 220 million ]s from the ]. It has an apparent magnitude of about 14.7. It was discovered on December 4, 1875 by ]. |
|
'''NGC 1277''' is a ] in the constellation of ]. It is a member of the ] of galaxies and is located approximately 73 Mpc (])<ref name=trujilo>{{cite journal|last1=Trujillo|first1=Ignacio|last2=Ferré-Mateu|first2=Anna|last3=Balcells|first3=Marc|last4=Vazdekis|first4=Alexandre|last5=Sánchez-Blázquez|first5=Patricia|title=NGC 1277: A Massive Compact Relic Galaxy in the Nearby Universe|journal=The Astrophysical Journal Letters|date=1 January 2014|volume=780|issue=2|pages=L20|doi=10.1088/2041-8205/780/2/L20|issn=0004-637X|bibcode=2014ApJ...780L..20T|arxiv = 1310.6367 |s2cid=53866417}}</ref> or 220 million ]s from the ]. It has an apparent magnitude of about 14.7. It was discovered on December 4, 1875 by ]. |
|
|
|
|
|
NGC 1277 has been called a "relic of the early universe" due to its stars being formed during a 100 million year interval about 12 billion years ago. Stars were formed at a rate of 1000 times that of the ] galaxy's formation rate in a short burst of time. After this process of stellar formation ran its course, NGC 1277 was left populated with metal-rich stars that are about 7 billion years older than the Sun.<ref name="trujilo"/> It is still uncertain whether or not NGC 1277 is a "relic galaxy"; current studies are still researching the possibility.<ref name="walsh"/><ref name="graham"/> However, observations with ] indicate that NGC 1277 lacks metal-poor globular clusters, suggesting that it has accreted little mass over its lifetime and supporting the relic galaxy hypothesis.<ref>{{Cite journal|last1=Beasley|first1=Michael A.|last2=Trujillo|first2=Ignacio|last3=Leaman|first3=Ryan|last4=Montes|first4=Mireia|date=2018-03-12|title=A single population of red globular clusters around the massive compact galaxy NGC 1277|journal=Nature|language=En|volume=555|issue=7697|pages=483–486|doi=10.1038/nature25756|pmid=29531319|issn=0028-0836|bibcode=2018Natur.555..483B|arxiv=1803.04893|s2cid=4440393}}</ref> |
|
] 1277 has been called a "relic of the early universe" due to its stars being formed during a 100 million year interval about 12 billion years ago. Stars were formed at a rate of 1000 times that of the ] galaxy's formation rate in a short burst of time. After this process of stellar formation ran its course, ] 1277 was left populated with metal-rich stars that are about 7 billion years older than the Sun.<ref name="trujilo"/> It is still uncertain whether or not ] 1277 is a "relic galaxy"; current studies are still researching the possibility.<ref name="walsh"/><ref name="graham"/> However, observations with ] indicate that NGC 1277 lacks metal-poor globular clusters, suggesting that it has accreted little mass over its lifetime and supporting the relic galaxy hypothesis.<ref>{{Cite journal|last1=Beasley|first1=Michael A.|last2=Trujillo|first2=Ignacio|last3=Leaman|first3=Ryan|last4=Montes|first4=Mireia|date=2018-03-12|title=A single population of red globular clusters around the massive compact galaxy NGC 1277|journal=Nature|language=En|volume=555|issue=7697|pages=483–486|doi=10.1038/nature25756|pmid=29531319|issn=0028-0836|bibcode=2018Natur.555..483B|arxiv=1803.04893|s2cid=4440393}}</ref> |
|
|
|
|
|
==Dark Matter== |
|
==Dark matter== |
|
NGC 1277 has a very unusual rotation curve that suggests that it contains very little ].<ref>{{cite news |url=https://universemagazine.com/en/mystery-of-a-galaxy-without-dark-matter/ |title=Mystery of a galaxy without dark matter |last1=Burlaka |first1=Olexandr |date=20 July 2023 |website=universemagazine.com |publisher=The Universe. Space. Tech |accessdate=29 July 2023}}</ref> |
|
NGC 1277 has a very unusual rotation curve that suggests that it contains very little ].<ref>{{cite news |url=https://universemagazine.com/en/mystery-of-a-galaxy-without-dark-matter/ |title=Mystery of a galaxy without dark matter |last1=Burlaka |first1=Olexandr |date=20 July 2023 |website=universemagazine.com |publisher=The Universe. Space. Tech |accessdate=29 July 2023}}</ref> |
|
|
|
|
|
==Supermassive black hole== |
|
==Supermassive black hole== |
Line 43: |
Line 43: |
|
Initial observations made using the ] at Texas's ] suggested the presence of a ] with a mass of about {{math|{{val|1.7|e=10|u=solar mass}}}} (17 billion solar masses), equivalent to 14% of the total stellar mass of the galaxy, due to the motions of the stars near the center of the galaxy.<ref name=vandenBosch>{{cite journal |last1=van den Bosch |first1=Remco C. E. |last2=Gebhardt |first2=Karl |last3=Gültekin |first3=Kayhanl |last4=van de Ven |first4=Glenn |last5=van der Wel |first5=Arjen |display-authors=1 |title=An over-massive black hole in the compact lenticular galaxy NGC 1277 |journal=] |volume=491 |issue=7426 |pages=729–731 |date=29 Nov 2012 |doi=10.1038/nature11592 |arxiv = 1211.6429 |bibcode = 2012Natur.491..729V |pmid=23192149|s2cid=205231230 }}</ref> This resulted in the initial claim that the black hole in NGC 1277 is ] in relation to the mass of its host galaxy. |
|
Initial observations made using the ] at Texas's ] suggested the presence of a ] with a mass of about {{math|{{val|1.7|e=10|u=solar mass}}}} (17 billion solar masses), equivalent to 14% of the total stellar mass of the galaxy, due to the motions of the stars near the center of the galaxy.<ref name=vandenBosch>{{cite journal |last1=van den Bosch |first1=Remco C. E. |last2=Gebhardt |first2=Karl |last3=Gültekin |first3=Kayhanl |last4=van de Ven |first4=Glenn |last5=van der Wel |first5=Arjen |display-authors=1 |title=An over-massive black hole in the compact lenticular galaxy NGC 1277 |journal=] |volume=491 |issue=7426 |pages=729–731 |date=29 Nov 2012 |doi=10.1038/nature11592 |arxiv = 1211.6429 |bibcode = 2012Natur.491..729V |pmid=23192149|s2cid=205231230 }}</ref> This resulted in the initial claim that the black hole in NGC 1277 is ] in relation to the mass of its host galaxy. |
|
|
|
|
|
A follow-up study,<ref name=Emsellem>{{cite journal |last=Emsellem |first=Eric |title=Is the black hole in NGC 1277 really overmassive? |journal=] |volume=433 |issue=3 |pages=1862–1870 |date=Aug 2013 |doi=10.1093/mnras/stt840 |bibcode = 2013MNRAS.433.1862E |arxiv = 1305.3630 }}</ref> based on the same data and published the following year, reached a very different conclusion. The black hole that was initially suggested at {{math|{{val|1.7|e=10|u=solar mass}}}} was not as massive as once thought. The black hole was estimated to be between 2 and 5 billion solar masses. This is less than a third of the previously estimated mass, a significant decrease. Models with no black hole at all were also found to provide reasonably good fits to the data, including the central region. |
|
A follow-up study,<ref name=Emsellem>{{cite journal |last=Emsellem |first=Eric |title=Is the black hole in NGC 1277 really overmassive? |journal=] |volume=433 |issue=3 |pages=1862–1870 |date=Aug 2013 |doi=10.1093/mnras/stt840 |doi-access=free |bibcode = 2013MNRAS.433.1862E |arxiv = 1305.3630 }}</ref> based on the same data and published the following year, reached a very different conclusion. The black hole that was initially suggested at {{math|{{val|1.7|e=10|u=solar mass}}}} was not as massive as once thought. The black hole was estimated to be between 2 and 5 billion solar masses. This is less than a third of the previously estimated mass, a significant decrease. Models with no black hole at all were also found to provide reasonably good fits to the data, including the central region. |
|
|
|
|
|
Subsequent investigations employed ] to acquire a better estimate of the mass of the black hole.<ref name=walsh>{{cite journal|last1=Walsh|first1=Jonelle L.|last2=van den Bosch|first2=Remco C. E.|last3=Gebhardt|first3=Karl|last4=Yildirim|first4=Akin|last5=Richstone|first5=Douglas O.|last6=Gültekin|first6=Kayhan|last7=Husemann|first7=Bernd|title=A 5 x 109 Msun Black Hole in NGC 1277 from Adaptive Optics Spectroscopy|journal=The Astrophysical Journal|date=1 January 2016|volume=817|issue=1|pages=2|doi=10.3847/0004-637X/817/1/2|issn=0004-637X|bibcode=2016ApJ...817....2W|arxiv = 1511.04455 |s2cid=118487689}}</ref><ref name=graham>{{cite journal|last1=Graham|first1=Alister W.|last2=Durré|first2=Mark|last3=Savorgnan|first3=Giulia A. D.|last4=Medling|first4=Anne M.|last5=Batcheldor|first5=Dan|last6=Scott|first6=Nicholas|last7=Watson|first7=Beverly|last8=Marconi|first8=Alessandro|title=A Normal Supermassive Black Hole in NGC 1277|journal=The Astrophysical Journal|date=1 March 2016|volume=819|issue=1|pages=43|doi=10.3847/0004-637X/819/1/43|issn=0004-637X|bibcode=2016ApJ...819...43G|arxiv = 1601.05151 |s2cid=36974319 }}</ref> |
|
Subsequent investigations employed ] to acquire a better estimate of the mass of the black hole.<ref name=walsh>{{cite journal|last1=Walsh|first1=Jonelle L.|last2=van den Bosch|first2=Remco C. E.|last3=Gebhardt|first3=Karl|last4=Yildirim|first4=Akin|last5=Richstone|first5=Douglas O.|last6=Gültekin|first6=Kayhan|last7=Husemann|first7=Bernd|title=A 5 x 109 Msun Black Hole in NGC 1277 from Adaptive Optics Spectroscopy|journal=The Astrophysical Journal|date=1 January 2016|volume=817|issue=1|pages=2|doi=10.3847/0004-637X/817/1/2|issn=0004-637X|bibcode=2016ApJ...817....2W|arxiv = 1511.04455 |s2cid=118487689 |doi-access=free }}</ref><ref name=graham>{{cite journal|last1=Graham|first1=Alister W.|last2=Durré|first2=Mark|last3=Savorgnan|first3=Giulia A. D.|last4=Medling|first4=Anne M.|last5=Batcheldor|first5=Dan|last6=Scott|first6=Nicholas|last7=Watson|first7=Beverly|last8=Marconi|first8=Alessandro|title=A Normal Supermassive Black Hole in NGC 1277|journal=The Astrophysical Journal|date=1 March 2016|volume=819|issue=1|pages=43|doi=10.3847/0004-637X/819/1/43|issn=0004-637X|bibcode=2016ApJ...819...43G|arxiv = 1601.05151 |s2cid=36974319 |doi-access=free }}</ref> |
|
One group made observations using the Gemini Near Infrared Integral Field Spectrometer to better determine the mass of the black hole at the center of NGC 1277.<ref name="walsh"/> The group used similar models to that of van den Bosch, but with higher spatial resolution. After using stellar dynamics and luminosity models to estimate the mass of the black hole, they came to a mass of {{math|{{val|4.9|e=9|u=solar mass}}}}, similar to the estimate from the follow-up study done by Emsellem,<ref name="Emsellem"/> which estimated a mass between 2–5 billion solar masses. |
|
One group made observations using the Gemini Near Infrared Integral Field Spectrometer to better determine the mass of the black hole at the center of NGC 1277.<ref name="walsh"/> The group used similar models to that of van den Bosch, but with higher spatial resolution. After using stellar dynamics and luminosity models to estimate the mass of the black hole, they came to a mass of {{math|{{val|4.9|e=9|u=solar mass}}}}, similar to the estimate from the follow-up study done by Emsellem,<ref name="Emsellem"/> which estimated a mass between 2–5 billion solar masses. |
|
More recently, a new group<ref name="graham"/> made observations using the larger ] with superior spatial resolution, and calculated that a black hole with mass {{math|{{val|1.2|e=9|u=solar mass}}}} fits best. Moreover, this value is an order of magnitude smaller than first reported by van den Bosch,<ref name="vandenBosch"/> and was noted to probably be an upper limit due to the edge-on rotating disk in NGC 1277. |
|
More recently, a new group<ref name="graham"/> made observations using the larger ] with superior spatial resolution, and calculated that a black hole with mass {{math|{{val|1.2|e=9|u=solar mass}}}} fits best. Moreover, this value is an order of magnitude smaller than first reported by van den Bosch,<ref name="vandenBosch"/> and was noted to probably be an upper limit due to the edge-on rotating disk in NGC 1277. |
NGC 1277 has a very unusual rotation curve that suggests that it contains very little dark matter.
A follow-up study, based on the same data and published the following year, reached a very different conclusion. The black hole that was initially suggested at 1.7×10 M☉ was not as massive as once thought. The black hole was estimated to be between 2 and 5 billion solar masses. This is less than a third of the previously estimated mass, a significant decrease. Models with no black hole at all were also found to provide reasonably good fits to the data, including the central region.