Misplaced Pages

Proxima Centauri: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 06:20, 2 August 2008 editWell-rested (talk | contribs)4,211 edits Characteristics: fixed grammar and syntax← Previous edit Latest revision as of 16:52, 3 January 2025 edit undoAstroChara (talk | contribs)243 edits Updated Proxima Centauri b's orbital parameters in planetary system infobox 
Line 1: Line 1:
{{short description|Nearest star to the Solar System}}
{{about|the star}}
{{Use dmy dates|date=December 2020}}
{{Use British English Oxford spelling|date=August 2016}}
{{Featured article}}
{{Starbox begin {{Starbox begin
| name=Proxima Centauri | name = Proxima Centauri
}} }}
{{Starbox image {{Starbox image
| image = ] | image = ]
| caption = ] ] ] image taken in 2013. The bright lines are ].
| caption = Position of Proxima Centauri
}} }}
{{Starbox observe {{Starbox observe
| epoch=] | epoch = ]
| equinox = ] (])
| constell = ]
| constell = ]
| ra = {{RA|14|29|42.9487}}<ref name="SIMBAD">{{cite web
| other names = Centauri C, Alpha Centauri C, Nearest Star
| url =http://simbad.u-strasbg.fr/simbad/sim-id?Ident=proxima%20centauri
| pronounce = {{IPAc-en|ˌ|p|r|ɒ|k|s|ə|m|ə|_|s|ɛ|n|ˈ|t|ɔːr|i}} or<br>{{IPAc-en|ˈ|p|r|ɒ|k|s|ɪ|m|ə|_|s|ɛ|n|ˈ|t|ɔːr|aɪ}}<ref name=collinsdictionary>{{cite web
| title =SIMBAD query result: V* V645 Cen -- Flare Star
|url=https://www.collinsdictionary.com/dictionary/english/proxima-centauri |title=Collins English Dictionary |publisher=HarperCollins Publishers |access-date=30 September 2020}}</ref>
| publisher =Centre de Données astronomiques de Strasbourg
| ra = {{RA|14|29|42.946}}<ref name="Gaia3"/>
| accessdate = 2007-07-09 }}&mdash;some of the data is located under "Measurements".</ref>
| dec = {{DEC|−62|40|46.141}}<ref name="SIMBAD" /> | dec = {{DEC|−62|40|46.16}}<ref name="Gaia3"/>
| appmag_v = 11.05<ref name="SIMBAD" /> | appmag_v = 10.43 – 11.11<ref name=Samus_et_al_2017/>
}} }}
{{Starbox character {{Starbox character
| type = ]
| class=M5.5&nbsp;Ve<ref name="SIMBAD" />
| class = M5.5Ve<ref name=bessell>{{cite journal |bibcode=1991AJ....101..662B |title=The late-M dwarfs |journal=The Astronomical Journal |volume=101 |pages=662 |last1=Bessell |first1=M. S. |year=1991 |doi=10.1086/115714|doi-access=free }}</ref>
| b-v=1.90<ref name="SIMBAD" />
| r-i = 2.04
| u-b=1.49<ref name="SIMBAD" />
| v-r = 1.68
| variable=]
| b-v = 1.82
}}
| u-b = 1.26
| j-h = 0.522
| j-k = 0.973
| variable = ] + ]<ref name=Samus_et_al_2017>{{cite journal | title=General catalogue of variable stars | version=GCVS 5.1 | last1=Samus' | first1=N. N | last2=Kazarovets | first2=E. V | last3=Durlevich | first3=O. V | last4=Kireeva | first4=N. N | last5=Pastukhova | first5=E. N | journal=Astronomy Reports | volume=61 | issue=1 | pages=80 | year=2017 | bibcode=2017ARep...61...80S | s2cid=125853869 | doi=10.1134/S1063772917010085 }}</ref>
}}
{{Starbox astrometry {{Starbox astrometry
| radial_v = {{val|−22.204|0.032}}<ref name="KervellaThévenin2017">{{cite journal |last1=Kervella |first1=P. |last2=Thévenin |first2=F. |last3=Lovis |first3=C. |title=Proxima's orbit around α Centauri |journal=Astronomy & Astrophysics |volume=598 |year=2017 |pages=L7 |issn=0004-6361 |doi=10.1051/0004-6361/201629930 |arxiv=1611.03495 |bibcode=2017A&A...598L...7K|s2cid=50867264 }} Separation: 3.1, left column of page 3; Orbital period and epoch of periastron: Table 3, right column of page 3.</ref>
| radial_v=&minus;21.7<ref name=aaa379/>
| prop_mo_ra=&minus;3775.64<ref name="SIMBAD" /> | prop_mo_ra = −3781.741
| prop_mo_dec=768.16<ref name="SIMBAD" /> | prop_mo_dec = 769.465
| pm_footnote = <ref name="Gaia3"/>
| parallax=771.99
| parallax = 768.0665
| p_error=2.25
| p_error = 0.0499
| parallax_footnote=<ref name="SIMBAD" />
| parallax_footnote = <ref name="Gaia3">{{cite Gaia EDR3|5853498713190525696}}</ref>
| absmag_v=15.49<ref name="abs_mag">For apparent magnitude ''m'' and parallax ''π'', the absolute magnitude ''M<sub>v</sub>'' is given by:
| absmag_v = 15.60<ref name="apj118"/>
:<math>\begin{smallmatrix}M_v\ =\ m + 5 (\log_{10}{\pi} + 1)\ =\ 11.05 + 5 (\log_{10}{0.77199} + 1)\ =\ 15.49\end{smallmatrix}</math>
}}
See: {{cite book
{{Starbox orbit
| first=Roger John | last=Tayler | year=1994
| reference = <ref name="KervellaThévenin2017" />
| title=The Stars: Their Structure and Evolution
| primary = Alpha Centauri AB
| publisher=Cambridge University Press
| name = Proxima Centauri
| pages=16 | isbn=0521458854 }}</ref>
| period = {{val|547000|6600|4000}}
}}
| axis_unitless = {{val|8700|700|400|ul=AU}}
| eccentricity = {{val|0.50|0.08|0.09}}
| inclination = {{val|107.6|1.8|2.0}}
| node = {{val|126|5}}
| periastron = {{val|+283|59|41}}
| periarg = {{val|72.3|8.7|6.6}}
}}
{{Starbox detail {{Starbox detail
| age=4.85{{Esp|9}}<ref name="ESO2003">{{cite news | mass = {{val|0.1221|0.0022}}<ref name="KervellaThévenin2017" />
| radius = {{val|0.1542|0.0045}}<ref name="KervellaThévenin2017" />
| author=Kervella, Pierre; Thevenin, Frederic
| luminosity_bolometric = 0.001567{{±|0.000020}}<ref name="Pineda2021" />
| title=A Family Portrait of the Alpha Centauri System: VLT Interferometer Studies the Nearest Stars
| luminosity_visual = 0.00005<ref group=nb>From knowing the absolute visual magnitude of Proxima Centauri, <math>\scriptstyle M_{V_{\ast}} = 15.6</math>, and the absolute visual magnitude of the Sun, <math style="vertical-align:-36\%;">\scriptstyle M_{V_{\odot}} = 4.83</math>, the visual luminosity of Proxima Centauri can therefore be calculated: <math>\scriptstyle \frac{L_{V_{\ast}}}{L_{V_{\odot}}} = 10^{0.4\left(M_{V_{\odot}} - M_{V_{\ast}}\right)} = 4.92\times10^{-5}</math></ref>
| publisher=ESO | date=2003-03-15
| habitable_inner = <!--Inner limit to the star's habitable zone, where temperatures are 100˚ C-->
| url=http://www.eso.org/public/outreach/press-rel/pr-2003/pr-05-03.html
| habitable_outer = <!--Outer limit to the star's habitable zone, where temperatures are 0˚ C-->
| accessdate=2007-07-09 }}</ref>
| gravity = {{val|5.20|0.23}}<ref name="aaa397" />
| metal=<!-- assumed to be the same as Alpha Cen A/B -->
| mass=0.123<ref name="ESO2003" /> | temperature = {{val|2992|49|47|fmt=commas}}<ref name="Pineda2021" />
| metal = <!-- generally, but not by everyone, assumed to be the same as Alpha Cen A/B -->
| radius=0.145<ref name="ESO2003" />
| metal_fe = 0.21<ref name="aaa519_A105" />{{#tag:ref|If Proxima Centauri was a later capture into the Alpha Centauri star system then its metallicity and age could be quite different to that of Alpha Centauri A and B. Through comparing Proxima Centauri to other similar stars it was estimated that it had a lower metallicity, ranging from less than a third, to about the same, of the Sun's.<ref name="PasseggerWende-von Berg2016" /><ref name="FengJones2018" />|group="nb"|name="alternate estimated metallicities"}}
| rotation=83.5&nbsp;days<ref>{{cite journal
| rotation = {{val|89.8|4}}<ref name="Klein2020">{{cite journal|title=The large-scale magnetic field of Proxima Centauri near activity maximum
| author=Benedict, G. Fritz ''et al''
| last1=Klein | first1=Baptiste | last2=Donati | first2=Jean-François
| title=Photometry of Proxima Centauri and Barnard's Star Using Hubble Space Telescope Fine Guidance Sensor 3: A Search for Periodic Variations
| last3=Hébrard | first3=Élodie M. | last4=Folsom | first4=Colin P.
| journal=The Astronomical Journal
| year=1998 | volume=116 | issue=1 | pages=429–439 | last5=Morin | first5=Julien | last6=Delfosse | first6=Xavier
| last7=Bonfils | first7=Xavier | display-authors=1
| url=http://adsabs.harvard.edu/abs/1998AJ....116..429B
| journal=Monthly Notices of the Royal Astronomical Society
| accessdate=2007-07-09
| volume=500 | issue=2 | pages=1844–1850
| doi=10.1086/300420 }}</ref>
| date=January 2021 | doi=10.1093/mnras/staa3396
| luminosity=1.38{{Esp|&minus;4}}<ref name="ESO2003" />
| doi-access=free | arxiv=2010.14311 | bibcode=2021MNRAS.500.1844K }}</ref>&nbsp;days
| temperature=3,040<ref name="ESO2003" />
| rotational_velocity = &lt;&nbsp;0.1<ref name="Collins2016">{{cite journal |title=Calculations of periodicity from Hα profiles of Proxima Centauri |journal=Astronomy & Astrophysics |first1=John M. |last1=Collins |first2=Hugh R. A. |last2=Jones |first3=John R. |last3=Barnes |volume=602 |at=A48 |date=June 2017 |doi=10.1051/0004-6361/201628827 |bibcode=2017A&A...602A..48C |arxiv=1608.07834|s2cid=18949162 }} See section 4: "the vsini is probably less than 0.1 km/s for Proxima Centauri".</ref>
| gravity=5.20<ref>{{cite journal
| age_gyr = 4.85<ref name="ESO2003" />
| last=Ségransan | first=D.
}}
| coauthors=Kervella, P.; Forveille, T.; Queloz, D.
| title=First radius measurements of very low mass stars with the VLTI
| journal=Astronomy and Astrophysics
| year=2003 | volume=397 | pages=L5–L8
| url=http://adsabs.harvard.edu/abs/2003A&A...397L...5S
| accessdate=2008-06-13
| doi=10.1051/0004-6361:20021714 }}</ref>
}}
{{Starbox catalog {{Starbox catalog
| names = {{odlist | name=Alf Cen C | B=Alpha Centauri C | CCDM=J14396-6050C | GCTP=3278.00 | GJ=551 | HIP=70890 | LFT=1110 | LHS=49 | LPM=526 | LTT=5721 | NLTT=37460 | V=V645 Centauri }}<ref name="SIMBAD">{{cite simbad |title=Proxima centauri | access-date=2022-04-28}}—some of the data is located under "Measurements".</ref>
| names = ], ], ], ], ], ], ], ]<ref name="SIMBAD" />
}} }}
{{Starbox reference {{Starbox reference
| Simbad = V645+Cen | Simbad = V645+Cen
| ARICNS = <!--Code--> | ARICNS = 01140
}} }}
{{Starbox end}} {{Starbox end}}


'''Proxima Centauri''' is the nearest star to Earth after the ], located 4.25 ]s away in the southern ] of ]. This object was discovered in 1915 by ]. It is a small, low-mass ], too faint to be seen with the ], with an ] of 11.13. Its ] name means the 'nearest of Centaurus'. Proxima Centauri is a member of the ] ], being identified as component '''Alpha Centauri&nbsp;C''', and is 2.18° to the southwest of the Alpha Centauri&nbsp;AB pair. It is currently {{convert|12950|AU|ly|1|abbr=unit|lk=on}} from AB, which it orbits with a ] of about 550,000&nbsp;years.
'''Proxima Centauri''' (] ''proximus, proxima, proximum'': meaning 'next to' or 'nearest to')<ref>{{cite web
| url=http://www.jact.org/subjects/vocablist.htm
| title=Latin Resources
| publisher =Joint Association of Classical Teachers
| accessdate=2007-07-15}}</ref> is a ] ] approximately 4.22 ]s distant in the ] of ]. It was discovered in 1915 by ], the Director of the ] in ]. The star may be part of the ] system, and it is the ] to the ].<ref name="ESO2003"/> Because of the star's proximity, it has been proposed as a destination for ].<ref name=gilster>{{cite book
| first=Paul | last=Gilster | year=2004
| title=Centauri Dreams: Imagining and Planning
| publisher=Springer | isbn=038700436X }}</ref>


Proxima Centauri is a ] star with a mass about 12.5% of the Sun's mass ({{Solar mass|link=y}}), and average ] about 33&nbsp;times that of the Sun. Because of Proxima Centauri's proximity to ], its ] can be measured directly. Its actual diameter is about one-seventh (14%) the diameter of the Sun. Although it has a very low average ], Proxima Centauri is a ] that randomly undergoes dramatic increases in brightness because of ]. The star's ] is created by ] throughout the stellar body, and the resulting flare activity generates a total ] emission similar to that produced by the Sun. The internal mixing of its fuel by convection through its core and Proxima's relatively low energy-production rate, mean that it will be a ] for another four trillion years.
Proxima Centauri is a ] that undergoes random increases in luminosity because of magnetic activity.<ref name=apj612>{{cite journal
| last=Christian | first=D. J.
| coauthors=Mathioudakis, M.; Bloomfield, D. S.; Dupuis, J.; Keenan, F. P.
| title=A Detailed Study of Opacity in the Upper Atmosphere of Proxima Centauri
| journal=The Astrophysical Journal
| year=2004 | volume=612 | issue=2 | pages=1140–1146
| url=http://adsabs.harvard.edu/abs/2004ApJ...612.1140C
| accessdate=2008-06-13
| doi=10.1086/422803 }}</ref> The star's ] is created by ] throughout the star, and the resulting flare activity produces a total ] emission similar to that produced by the Sun.<ref name=apj547/> Proxima Centauri's mass is about an eighth of the Sun's, and it consequently has a very low luminosity. Because of its proximity, the diameter of the star can be measured directly, and is one-seventh that of the Sun.<ref name="ESO2003"/> The mixing of the fuel at Proxima Centauri's core through convection and the star's relatively low energy production rate means that it will be a ] for another four trillion years.<ref name=adams/>


Proxima Centauri has one known ] and two candidate exoplanets: ], the candidate ] and the disputed ].<ref group="nb">Extrasolar planet names are designated following the ] in alphabetical order according to their respective dates of discovery, with 'Proxima Centauri a' being the star itself.</ref> Proxima Centauri&nbsp;b orbits the star at a distance of roughly {{convert|0.05|AU|e6km|abbr=unit}} with an orbital period of approximately 11.2 Earth days. Its estimated mass is at least 1.07&nbsp;times that of Earth.<ref name="FariaSuárezMascareñoSilva2022"/> Proxima&nbsp;b orbits within Proxima Centauri's ]—the range where temperatures are right for liquid water to exist on its surface—but, because Proxima Centauri is a red dwarf and a flare star, the planet's ] is highly uncertain. A candidate ], ], roughly {{convert|1.5|AU|e6km|abbr=unit}} away from Proxima Centauri, orbits it every {{convert|1900|days|years|abbr=unit}}.<ref name="Damasso2020"/><ref name="BenedictMcArthur2020"/> A candidate ], ], roughly {{convert|0.029|AU|e6km|abbr=unit}} away, orbits it every 5.1 days.<ref name="FariaSuárezMascareñoSilva2022"/>
Searches for companions orbiting Proxima Centauri have been unsuccessful, although these attempts could only rule out the presence of large companions such as ] and supermassive planets.<ref name="aaal344"/><ref name=apj119/> The detection of smaller objects will require the use of new instruments, such as the proposed ].<ref name="numbers"/> Because Proxima Centauri is a red dwarf and a flare star, whether a planet orbiting this star could support life is disputed.<ref name=tarter/><ref name=Khodachenko/>


==General characteristics==
== Observation ==
] ] for Proxima Centauri are shown. Plot A shows a superflare which dramatically increased the star's brightness for a few minutes. Plot B shows the relative brightness variation over the course of the star's 83 day rotation period. Plot C shows variation over a 6.8 year period, which may be the length of the star's magnetic activity period. Adapted from Howard ''et al.'' (2018)<ref name=howard/> and Mascareño ''et al.'' (2016)<ref name="Masc2016"/>]]

Proxima Centauri is a ], because it belongs to the ] on the ] and is of ]. The M5.5 class means that it falls in the low-mass end of M-type ]s,<ref name="ESO2003">{{cite news | last1=Kervella | first1=Pierre | last2=Thevenin | first2=Frederic |title=A family portrait of the Alpha Centauri system: VLT interferometer studies the nearest stars |publisher=European Southern Observatory |date=March 15, 2003 |url=https://www.eso.org/public/news/eso0307/ |access-date=May 10, 2016}}</ref> with its hue shifted toward red-yellow<ref>{{cite book | title=Future Spacecraft Propulsion Systems: Enabling Technologies for Space Exploration | first1=Paul A. | last1=Czysz | first2=Claudio | last2=Bruno | date=2009 | page=36 | publisher=Springer Berlin Heidelberg | isbn=9783540888147 | url=https://books.google.com/books?id=aI9QhDA4AVwC&pg=PA376 }}</ref> by an ] of {{val|3000|u=K|fmt=commas|p=~}}.<ref name="aaa397" /> Its ], or its visual magnitude as viewed from a distance of {{convert|10|pc|ly|0|abbr=out}}, is 15.5.<ref name="abs_mag">{{cite journal |last1=Kamper |first1=K. W. | last2=Wesselink | first2=A. J. |title=Alpha and Proxima Centauri |journal=Astronomical Journal |date=1978 |volume=83 |pages=1653–1659 |doi=10.1086/112378 |bibcode=1978AJ.....83.1653K|doi-access=free }}</ref> Its total luminosity over all ]s is only 0.16% that of the Sun,<ref name="Pineda2021">{{cite journal
Proxima Centauri was discovered to share the same ] as ] in 1915 by ] while he was Director of the ] in ], ].<ref name="ESO2002">{{cite web
| title=The M-dwarf Ultraviolet Spectroscopic Sample. I. Determining Stellar Parameters for Field Stars
| first=Didier | last=Queloz | date=2002-11-29
| last1=Pineda | first1=J. Sebastian | last2=Youngblood | first2=Allison
| url =http://www.eso.org/outreach/press-rel/pr-2002/pr-22-02.html
| last3=France | first3=Kevin
| title =How Small are Small Stars Really? VLT Interferometer Measures the Size of Proxima Centauri and Other Nearby Stars
| journal=The Astrophysical Journal
| publisher =European Southern Observatory
| volume=918 | issue=1 | id=40 | pages=23 | date=September 2021
| accessdate = 2007-07-09 }}</ref> Innes also suggested the name ''Proxima Centauri'' for the ].<ref>{{cite journal
| doi=10.3847/1538-4357/ac0aea | arxiv=2106.07656
| last=Alden | first=Harold L.
| bibcode=2021ApJ...918...40P | s2cid=235435757 | doi-access=free }}</ref> although when observed in the wavelengths of ] to which the eye is most sensitive, it is only 0.0056% as luminous as the Sun.<ref>{{cite book | last1=Binney | first1=James | first2=Scott | last2=Tremaine |title=Galactic dynamics |publisher=Princeton University Press |location=Princeton, New Jersey |date=1987 |isbn=978-0-691-08445-9 |page=8}}</ref> More than 85% of its radiated power is at ] wavelengths.<ref>{{cite journal |last=Leggett |first=S. K. |title=Infrared colors of low-mass stars |journal=Astrophysical Journal Supplement Series |date=1992 |volume=82 |issue=1 |pages=351–394, 357 |doi=10.1086/191720 |bibcode=1992ApJS...82..351L}}</ref>
| title=Alpha and Proxima Centauri
| journal=Astronomical Journal
| year=1928 | volume=39 | issue=913 | pages=20–23
| url=http://adsabs.harvard.edu/abs/1928AJ.....39...20A
| accessdate=2008-06-28
| doi=10.1086/104871 }}</ref> In 1917, at the ] at the ], the Dutch astronomer ] measured the star's trigonometric ] and determined that Proxima Centauri was indeed the same distance from the Sun as Alpha Centauri. It was also found to be the lowest-luminosity ] known at the time.<ref>{{cite journal
| last = Voûte | first = J.
| title=A 13th magnitude star in Centaurus with the same parallax as α Centauri
| journal=Monthly Notices of the Royal Astronomical Society
| year=1917 | volume=77 | pages=650–651
| url=http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1917MNRAS..77..650V&amp;db_key=AST&amp;data_type=HTML&amp;format=&amp;high=444c5eb29022736
| accessdate=2007-07-09 }}</ref> In 1951, American astronomer ] announced that Proxima Centauri was a flare star. Examination of past photographic records showed that the star displayed a measurable increase in magnitude on about 8% of the images, making it the most active flare star then known.<ref>{{cite journal
| last = Shapley | first = Harlow
| title=Proxima Centauri as a Flare Star
| journal=Proceedings of the National Academy of Sciences of the United States of America
| year=1951 | volume=37 | issue=1 | pages=15–18
| url=http://adsabs.harvard.edu/abs/1951PNAS...37...15S
| accessdate=2007-07-11 | doi=10.1073/pnas.37.1.15 }}</ref>

]
The proximity of the star allows for detailed observation of its flare activity. In 1980, the ] produced a detailed X-ray energy curve of a stellar flare on Proxima Centauri. Further observations of flare activity was made with the ] and ] ]s, and the X-ray emission of smaller, solar-like flares was observed by the Japanese ] satellite in 1995.<ref>{{cite journal
| last=Haisch | first=Bernhard
| coauthors=Antunes, A.; Schmitt, J. H. M. M.
| title=Solar-Like M-Class X-ray Flares on Proxima Centauri Observed by the ASCA Satellite
| journal=Science | year=1995
| volume=268 | issue=5215 | pages=1327–1329
| doi=10.1126/science.268.5215.1327 }}</ref> Proxima Centauri has since been the subject of study by most X-ray observatories, including ] and ].<ref name=aaa416/>


In 2002, ] with the ] (VLTI) found that the ] of Proxima Centauri is {{val|1.02|0.08|ul=mas}}. Because its distance is known, the actual diameter of Proxima Centauri can be calculated to be about 1/7 that of the Sun, or 1.5 times that of ]. The star's mass, estimated from stellar theory, is {{Solar mass|12.2%|link=y}}, or 129 ]es ({{Jupiter mass}}).<ref>{{cite web |title=How Small are Small Stars Really? |first=Didier |last=Queloz |date=November 29, 2002 |publisher=European Southern Observatory |url=https://www.eso.org/public/news/eso0232/ |access-date=September 5, 2016}}</ref> The mass has been calculated directly, although with less precision, from observations of ] events to be {{val|0.150|0.062|0.051|u=solar mass}}.<ref name=zurlo>{{cite journal |doi=10.1093/mnras/sty1805 |bibcode=2018MNRAS.480..236Z |title=The gravitational mass of Proxima Centauri measured with SPHERE from a microlensing event |journal=Monthly Notices of the Royal Astronomical Society |volume=480 |issue=1 |pages=236 |last1=Zurlo |first1=A. |last2=Gratton |first2=R. |last3=Mesa |first3=D. |last4=Desidera |first4=S. |last5=Enia |first5=A. |last6=Sahu |first6=K. |last7=Almenara |first7=J. -M. |last8=Kervella |first8=P. |last9=Avenhaus |first9=H.|last10=Girard|first10=J. |last11=Janson |first11=M. |last12=Lagadec |first12=E. |last13=Langlois |first13=M. |last14=Milli |first14=J. |last15=Perrot |first15=C. |last16=Schlieder |first16=J. -E. |last17=Thalmann |first17=C. |last18=Vigan |first18=A. |last19=Giro |first19=E.|last20=Gluck|first20=L. |last21=Ramos |first21=J. |last22=Roux |first22=A. |year=2018 |doi-access=free |arxiv=1807.01318|s2cid=118971274 }}</ref>
Because of Proxima Centauri's southern declination, it can only be viewed south of ] 27°&nbsp;N, which is located just to the north of ], ].<ref>{{cite book
| first=William Wallace | last=Campbell
| year=1899 | title=The Elements of Practical Astronomy
| publisher=Macmillan | location=London }}&mdash;For a star south of the zenith, the angle to the zenith is equal to the Latitude minus the Declination. The star is hidden from site when the zenith angle is 90° or more. I.e. below the horizon. Thus, for Proxima Centauri:
:Highest latitude = 90&deg; + &minus;62.68° = 27.32°.</ref> Red dwarfs such as Proxima Centauri are, in general, far too faint to be observable with the naked eye; even from Alpha Centauri A or B, Proxima would only be seen as a 5th magnitude star.<ref>{{cite web
| url =http://sdc.laeff.inta.es/ines/Ines_PCentre/Demos/Fluxdist/pcentauri.html
| title =Proxima Centauri UV Flux Distribution
| publisher =ESA/Laboratory for Space Astrophysics and Theoretical Physics
| accessdate = 2007-07-11 }}</ref> It has an ] of 11, so a ] with an ] of at least 8&nbsp;] (3.1&nbsp;]) is needed to observe this star even under ideal viewing conditions&mdash;under clear, dark skies with Proxima Centauri well above the horizon.<ref>{{cite book
| first=P. Clay | last=Sherrod
| coauthors=Koed, Thomas L.; Aleichem, Thomas L. Sholem
| year=2003 | title=A Complete Manual of Amateur Astronomy: Tools and Techniques for Astronomical Observations
| publisher=Courier Dover Publications
| isbn=0486428206 }}</ref>
If the Sun were to become as dim as Proxima, all of the planets except ] would be too faint to be seen with the naked eye, and even Venus at its brightest would be a barely visible 6th magnitude.<ref>The difference in absolute magnitude between Proxima Centauri and the Sun is 15.49&nbsp;&ndash;&nbsp;4.83&nbsp;=&nbsp;10.66. Venus reaches a maximum apparent magnitude of &minus;4.6, so the corresponding magnitude of Venus in the same orbit around Proxima Centauri would be &minus;4.6&nbsp;+&nbsp;10.66&nbsp;=&nbsp;6.06.</ref>


Lower mass main-sequence stars have higher mean ] than higher mass ones,<ref>{{cite book |first=Martin V. |last=Zombeck |date=2007 |title=Handbook of space astronomy and astrophysics |url=https://archive.org/details/handbookspaceast00zomb_781 |url-access=limited |publisher=Cambridge University Press |edition=Third |pages= |location=Cambridge, UK |isbn=978-0-521-78242-5}}</ref> and Proxima Centauri is no exception: it has a mean density of {{convert|47.1e3|kg/m3|g/cm3|abbr=on}}, compared with the Sun's mean density of {{convert|1.411e3|kg/m3|g/cm3|abbr=on}}.<ref group="nb" name="density">The density (''ρ'') is given by the mass divided by the volume. Relative to the Sun, therefore, the density is:
== Characteristics ==


Proxima Centauri is classified as a red dwarf star because it belongs to the ] on the ] and it is of ]. It is further classified as a "late M-dwarf star"; meaning that at M5.5 it falls to the low-mass extreme of M-type stars.<ref name="ESO2003"/> This star's ], or its magnitude as viewed from a distance of 10 parsecs, is 15.5.<ref name="abs_mag"/>

]
In 2002, ] with the ] (VLTI) found that the ] of Proxima Centauri was 1.02&nbsp;±&nbsp;0.08 ]. Because its distance is known, the actual diameter of Proxima Centauri can be calculated to be about 1/7 that of the Sun, or 1.5 times that of ].<ref name="ESO2002"/> The star's estimated mass is only 12.3% of a ], or 129 ]es.<ref name="ESO2003"/> The mean ] of a main sequence star increases with decreasing mass,<ref>{{cite book
| first=Martin V. | last=Zombeck | year=2007
| title=Handbook of Space Astronomy and Astrophysics
| publisher=Cambridge University Press
| edition=Third edition | pages=109
| location=Cambridge, UK | isbn=0521782422 }}</ref> and Proxima Centauri is no exception: it has a mean density of 56,800&nbsp;kg/m<sup>3</sup>, compared with the Sun's mean density of 1,409&nbsp;kg/m<sup>3</sup>.<ref>The density (''&rho;'') is given by the mass divided by the volume. Relative to the Sun, therefore, the density is:
:{| :{|
| <math>\rho</math> |<math>\rho</math>
| = <math>\begin{smallmatrix}\frac{M}{M_{\odot}} \cdot \left( \frac{R}{R_{\odot}} \right)^{-3} \cdot \rho_{\odot}\end{smallmatrix}</math> |= <math>\begin{smallmatrix}\frac{M}{M_{\odot}} \cdot \left( \frac{R}{R_{\odot}} \right)^{-3} \cdot \rho_{\odot}\end{smallmatrix}</math>
|-
| ||= 0.122 · 0.154<sup>−3</sup> · (1.41{{E-sp|3}}&nbsp;kg/m<sup>3</sup>)
|- |-
| || = 0.123 · 0.145<sup>-3</sup> · 1.409{{Esp|3}}&nbsp;kg/m<sup>3</sup> | ||= 33.4 · (1.41{{E-sp|3}}&nbsp;kg/m<sup>3</sup>)
|- |-
| || = 5.68{{Esp|4}}&nbsp;kg/m<sup>3</sup> | ||= 4.71{{E-sp|4}}&nbsp;kg/m<sup>3</sup>
|} |}
where <math>\begin{smallmatrix}\rho_{\odot}\end{smallmatrix}</math> is the average solar density. See: {{cite web where <math>\begin{smallmatrix}\rho_{\odot}\end{smallmatrix}</math> is the average solar density.
See:
*{{cite web | last1=Munsell | first1=Kirk | last2=Smith | first2=Harman | last3=Davis | first3=Phil | last4=Harvey | first4=Samantha |date=June 11, 2008 |url=http://solarsystem.nasa.gov/planets/profile.cfm?Object=Sun&Display=Facts&System=Metric |title=Sun: facts & figures |work=Solar system exploration |publisher=NASA |access-date=July 12, 2008 |url-status=dead |archive-url=https://web.archive.org/web/20080102034758/http://solarsystem.nasa.gov/planets/profile.cfm?Object=Sun&Display=Facts&System=Metric |archive-date=January 2, 2008}}
| authors=Munsell, Kirk; Smith, Harman; Davis, Phil; Harvey, Samantha
*{{cite book |last1=Bergman |first1=Marcel W. |last2=Clark |first2=T. Alan |last3=Wilson |first3=William J. F. |date=2007 |pages=220–221 |title=Observing projects using Starry Night Enthusiast |edition=8th |publisher=Macmillan |isbn=978-1-4292-0074-5}}</ref> The measured ] of Proxima Centauri, given as the ] of the ] in ], is 5.20.<ref name="aaa397" /> This is 162 times the ] on Earth.<ref group="nb" name="gravity">The standard surface gravity on the Earth is {{val|980.665|u=cm/s<sup>2</sup>}}, for a 'log g' value of 2.992. The difference in logarithms is 5.20 − 2.99 = 2.21, yielding a multiplier of 10<sup>2.21</sup> = 162. For the Earth's gravity, see:
| date=2008-06-11
* {{cite book | page=29 | url=https://physics.nist.gov/cuu/pdf/sp330.pdf | title=The International System of Units (SI) | editor1-first=Barry N. | editor1-last=Taylor | year=2001 | publisher=United States Department of Commerce: National Institute of Standards and Technology | access-date=2012-03-08 }}</ref>
| url=http://solarsystem.nasa.gov/planets/profile.cfm?Object=Sun&Display=Facts&System=Metric
| title=Sun: Facts & Figures | work=Solar System Exploration
| publisher=NASA | accessdate=2008-07-12 }}</ref>


A 1998 study of ] variations indicates that Proxima Centauri completes a full rotation once every 83.5 days.<ref name=McArthur1998>{{cite journal | last1=Benedict | first1=G. F. |title=Photometry of Proxima Centauri and Barnard's Star using Hubble Space Telescope fine guidance sensor 3: a search for periodic variations |journal=The Astronomical Journal |date=1998 |volume=116 |issue=1 |pages=429–439 |doi=10.1086/300420 |bibcode=1998AJ....116..429B |arxiv=astro-ph/9806276 | last2=McArthur | first2=B. |last3=Nelan |first3=E. |last4=Story |first4=D. |last5=Whipple |first5=A. L. |last6=Shelus |first6=P. J. |last7=Jefferys |first7=W. H. |last8=Hemenway |first8=P. D. |last9=Franz |first9=Otto G.|s2cid=15880053 }}</ref> A subsequent ] analysis of ] indicators in 2002 suggests a longer rotation period of {{val|116.6|0.7}}&nbsp;days.<ref>{{cite journal |title=Rotation periods of late-type dwarf stars from time series high-resolution spectroscopy of chromospheric indicators |last1=Suárez Mascareño |first1=A. |last2=Rebolo |first2=R. |last3=González Hernández |first3=J. I. |last4=Esposito |first4=M. |journal=Monthly Notices of the Royal Astronomical Society |volume=452 |issue=3 |pages=2745–2756 |date=September 2015 |doi=10.1093/mnras/stv1441 |doi-access=free |bibcode=2015MNRAS.452.2745S |arxiv=1506.08039|s2cid=119181646 }}</ref> Later observations of the star's magnetic field subsequently revealed that the star rotates with a period of {{val|89.8|4}}&nbsp;days, consistent with a measurement of {{val|92.1|4.2|3.5}}&nbsp;days from radial velocity observations.<ref name="Klein2020"/><ref name="ArtigauCadieux2022"/>
Because of its low mass, the interior of the star is completely ], causing energy to be transferred to the exterior by the physical movement of plasma rather than through ]). This convection means that the helium ash left over from the ] of hydrogen does not accumulate at the core, but is instead circulated throughout the star. Unlike the Sun, which will only burn through about 10% of its total hydrogen supply before leaving the main sequence, Proxima Centauri will consume a much higher proportion of its fuel before the fusion of hydrogen comes to an end.<ref name=adams/>


== Structure and fusion ==
Convection is associated with the generation and storage of a ]. The magnetic energy from this field is released at the surface through ]s that briefly increase the overall luminosity of the star. These flares can grow as large as the star and reach temperatures measured as high as 27&nbsp;million K<ref name=aaa416>{{cite journal
Because of its low mass, the interior of the star is completely ],<ref name=Yadav2016/> causing energy to be transferred to the exterior by the physical movement of plasma rather than through ]. This convection means that the helium ash left over from the ] of hydrogen does not accumulate at the core but is instead circulated throughout the star. Unlike the Sun, which will only burn through about 10% of its total hydrogen supply before leaving the main sequence, Proxima Centauri will consume nearly all of its fuel before the fusion of hydrogen comes to an end.<ref name="adams">{{cite conference |last1=Adams |first1=Fred C. |last2=Laughlin |first2=Gregory |last3=Graves |first3=Genevieve J. M. |title=Red dwarfs and the end of the main sequence |url=http://www.astroscu.unam.mx/rmaa/RMxAC..22/PDF/RMxAC..22_adams.pdf |publisher=] |pages=46–49 |access-date=June 24, 2008 |work=Gravitational collapse: from massive stars to planets |archive-date=11 July 2019 |archive-url=https://web.archive.org/web/20190711072446/http://www.astroscu.unam.mx/rmaa/RMxAC..22/PDF/RMxAC..22_adams.pdf |url-status=dead }}</ref>
| last=Guedel | first=M.
| coauthors=Audard, M.; Reale, F.; Skinner, S. L.; Linsky, J. L.
| title=Flares from small to large: X-ray spectroscopy of Proxima Centauri with XMM-Newton
| journal=Astronomy and Astrophysics | year=2004
| volume=416 | pages=713–732
| url=http://arxiv.org/abs/astro-ph/0312297
| accessdate=2008-07-11 }}</ref>&mdash;hot enough to radiate ]s.<ref>{{cite web
| author=Staff | date =2006-08-30
| url =http://chandra.harvard.edu/photo/2004/proxima/
| title =Proxima Centauri: The Nearest Star to the Sun
| publisher =Harvard-Smithsonian Center for Astrophysics
| accessdate = 2007-07-09 }}</ref> Indeed, the quiescent X-ray luminosity of this star, approximately (4–16){{Esp|26}}&nbsp;]/s, is roughly equal to that of the much larger Sun. The peak X-ray luminosity of the largest flares can reach 10<sup>28</sup>&nbsp;erg/s.<ref name=aaa416/>


Convection is associated with the generation and persistence of a ]. The magnetic energy from this field is released at the surface through ]s that briefly (as short as per ten seconds)<ref name=MacGregor_et_al_2021>{{cite journal |arxiv=2104.09519 |last1=MacGregor |first1=Meredith A. |last2=Weinberger |first2=Alycia J. |last3=Parke Loyd |first3=R. O. |last4=Shkolnik |first4=Evgenya |last5=Barclay |first5=Thomas |last6=Howard |first6=Ward S. |last7=Zic |first7=Andrew |last8=Osten |first8=Rachel A. |last9=Cranmer |first9=Steven R. |last10=Kowalski |first10=Adam F. |last11=Lenc |first11=Emil |last12=Youngblood |first12=Allison |last13=Estes |first13=Anna |last14=Wilner |first14=David J. |last15=Forbrich |first15=Jan |last16=Hughes |first16=Anna |last17=Law |first17=Nicholas M. |last18=Murphy |first18=Tara |last19=Boley |first19=Aaron |last20=Matthews |first20=Jaymie |title=Discovery of an Extremely Short Duration Flare from Proxima Centauri Using Millimeter through Far-ultraviolet Observations |journal=The Astrophysical Journal Letters |year=2021 |volume=911 |issue=2 |pages=L25 |doi=10.3847/2041-8213/abf14c |bibcode=2021ApJ...911L..25M |s2cid=233307258 |doi-access=free }}</ref> increase the overall luminosity of the star. On May 6, 2019, a flare event bordering Solar ],<ref>{{citation|arxiv=2209.05490|year=2022|title=The Mouse That Squeaked: A Small Flare from Proxima Cen Observed in the Millimeter, Optical, and Soft X-Ray with Chandra and ALMA|doi=10.3847/1538-4357/ac9134 |last1=Howard |first1=Ward S. |last2=MacGregor |first2=Meredith A. |last3=Osten |first3=Rachel |last4=Forbrich |first4=Jan |last5=Cranmer |first5=Steven R. |last6=Tristan |first6=Isaiah |last7=Weinberger |first7=Alycia J. |last8=Youngblood |first8=Allison |last9=Barclay |first9=Thomas |last10=Parke Loyd |first10=R. O. |last11=Shkolnik |first11=Evgenya L. |last12=Zic |first12=Andrew |last13=Wilner |first13=David J. |journal=The Astrophysical Journal |volume=938 |issue=2 |page=103 |bibcode=2022ApJ...938..103H |s2cid=252211788 |doi-access=free }}</ref> briefly became the brightest ever detected, with a far ultraviolet emission of {{val|2|e=30|u=erg}}.<ref name=MacGregor_et_al_2021/> These flares can grow as large as the star and reach temperatures measured as high as 27&nbsp;million ]<ref name=aaa416>{{cite journal |last1=Guedel |first1=M. | last2=Audard | first2=M. | last3=Reale | first3=F. | last4=Skinner | first4=S. L. | last5=Linsky | first5=J. L. |title=Flares from small to large: X-ray spectroscopy of Proxima Centauri with XMM-Newton |journal=Astronomy and Astrophysics |date=2004 |volume=416 |issue=2 |pages=713–732 |arxiv=astro-ph/0312297 |doi=10.1051/0004-6361:20031471 |bibcode=2004A&A...416..713G|s2cid=7725125 }}</ref>—hot enough to radiate ]s.<ref>{{cite web |url=http://chandra.harvard.edu/photo/2004/proxima/ |title=Proxima Centauri: the nearest star to the Sun |publisher=Harvard-Smithsonian Center for Astrophysics |date=August 30, 2006 |access-date=July 9, 2007}}</ref> Proxima Centauri's quiescent X-ray luminosity, approximately (4–16){{E-sp|26}}&nbsp;]/s ((4–16){{E-sp|19}}&nbsp;]), is roughly equal to that of the much larger Sun. The peak X-ray luminosity of the largest flares can reach {{10^|28}}&nbsp;erg/s ({{10^|21}}&nbsp;W).<ref name=aaa416/>
The ] of this star is active, and its ] displays a strong ] of singly-ionized ] at a ] of 280&nbsp;].<ref>{{cite journal
| first=Guinan | last=E. F. | coauthors=Morgan, N. D.
| title=Proxima Centauri: Rotation, Chromosperic Activity, and Flares
| journal=Bulletin of the American Astronomical Society
| year=1996 | volume=28 | pages=942
| url=http://adsabs.harvard.edu/abs/1996BAAS...28S.942G
| accessdate=2008-06-14 }}</ref> About 88% of the surface of Proxima Centauri may be active, a percentage that is much higher than that of the Sun even at the peak of the ]. Even during quiescent periods with few or no flares, this activity increases the ] temperature of Proxima Centauri to 3.5&nbsp;million K, compared to the 2&nbsp;million K of the Sun's corona.<ref>{{cite journal
| last=Wargelin | first=Bradford J.
| coauthors=Drake, Jeremy J.
| title=Stringent X-Ray Constraints on Mass Loss from Proxima Centauri
| journal=The Astrophysical Journal | year=2002
| volume=578 | pages=503–514
| doi=10.1086/342270 }}</ref> However, the overall activity level of this star is considered relatively low compared to other M-class dwarfs,<ref name=apj547>{{cite journal
| author=Wood, B. E.; Linsky, J. L.; Müller, H.-R.; Zank, G. P.
| title=Observational Estimates for the Mass-Loss Rates of &alpha; Centauri and Proxima Centauri Using Hubble Space Telescope Ly&alpha; Spectra
| journal=The Astrophysical Journal | year=2001
| volume=547 | issue=1 | pages=L49–L52
| url=http://adsabs.harvard.edu/abs/2001ApJ...547L..49W
| accessdate=2007-07-09
| doi=10.1086/318888 }}</ref> which is consistent with the star's estimated age, since the activity level of a red dwarf is expected to steadily wane over billions of years as its ] rate decreases.<ref>{{cite journal
| last=Stauffer | first=J. R. | coauthors=Hartmann, L. W.
| title=Chromospheric activity, kinematics, and metallicities of nearby M dwarfs
| journal=Astrophysical Journal Supplement Series
| year=1986 | volume=61 | issue=2 | pages=531–568
| url=http://articles.adsabs.harvard.edu/abs/1986ApJS...61..531S
| accessdate=2008-06-29 }}</ref> The activity level also appears to vary with a period of roughly 442 days, analogous to the Sun's ], which has a period of 11 years.<ref>{{cite journal
| author=Cincunegui, C.; Díaz, R. F.; Mauas, P. J. D.
| title=A possible activity cycle in Proxima Centauri
| journal=Astronomy and Astrophysics
| year=2007 | volume=461
| issue=3 | pages=1107–1113
| url=http://adsabs.harvard.edu/abs/2007A&A...461.1107C
| accessdate=2007-07-11 | doi = 10.1051/0004-6361:20066027
}}</ref>


Proxima Centauri's ] is active, and its ] displays a strong ] of singly ionized ] at a wavelength of 280&nbsp;].<ref>{{cite journal |first1=Guinan |last1=E. F. |last2=Morgan |first2=N. D. |title=Proxima Centauri: rotation, chromospheric activity, and flares |journal=Bulletin of the American Astronomical Society |date=1996 |volume=28 |pages=942 |bibcode=1996AAS...188.7105G}}</ref> About 88% of the surface of Proxima Centauri may be active, a percentage that is much higher than that of the Sun even at the peak of the ]. Even during quiescent periods with few or no flares, this activity increases the ] temperature of Proxima Centauri to 3.5&nbsp;million K, compared to the 2&nbsp;million K of the Sun's corona,<ref>{{cite journal | last1=Wargelin | first1=Bradford J. | last2=Drake | first2=Jeremy J. |title=Stringent X-ray constraints on mass loss from Proxima Centauri |journal=The Astrophysical Journal |date=2002 |volume=578 |issue=1 |pages=503–514 |doi=10.1086/342270 |bibcode=2002ApJ...578..503W|doi-access=free }}</ref> and its total X-ray emission is comparable to the sun's.<ref name=apj547/> Proxima Centauri's overall activity level is considered low compared to other red dwarfs,<ref name=apj547>{{cite journal | last1=Wood | first1=B. E. | last2=Linsky | first2=J. L. | last3=Müller | first3=H.-R. | last4=Zank | first4=G. P. |title=Observational estimates for the mass-loss rates of α Centauri and Proxima Centauri using Hubble Space Telescope Lyα spectra |journal=The Astrophysical Journal |date=2001 |volume=547 |issue=1 |pages=L49–L52 |doi=10.1086/318888 |bibcode=2001ApJ...547L..49W |arxiv=astro-ph/0011153|s2cid=118537213 }}</ref> which is consistent with the star's estimated age of 4.85{{E-sp|9}}&nbsp;years,<ref name="ESO2003"/> since the activity level of a red dwarf is expected to steadily wane over billions of years as its ] rate decreases.<ref>{{cite journal |last1=Stauffer |first1=J. R. | last2=Hartmann | first2=L. W. |title=Chromospheric activity, kinematics, and metallicities of nearby M dwarfs |journal=Astrophysical Journal Supplement Series |date=1986 |volume=61 |issue=2 |pages=531–568 |bibcode=1986ApJS...61..531S |doi=10.1086/191123|doi-access=free }}</ref> The activity level appears to vary<ref>{{Cite news |last=Pulliam |first=Christine |url=http://insider.si.edu/2016/10/proxima-centauri-might-sunlike-thought/ |title=Proxima Centauri Might Be More Sunlike Than We Thought |date=October 12, 2016 |work=Smithsonian Insider |access-date=July 7, 2020}}</ref> with a period of roughly 442 days, which is shorter than the Sun's solar cycle of 11 years.<ref>{{cite journal | last1=Cincunegui | first1=C. | last2=Díaz | first2=R. F. | last3=Mauas | first3=P. J. D. |title=A possible activity cycle in Proxima Centauri |journal=Astronomy and Astrophysics |date=2007 |volume=461 |issue=3 |pages=1107–1113 |doi=10.1051/0004-6361:20066027 |bibcode=2007A&A...461.1107C |arxiv=astro-ph/0703514|s2cid=14672316 }}</ref>
Proxima Centauri has a relatively weak ], resulting in no more than 20% of the Sun's mass loss rate from the ]. Because the star is much smaller than the Sun, however, the mass loss per unit surface area from Proxima Centauri may be eight times that from the solar surface.<ref>{{cite journal
| last=Wood | first=B. E.
| coauthors=Linsky, J. L.; Muller, H.-R.; Zank, G. P.
| title=Observational Estimates for the Mass-Loss Rates of Alpha Centauri and Proxima Centauri Using Hubble Space Telescope Lyman-alpha Spectra
| journal=Astrophysical Journal | year=2000
| volume=537 | issue=2 | pages=L49–L52
| url=http://arxiv.org/abs/astro-ph/0011153
| accessdate=2008-07-11 }}</ref>


Proxima Centauri has a relatively weak ], no more than 20% of the mass loss rate of the ]. Because the star is much smaller than the Sun, the mass loss per unit surface area from Proxima Centauri may be eight times that from the Sun's surface.<ref>{{cite journal |last1=Wood |first1=B. E. | last2=Linsky | first2=J. L. | last3=Muller | first3=H.-R. | last4=Zank | first4=G. P. |title=Observational estimates for the mass-loss rates of Alpha Centauri and Proxima Centauri using Hubble Space Telescope Lyman-alpha spectra |journal=Astrophysical Journal |date=2000 |volume=537 |issue=2 |pages=L49–L52 |arxiv=astro-ph/0011153 |doi=10.1086/309026 |bibcode=2000ApJ...537..304W|s2cid=119332314 }}</ref>
A red dwarf with the mass of Proxima Centauri will remain on the main sequence for about four trillion years. As the proportion of helium increases because of hydrogen fusion, the star will become smaller and hotter, gradually transforming from red to blue. Near the end of this period it will become significantly more luminous, reaching 2.5% of the Sun's luminosity and warming up any orbiting bodies for a period of several billion years. Once the hydrogen fuel is exhausted, Proxima Centauri will then evolve into a ] (without passing through the ] phase) and steadily lose any remaining heat energy.<ref name=adams>{{cite conference
| last=Adams | first=Fred C.
| coauthors=Laughlin, Gregory; Graves, Genevieve J. M.
| title=Red Dwarfs and the End of the Main Sequence
| booktitle=Gravitational Collapse: From Massive Stars to Planets
| pages=46–49
| publisher=Revista Mexicana de Astronomía y Astrofísica
| url=http://adsabs.harvard.edu/abs/2004RMxAC..22...46A
| accessdate = 2008-06-24 }}</ref>


=== Distance and kinematics === == Life phases ==
A red dwarf with the mass of Proxima Centauri will remain on the main sequence for about four trillion years. As the proportion of helium increases because of hydrogen fusion, the star will become smaller and hotter, gradually transforming into a so-called ]. Near the end of this period it will become significantly more luminous, reaching 2.5% of the Sun's luminosity ({{Solar luminosity|link=y}}) and warming any orbiting bodies for a period of several billion years. When the hydrogen fuel is exhausted, Proxima Centauri will then evolve into a helium ] (without passing through the ] phase) and steadily lose any remaining heat energy.<ref name="adams" /><ref>{{cite journal |last1=Adams |first1=Fred C. |last2=Laughlin |first2=Gregory |name-list-style=amp |year=1997 |title=A Dying Universe: The Long Term Fate and Evolution of Astrophysical Objects |journal=Reviews of Modern Physics |volume=69 |issue=2 |pages=337–372 |arxiv=astro-ph/9701131 |bibcode=1997RvMP...69..337A |doi=10.1103/RevModPhys.69.337 |s2cid=12173790}}</ref>


The ] system may have formed through a low-mass star being dynamically captured by a more massive binary of {{Solar mass|1.5–2}} within their embedded star cluster before the cluster dispersed.<ref>{{cite journal |last=Kroupa |first=Pavel |date=1995 |title=The dynamical properties of stellar systems in the Galactic disc |journal=MNRAS |volume=277 |issue=4 |pages=1507–1521 |arxiv=astro-ph/9508084 |bibcode=1995MNRAS.277.1507K |doi=10.1093/mnras/277.4.1507 |doi-access=free |s2cid=15557806}}</ref> However, more accurate measurements of the radial velocity are needed to confirm this hypothesis.<ref name="apj132">{{cite journal |last1=Wertheimer |first1=Jeremy G. |last2=Laughlin |first2=Gregory |date=2006 |title=Are Proxima and α Centauri gravitationally bound? |journal=] |volume=132 |issue=5 |pages=1995–1997 |arxiv=astro-ph/0607401 |bibcode=2006AJ....132.1995W |doi=10.1086/507771 |s2cid=16650143}}</ref> If Proxima Centauri was bound to the Alpha Centauri system during its formation, the stars are likely to share the same ] composition. The gravitational influence of Proxima might have disturbed the Alpha Centauri ]s. This would have increased the delivery of ] such as water to the dry inner regions, so possibly enriching any ]s in the system with this material.<ref name="apj132" />
Based on the ] of 772.3&nbsp;±&nbsp;2.4 ] measured by ] (and the more precise parallax determined using the ] on the ] of 768.7&nbsp;±&nbsp;0.3<ref name="apj118">{{cite journal
| author=Benedict, G. Fritz ''et al''
| title=Interferometric Astrometry of Proxima Centauri and Barnard's Star Using HUBBLE SPACE TELESCOPE Fine Guidance Sensor 3: Detection Limits for Substellar Companions
| journal=The Astronomical Journal
| year=1999 | volume=118 | issue=2 | pages=1086–1100
| url=http://adsabs.harvard.edu/abs/1999astro.ph..5318B
| accessdate=2007-07-21
| doi=10.1086/300975 }}</ref> milliarcseconds), Proxima Centauri is roughly 4.2&nbsp;light years from Earth, or 270,000 times more distant than the Sun. From Earth's vantage point, Proxima is separated by 2.18°<ref name=apj121>{{cite journal
| author=Kirkpatrick, J. Davy ''et al''
| title=Brown Dwarf Companions to G-type Stars. I: Gliese 417B and Gliese 584C
| journal=The Astronomical Journal
| year=1999 | volume=121 | pages=3235–3253
| url=http://arxiv.org/abs/astro-ph/0103218
| accessdate=2008-06-23
| doi=10.1086/321085 }}</ref> from Alpha Centauri, or four times the ] of the full ].<ref>{{cite web
| last=Williams | first=D. R. | date=2006-02-10
| url=http://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html
| title=Moon Fact Sheet | publisher=NASA
| accessdate=2007-10-12 }}</ref> Proxima also has a relatively large ]&mdash;moving 3.85 ] per year across the sky.<ref>{{cite conference
| author=Benedict, G. F. ''et al''
| title =Astrometric Stability and Precision of Fine Guidance Sensor #3: The Parallax and Proper Motion of Proxima Centauri
| booktitle =Proceedings of the HST Calibration Workshop
| pages =380-384
| url =http://clyde.as.utexas.edu/SpAstNEW/Papers_in_pdf/%7BBen93%7DEarlyProx.pdf
| accessdate = 2007-07-11 }}</ref>


Alternatively, Proxima Centauri may have been captured at a later date during an encounter, resulting in a highly eccentric orbit that was then stabilized by the ] and additional stellar encounters. Such a scenario may mean that Proxima Centauri's planetary companions have had a much lower chance for orbital disruption by Alpha Centauri.<ref name="FengJones2018">{{cite journal |last1=Feng |first1=F. |last2=Jones |first2=H. R. A. |date=January 2018 |title=Was Proxima captured by Alpha Centauri A and B? |journal=Monthly Notices of the Royal Astronomical Society |volume=473 |issue=3 |pages=3185−3189 |arxiv=1709.03560 |bibcode=2018MNRAS.473.3185F |doi=10.1093/mnras/stx2576 |doi-access=free |s2cid=55711316}}</ref> As the members of the Alpha Centauri pair continue to evolve and lose mass, Proxima Centauri is predicted to become unbound from the system in around 3.5&nbsp;billion years from the present. Thereafter, the star will steadily diverge from the pair.<ref>{{cite journal |last=Beech |first=M. |date=2011 |title=The Far Distant Future of Alpha Centauri |journal=Journal of the British Interplanetary Society |volume=64 |pages=387–395 |bibcode=2011JBIS...64..387B}}</ref>
Proxima Centauri's closest neighbors are the Alpha Centauri binary star system (at 0.21&nbsp;light years), the Sun, and ] (at 6.6&nbsp;light years).<ref>{{cite web
| url=http://www.solstation.com/stars/barnards.htm
| title=Barnard's Star | publisher=SolStation
| accessdate=2007-08-06
}}</ref><ref>{{cite web
| url=http://www.solstation.com/stars/alp-cent3.htm
| title=Alpha Centauri 3 | publisher=SolStation
| accessdate=2007-07-21 }}</ref> Amongst the known stars, Proxima Centauri has been the closest star to the Sun for about 32,000&nbsp;years and will be so for about another 9,000&nbsp;years, after which the closest star to the Sun will be ].<ref>{{cite web
| first=George H. | last=Bell | year=2001
| url = http://www.public.asu.edu/~sciref/exoplnt.htm
| title =The Search for the Extrasolar Planets: A Brief History of the Search, the Findings and the Future Implications, Section 2.
| publisher =Arizona State University
| accessdate=2007-07-09 }} &mdash; Full description of the Van de Kamp planet controversy.</ref> Proxima will make its closest approach to the Sun, coming within 3.11&nbsp;light years of the latter, in approximately 26,700&nbsp;years.<ref name=aaa379>{{cite journal
| last=García-Sánchez | first=J.
| coauthors=Weissman, P. R.; Preston, R. A.; Jones, D. L.; Lestrade, J.-F.; Latham, D. W.; Stefanik, R. P.; Paredes, J. M.
| title=Stellar encounters with the solar system
| journal=Astronomy and Astrophysics
| year=2001 | volume=379 | pages=634&ndash;659
| url=http://adsabs.harvard.edu/abs/2001A&A...379..634G
| accessdate=2008-06-12
| doi=10.1051/0004-6361:20011330 }}</ref> Proxima Centauri is orbiting through the ] at a distance from the ] that varies from 8.3 to 9.5&nbsp;], and with an ] of 0.07.<ref>{{cite journal
| last=Allen | first=C. | coauthors=Herrera, M. A.
| title=The galactic orbits of nearby UV Ceti stars
| journal=Revista Mexicana de Astronomia y Astrofisica
| year=1998 | volume=34 | pages=37–46
| url=http://adsabs.harvard.edu/abs/1998RMxAA..34...37A
| accessdate=2008-06-13 }}</ref>


== Motion and location ==
From the time of the discovery of Proxima, it was suspected to be a true companion of the Alpha Centauri double star system. At a distance to Alpha Centauri of just 0.21&nbsp;ly (15,000&nbsp;±&nbsp;700 ]),<ref name="apj132">{{cite journal
] A and B are the bright apparent star to the left, which are in a triple star system with Proxima Centauri, circled in red. The bright star system to the right is the unrelated ].]]
| author=Wertheimer, Jeremy G.; Laughlin, Gregory
| title=Are Proxima and α Centauri Gravitationally Bound?
| journal=The Astronomical Journal
| year=2006 | volume=132 | issue=5 | pages=1995–1997
| url=http://adsabs.harvard.edu/abs/2006astro.ph..7401W
| accessdate=2007-07-09 | doi = 10.1086/507771
}}</ref> Proxima Centauri may be in orbit about Alpha, with an ] of the order of 500,000&nbsp;years or more. For this reason, Proxima is sometimes referred to as Alpha Centauri C. Modern estimates, taking into account the small separation between and relative velocity of the stars, suggest that the chance of the observed alignment being a coincidence is roughly one in a million.<ref>{{cite journal
| last = Matthews, Robert; Gilmore, Gerard
| title = Is Proxima really in orbit about Alpha CEN A/B?
| journal = MNRAS | volume = 261 | pages = L5 | year = 1993
| url = http://adsabs.harvard.edu/abs/1993MNRAS.261L...5M}}</ref>


Based on a parallax of {{val|768.0665|0.0499|u=mas}}, published in 2020 in ], Proxima Centauri is {{convert|4.2465|ly|pc AU|lk=on}} from the Sun.<ref name="Gaia3" /> Previously published parallaxes include: {{val|768.5|0.2|u=mas}} in 2018 by Gaia DR2, {{val|768.13|1.04|u=mas}}, in 2014 by the ];<ref name="lurie2014">{{cite journal |last1=Lurie |first1=John C. |last2=Henry |first2=Todd J. |last3=Jao |first3=Wei-Chun |last4=Quinn |first4=Samuel N. |last5=Winters |first5=Jennifer G. |last6=Ianna |first6=Philip A. |last7=Koerner |first7=David W. |last8=Riedel |first8=Adric R. |last9=Subasavage |first9=John P. |year=2014 |title=The Solar neighborhood. XXXIV. A search for planets orbiting nearby M dwarfs using astrometry |journal=The Astronomical Journal |volume=148 |issue=5 |pages=91 |arxiv=1407.4820 |bibcode=2014AJ....148...91L |doi=10.1088/0004-6256/148/5/91 |s2cid=118492541}}</ref> {{val|772.33|2.42|u=mas}}, in the original ] Catalogue, in 1997;<ref name="aaa323_L49">{{cite journal |last1=Perryman |first1=M. A. C. |last2=Lindegren |first2=L. |last3=Kovalevsky |first3=J. |last4=Hoeg |first4=E. |last5=Bastian |first5=U. |last6=Bernacca |first6=P. L. |last7=Crézé |first7=M. |last8=Donati |first8=F. |last9=Grenon |first9=M. |last10=Grewing |first10=M. |last11=van Leeuwen |first11=F. |date=July 1997 |title=The Hipparcos catalogue |journal=Astronomy and Astrophysics |volume=323 |pages=L49–L52 |bibcode=1997A&A...323L..49P |last12=van der Marel |first12=H. |last13=Mignard |first13=F. |last14=Murray |first14=C. A. |last15=Le Poole |first15=R. S. |last16=Schrijver |first16=H. |last17=Turon |first17=C. |last18=Arenou |first18=F. |last19=Froeschlé |first19=M. |last20=Petersen |first20=C. S.}}</ref> {{val|771.64|2.60|u=mas}} in the Hipparcos New Reduction, in 2007;<ref name="hipparcos">{{cite journal |bibcode=2007A&A...474..653V |title=Validation of the new Hipparcos reduction |journal=Astronomy and Astrophysics |volume=474 |issue=2 |pages=653–664 |last1=Van Leeuwen |first1=F. |year=2007 |doi=10.1051/0004-6361:20078357 |arxiv=0708.1752|s2cid=18759600 }}</ref> and {{val|768.77|0.37|u=mas}} using the ]{{'s}} ]s, in 1999.<ref name="apj118" /> From Earth's vantage point, Proxima Centauri is separated from Alpha Centauri by 2.18 degrees,<ref name="apj121">{{cite journal |last1=Kirkpatrick |first1=J. D. |last2=Davy |first2=J. |last3=Monet |first3=David G. |last4=Reid |first4=I. Neill |last5=Gizis |first5=John E. |last6=Liebert |first6=James |last7=Burgasser |first7=Adam J. |year=2001 |title=Brown dwarf companions to G-type stars. I: Gliese 417B and Gliese 584C |journal=The Astronomical Journal |volume=121 |issue=6 |pages=3235–3253 |arxiv=astro-ph/0103218 |bibcode=2001AJ....121.3235K |doi=10.1086/321085 |s2cid=18515414}}</ref> or four times the angular diameter of the full ].<ref>{{cite web |last=Williams |first=D. R. |date=February 10, 2006 |title=Moon Fact Sheet |url=http://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html |access-date=October 12, 2007 |series=Lunar & Planetary Science |publisher=NASA}}</ref> Proxima Centauri has a relatively large proper motion—moving 3.85&nbsp;] per year across the sky.<ref>{{cite conference |last1=Benedict |first1=G. F. |last2=Mcarthur |first2=B. |last3=Nelan |first3=E. |last4=Story |first4=D. |last5=Jefferys |first5=W. H. |last6=Wang |first6=Q. |last7=Shelus |first7=P. J. |last8=Hemenway |first8=P. D. |last9=Mccartney |first9=J. |title=Astrometric stability and precision of fine guidance sensor #3: the parallax and proper motion of Proxima Centauri |url=http://clyde.as.utexas.edu/SpAstNEW/Papers_in_pdf/%7BBen93%7DEarlyProx.pdf |pages=380–384 |access-date=July 11, 2007 |first10=Wm. F. |last10=Van Altena |first11=R. |last11=Duncombe |first12=O. G. |last12=Franz |first13=L. W. |last13=Fredrick |work=Proceedings of the HST calibration workshop}}</ref> It has a ] towards the Sun of 22.2&nbsp;km/s.<ref name="KervellaThévenin2017" /> From Proxima Centauri, the Sun would appear as a bright 0.4-magnitude star in the constellation ], similar to that of ] or ] from ].<ref group="nb">The coordinates of the Sun would be diametrically opposite Proxima Centauri, at α={{RA|02|29|42.9487}}, δ={{DEC|+62|40|46.141}}. The absolute magnitude ''M<sub>v</sub>'' of the Sun is 4.83, so at a parallax ''π'' of 0.77199 the apparent magnitude ''m'' is given by 4.83 − 5(log<sub>10</sub>(0.77199) + 1) = 0.40.
Data from the ] satellite, combined with ground-based observations, is consistent with the hypothesis that the three stars are truly a bound system. If so, Proxima would currently be near ] (the furthest point in its orbit from the Alpha Centauri system). More accurate measurement of the ] is needed to confirm this conclusion.<ref name="apj132" />
See: {{cite book |last=Tayler |first=Roger John |url=https://archive.org/details/starstheirstruct00tayl_311 |title=The Stars: Their Structure and Evolution |date=1994 |publisher=Cambridge University Press |isbn=978-0-521-45885-6 |page= |url-access=limited}}</ref>


Among the known stars, Proxima Centauri has been the closest star to the Sun for about 32,000&nbsp;years and will be so for about another 25,000&nbsp;years, after which Alpha Centauri A and Alpha Centauri B will alternate approximately every 79.91 years as the closest star to the Sun. In 2001, J. García-Sánchez ''et al.'' predicted that Proxima Centauri will make its closest approach to the Sun in approximately 26,700&nbsp;years, coming within {{convert|3.11|ly|pc|abbr=on}}.<ref name="aaa379">{{cite journal |last1=García-Sánchez |first1=J. |last2=Weissman |first2=P. R. |last3=Preston |first3=R. A. |last4=Jones |first4=D. L. |last5=Lestrade |first5=J.-F. |last6=Latham |first6=. W. |last7=Stefanik |first7=R. P. |last8=Paredes |first8=J. M. |date=2001 |title=Stellar encounters with the solar system |url=http://www.aanda.org/articles/aa/pdf/2001/44/aah2819.pdf |journal=Astronomy and Astrophysics |volume=379 |issue=2 |pages=634–659 |bibcode=2001A&A...379..634G |doi=10.1051/0004-6361:20011330 |doi-access=free}}</ref> A 2010 study by V. V. Bobylev predicted a closest approach distance of {{convert|2.90|ly|pc|abbr=on}} in about 27,400&nbsp;years,<ref name="al36_3_220">{{cite journal |last=Bobylev |first=V. V. |date=March 2010 |title=Searching for stars closely encountering with the solar system |journal=Astronomy Letters |volume=36 |issue=3 |pages=220–226 |arxiv=1003.2160 |bibcode=2010AstL...36..220B |doi=10.1134/S1063773710030060 |s2cid=118374161}}</ref> followed by a 2014 study by C. A. L. Bailer-Jones predicting a perihelion approach of {{convert|3.07|ly|pc|abbr=on}} in roughly 26,710&nbsp;years.<ref>{{cite journal |last=Bailer-Jones |first=C. A. L. |date=March 2015 |title=Close encounters of the stellar kind |journal=Astronomy & Astrophysics |volume=575 |pages=13 |arxiv=1412.3648 |bibcode=2015A&A...575A..35B |doi=10.1051/0004-6361/201425221 |id=A35 |s2cid=59039482}}</ref> Proxima Centauri is orbiting through the ] at a distance from the ] that varies from {{convert|8.3|to|9.5|kpc|kly|order=flip|lk=on|abbr=on}}, with an ] of 0.07.<ref>{{cite journal |last1=Allen |first1=C.|author1-link=Christine Allen (astronomer) |last2=Herrera |first2=M. A. |date=1998 |title=The galactic orbits of nearby UV Ceti stars |journal=Revista Mexicana de Astronomía y Astrofísica |volume=34 |pages=37–46 |bibcode=1998RMxAA..34...37A}}</ref>
If Proxima was bound to the Alpha Centauri system during its formation, the stars are likely to share the same ]ary composition. The gravitational influence of Proxima may also have stirred up the Alpha Centauri ]s. This would have increased the delivery of ] such as water to the dry inner regions. Any ]s in the system may have been enriched by this material.<ref name="apj132" />


=== Possible companions === === Alpha Centauri ===
{{Main|Alpha Centauri}}
{{seealso|Habitability of red dwarf systems}}
] map of all stellar objects or ] within 9 light years from its center the Sun (Sol). Proxima Centauri is the unlabled mark just next to Alpha Centauri. The diamond-shapes are their positions entered according to ] in ] (indicated at the edge of the map's reference disc), and according to their ]. The second mark shows each object's distance from Sol, with the ] circles indicating the distance in steps of one light year.]]


Proxima Centauri has been suspected to be a companion of the Alpha Centauri ] system since its discovery in 1915. For this reason, it is sometimes referred to as Alpha Centauri&nbsp;C. Data from the ] satellite, combined with ground-based observations, were consistent with the hypothesis that the three stars are a ] system. Kervella et al. (2017) used high-precision radial velocity measurements to determine with a high degree of confidence that Proxima and Alpha Centauri are gravitationally bound.<ref name="KervellaThévenin2017" /> Proxima Centauri's orbital period around the Alpha Centauri&nbsp;AB ] is {{val|547000|6600|4000}} years with an eccentricity of {{val|0.5|0.08}}; it approaches Alpha Centauri to {{val|4300|1100|900|u=AU}} at ] and retreats to {{val|13000|300|100|u=AU}} at ].<ref name="KervellaThévenin2017" /> At present, Proxima Centauri is {{convert|12947|±|260|AU|e12km|2|abbr=unit}} from the Alpha Centauri&nbsp;AB barycenter, nearly to the furthest point in its orbit.<ref name="KervellaThévenin2017" />
{| class="wikitable" style="float: right;"
|+ RV-derived Upper Mass<br />Limits of Companion<ref name="aaal344" />
!]<br />(days)
!]<br >(A.U.)
!Maximum<br />Mass<br />(&times; ])
|-
|style="text-align: center;"| 50
|style="text-align: center;"| 0.13
|style="text-align: center;"| 3.7
|-
|style="text-align: center;"| 600
|style="text-align: center;"| 0.69
|style="text-align: center;"| 8.3
|-
|style="text-align: center;"| 3000
|style="text-align: center;"| 1.00
|style="text-align: center;"| 22
|}


Six single stars, two binary star systems, and a triple star share a common motion through space with Proxima Centauri and the Alpha Centauri system. (The co-moving stars include ], ], and ].) The ] of these stars are all within 10&nbsp;km/s of Alpha Centauri's ]. Thus, they may form a ] of stars, which would indicate a common point of origin, such as in a ].<ref>{{cite journal |last1=Anosova |first1=J. |last2=Orlov |first2=V. V. |last3=Pavlova |first3=N. A. |year=1994 |title=Dynamics of nearby multiple stars. The α Centauri system |journal=Astronomy and Astrophysics |volume=292 |issue=1 |pages=115–118 |bibcode=1994A&A...292..115A}}</ref>
If a massive planet is orbiting Proxima Centauri, some displacement of the star would occur over the course of each orbit. If the ] of the planet is not perpendicular to the line of sight from the Earth then this displacement would cause periodic changes in the ] of Proxima Centauri. The fact that multiple measurements of the star's radial velocity have detected no such shifts has lowered the maximum mass that a possible companion to Proxima Centauri could possess.<ref name="aaal344">{{cite journal
| author=Kürster, M. ''et al''
| title=Precise radial velocities of Proxima Centauri
| journal=Astronomy & Astrophysics Letters
| year=1999 | volume=344 | pages=L5–L8
| url=http://arxiv.org/abs/astro-ph/9903010v1
| accessdate=2007-07-11 }}</ref><ref name="apj118" /> Additionally, the activity level of the star adds noise to the radial velocity measurements, limiting future prospects for detection of a companion using this method.<ref>{{cite journal
| last=Saar | first=Steven H.
| coauthors=Donahue, Robert A.
| title=Activity-related Radial Velocity Variation in Cool Stars
| journal=Astrophysical Journal
| year=1997 | volume=485 | pages=319–326
| url=http://adsabs.harvard.edu/abs/1997ApJ...485..319S
| accessdate=2008-07-11 }}</ref>


==Planetary system==
In 1998, an examination of Proxima Centauri using the ] on board the ] appeared to show evidence of a companion orbiting at a distance of about 0.5&nbsp;AU.<ref>{{cite journal
{{OrbitboxPlanet begin
| last=Schultz | first=A. B.
| name = Proxima Centauri
| coauthors=Hart, H. M.; Hershey, J. L.; Hamilton, F. C.; Kochte, M.; Bruhweiler, F. C.; Benedict, G. F.; Caldwell, John; Cunningham, C.; Wu, Nailong; Franz, O. G.; Keyes, C. D.; Brandt, J. C.
| table_ref={{efn|<ref name=Guillem2016>
{{cite journal
| last1 = Anglada-Escudé | first1 = Guillem
| last2 = Amado | first2 = Pedro J. | last3 = Barnes | first3 = John
| last4 = Berdiñas | first4 = Zaira M. | last5 = Butler | first5 = R. Paul
| last6 = Coleman | first6 = Gavin A.L.
| last7 = {{nobr|de la Cueva}} | first7 = Ignacio
| last8 = Dreizler | first8 = Stefan | last9 = Endl | first9 = Michael
| last10 = Giesers | first10 = Benjamin
| last11 = Jeffers | first11 = Sandra V.
| last12 = Jenkins | first12 = James S.
| last13 = Jones | first13 = Hugh R.A.
| last14 = Kiraga | first14 = Marcin | last15 = Kürster | first15 = Martin
| last16 = López-González | first16 = María J.
| last17 = Marvin | first17 = Christopher J.
| last18 = Morales | first18 = Nicolás | last19 = Morin | first19 = Julien
| last20 = Nelson | first20 = Richard P.
| last21 = Ortiz | first21 = José L. | last22 = Ofir | first22 = Aviv
| last23 = Paardekooper | first23 = Sijme-Jan
| last24 = Reiners | first24 = Ansgar | last25 = Rodríguez | first25 = Eloy
| last26 = Rodríguez-López | first26 = Cristina
| last27 = Sarmiento | first27 = Luis F.
| last28 = Strachan | first28 = John P.
| last29 = Tsapras | first29 = Yiannis | last30 = Tuomi | first30 = Mikko
| last31 = Zechmeister | first31 = Mathias
| display-authors=6
| year = 2016
| title = A terrestrial planet candidate in a temperate orbit around Proxima Centauri
| journal = ]
| volume = 536 | issue = 7617 | pages = 437–440
| pmid = 27558064 | doi = 10.1038/nature19106
| s2cid = 4451513 | bibcode = 2016Natur.536..437A
| arxiv = 1609.03449
| url = https://www.nature.com/articles/nature19106
| via = nature.com
}}
</ref><ref name=Li-2017/><ref name=Damasso2020/><ref name=KervellaArenou2020>
{{cite journal
|last1=Kervella |first1=Pierre
|last2=Arenou |first2=Frédéric
|last3=Schneider |first3=Jean
|year=2020
|title=Orbital inclination and mass of the exoplanet candidate Proxima&nbsp;c
|journal=]
|volume=635 |page=L14
|arxiv=2003.13106
|doi=10.1051/0004-6361/202037551 |issn=0004-6361
|bibcode= 2020A&A...635L..14K |s2cid=214713486
}}</ref><ref name="Suárez MascareñoFaria2020"/><ref name=BenedictMcArthur2020>
{{cite journal
|last1=Benedict |first1=G. Fritz
|last2=McArthur |first2=Barbara E.
|date=16 June 2020
|title=A moving target: Revising the mass of Proxima Centauri&nbsp;c
|journal=]
|volume=4 |issue=6 |page=86
|doi=10.3847/2515-5172/ab9ca9 |doi-access=free
|bibcode=2020RNAAS...4...86B |s2cid=225798015
}}
</ref><ref name=FariaSuárezMascareñoSilva2022/>
}}
}}
{{OrbitboxPlanet hypothetical
| exoplanet = ]
| mass_earth = {{Val|0.26|0.05|p=≥}}
| period = {{Val|5.122|0.002|0.0036}}
| semimajor = {{Val|0.02885|0.00019|0.00022}}
| radius_earth = {{Val|0.81|0.08|p=]}}
| eccentricity = {{Val|0.04|0.15|0.04}}
| inclination =
}}
{{OrbitboxPlanet
| exoplanet = ]
| mass_earth = ≥{{val|1.07|0.06}}
| period = {{Val|11.1868|0.0029|0.0031}}
| semimajor = {{Val|0.04856|0.00030|0.00030}}
| radius_earth = {{Val|1.30|1.20|0.62|p=≙}}
| eccentricity = {{Val|0.02|0.04|0.02}}
| inclination =
}}
{{OrbitboxPlanet hypothetical
| exoplanet = ]
| mass_earth = {{Val|7|1}}
| period = {{Val|1928|20}}
| semimajor = {{Val|1.489|0.049}}
| radius_earth =
| eccentricity = {{Val|0.04|0.01}}
| inclination ={{Val|133|1}}
| status = disputed<ref name=ArtigauCadieux2022>
{{cite journal
|last1=Artigau |first1=Étienne |last2=Cadieux |first2=Charles
|last3=Cook |first3=Neil J. |last4=Doyon |first4=René
|last5=Vandal |first5=Thomas |last6=Donati |first6=Jean-Françcois
|last7=Moutou |first7=Claire |last8=Delfosse |first8=Xavier
|last9=Fouqué |first9=Pascal |last10=Martioli |first10=Eder
|last11=Bouchy |first11=François |last12=Parsons |first12=Jasmine
|last13=Carmona |first13=Andres |last14=Dumusque |first14=Xavier
|last15=Astudillo-Defru |first15=Nicola |last16=Bonfils |first16=Xavier
|last17=Mignon |first17=Lucille
|display-authors=6
|date=23 June 2022
|publication-date=8 August 2022
|title=Line-by-line velocity measurements, an outlier-resistant method for precision velocimetry
|journal=]
|volume=164 |issue=3 |page=84
|arxiv=2207.13524 |bibcode=2022AJ....164...84A
|doi=10.3847/1538-3881/ac7ce6 |doi-access=free
}}
</ref><ref name=EPE>
{{cite encyclopedia
|title=Proxima Centauri&nbsp;c
|encyclopedia=]
|url=https://exoplanet.eu/catalog/proxima_centauri_c--7082/
|access-date=30 July 2022
}}
</ref>
}}
{{Orbitbox end}}
] identified]]
As of 2022, three planets (one confirmed and two candidates) have been detected in orbit around Proxima Centauri, with one possibly being among the lightest ever detected by radial velocity ("d"), one close to Earth's size within the ] ("b"), and a possible ] that orbits much further out than the inner two ("c"), although its status remains disputed.

Searches for exoplanets around Proxima Centauri date to the late 1970s. In the 1990s, multiple measurements of Proxima Centauri's radial velocity constrained the maximum mass that a detectable companion could possess.<ref name=apj118>
{{cite journal
|last1=Benedict |first1=G. Fritz |last2=Chappell |first2=D.W.
|last3=Nelan |first3=E. |last4=Jefferys |first4=W.H.
|last5=van&nbsp;Altena |first5=W. |last6=Lee |first6=J.
|last7=Cornell |first7=D. |last8=Shelus |first8=P.J.
|display-authors=6
|year=1999
|title=Interferometric astrometry of Proxima Centauri and Barnard's Star using Hubble Space Telescope fine guidance sensor. 3:&nbsp;Detection limits for substellar companions
|journal=]
|volume=118 |issue=2 |pages=1086–1100
|bibcode=1999AJ....118.1086B |doi=10.1086/300975
|s2cid=18099356 |arxiv=astro-ph/9905318
}}
</ref><ref name=aaal344>
{{cite journal
|last1=Kürster |first1=M. |last2=Hatzes |first2=A.P.
|last3=Cochran |first3=W.D. |last4=Döbereiner |first4=S.
|last5=Dennerl |first5=K. |last6=Endl |first6=M.
|year=1999
|title=Precise radial velocities of Proxima Centauri. Strong constraints on a substellar companion
|journal=]
|volume=344 |pages=L5–L8
|arxiv=astro-ph/9903010 |bibcode=1999A&A...344L...5K
}}
</ref>
The activity level of the star adds noise to the radial velocity measurements, complicating detection of a companion using this method.<ref>
{{cite journal
| last1=Saar | first1=Steven H.
| last2=Donahue | first2=Robert A.
| year=1997
| title=Activity-related radial velocity variation in cool stars
| journal=Astrophysical Journal
| volume=485 | issue=1 | pages=319–326
| doi=10.1086/304392 | s2cid=17628232
| bibcode=1997ApJ...485..319S
| url=http://pdfs.semanticscholar.org/f853/b15f7c178a7f9dd1735752d2601c6202ee63.pdf
| url-status=dead
| archive-url=https://web.archive.org/web/20190309110644/http://pdfs.semanticscholar.org/f853/b15f7c178a7f9dd1735752d2601c6202ee63.pdf
| archive-date=2019-03-09
}}
</ref>
In 1998, an examination of Proxima Centauri using the ] on board the Hubble Space Telescope appeared to show evidence of a companion orbiting at a distance of about 0.5&nbsp;AU.<ref>
{{cite journal
| last1=Schultz | first1=A.B. | last2=Hart | first2=H.M.
| last3=Hershey | first3=J.L. | last4=Hamilton | first4=F.C.
| last5=Kochte | first5=M. | last6=Bruhweiler | first6=F.C.
| last7=Benedict | first7=G.F. | last8=Caldwell | first8=John
| last9=Cunningham | first9=C. | last10=Wu | first10=Nailong
| last11=Franz | first11=O.G. | last12=Keyes | first12=C.D.
| last13=Brandt | first13=J.C.
| display-authors=6
| year=1998
| title=A possible companion to Proxima Centauri | title=A possible companion to Proxima Centauri
| journal=Astronomical Journal | journal=]
| year=1998 | volume=115 | pages=345–350 | volume=115 | issue=1 | pages=345–350
| url=http://adsabs.harvard.edu/abs/1998AJ....115..345S | doi=10.1086/300176 | bibcode=1998AJ....115..345S
| s2cid=120356725
| accessdate=2008-06-25
}}
| doi=10.1086/300176 }}</ref> However a subsequent search using the ] failed to locate any companions.<ref name=apj119>{{cite journal
</ref>
| last=Schroeder | first=Daniel J.
A subsequent search using the ] failed to locate any companions.<ref name=apj119>
| coauthors=Golimowski, David A.; Brukardt, Ryan A.; Burrows, Christopher J.; Caldwell, John J.; Fastie, William G.; Ford, Holland C.; Hesman, Brigette; Kletskin, Ilona; Krist, John E.; Royle, Patricia; Zubrowski, Richard. A.
{{cite journal
| title=A Search for Faint Companions to Nearby Stars Using the Wide Field Planetary Camera 2
| last1=Schroeder | first1=Daniel J. | last2=Golimowski | first2=David A.
| journal=The Astronomical Journal
| last3=Brukardt | first3=Ryan A. | last4=Burrows | first4=Christopher J.
| year=2000 | volume=119 | issue=2 | pages=906–922
| last5=Caldwell | first5=John J. | last6=Fastie | first6=William G.
| url=http://adsabs.harvard.edu/abs/2000AJ....119..906S
| last7=Ford | first7=Holland C. | last8=Hesman | first8=Brigette
| accessdate=2008-06-25
| last9=Kletskin | first9=Ilona | last10=Krist | first10=John E.
| doi=10.1086/301227 }}</ref> Proxima Centauri, along with Alpha Centauri A and B, are among the "Tier 1" target stars for ]'s proposed ] (SIM), which will theoretically be able to detect planets as small as three Earth-masses within two ] of a "Tier 1" target star.<ref name="numbers">{{cite web
| last11=Royle | first11=Patricia | last12=Zubrowski | first12=Richard A.
| last=Watanabe | first=Susan | date=2006-10-18
| display-authors=6
| url=http://www.jpl.nasa.gov/news/features.cfm?feature=1209
| year=2000
| title=Planet-Finding by Numbers | publisher = NASA JPL
| title=A search for faint companions to nearby stars using the Wide Field Planetary Camera&nbsp;2
| accessdate=2007-07-09 }}</ref>
| journal=]
| volume=119 | issue=2 | pages=906–922
| doi=10.1086/301227 | doi-access=free
| bibcode=2000AJ....119..906S
}}
</ref> ] measurements at the ] appear to rule out a ]-sized planet with an orbital period of 2−12&nbsp;years.<ref>
{{cite journal
|last1=Lurie |first1=John C. |last2=Henry |first2=Todd J.
|last3=Jao |first3=Wei-Chun |last4=Quinn |first4=Samuel N.
|last5=Winters |first5=Jennifer G. |last6=Ianna |first6=Philip A.
|last7=Koerner |first7=David W. |last8=Riedel |first8=Adric R.
|last9=Subasavage |first9=John P.
|display-authors=6
|title=The Solar neighborhood. XXXIV. A search for planets orbiting nearby M&nbsp;dwarfs using astrometry
|journal=]
|volume=148 |issue=5 |id=91 |page=12
|date=November 2014
|doi=10.1088/0004-6256/148/5/91 |arxiv=1407.4820
|bibcode=2014AJ....148...91L |s2cid=118492541
}}
</ref>


In 2017, a team of astronomers using the ] reported detecting a belt of cold dust orbiting Proxima Centauri at a range of 1−4&nbsp;AU from the star. This dust has a temperature of around 40&nbsp;K and has a total estimated mass of 1% of the planet Earth. They tentatively detected two additional features: a cold belt with a temperature of 10&nbsp;K orbiting around 30&nbsp;AU and a compact emission source about 1.2&nbsp;arcseconds from the star. There was a hint at an additional warm dust belt at a distance of 0.4&nbsp;AU from the star.<ref name=Guillem2017/> However, upon further analysis, these emissions were determined to be most likely the result of a large flare emitted by the star in March&nbsp;2017. The presence of dust within 4&nbsp;AU radius from the star is not needed to model the observations.<ref name=sd2018>
] illustration''.]]
{{cite news
The TV documentary '']'' hypothesized that a life-sustaining planet could exist in orbit around Proxima Centauri or other red dwarf stars. Such a planet would lie within the ] of Proxima Centauri, about 0.023–0.054&nbsp;AU from the star, and would have an ] of 2.8–14&nbsp;days.<ref>{{cite conference
|title=Proxima Centauri's no good, very bad day
| last=Endl | first=M.
|date=26 February 2018
| coauthors=Kuerster, M.; Rouesnel, F.; Els, S.; Hatzes, A. P.; Cochran, W. D.
|website=]
| editor=Drake Deming
|url=https://www.sciencedaily.com/releases/2018/02/180226103341.htm
| title=Extrasolar Terrestrial Planets: Can We Detect Them Already?
|access-date=1 March 2018
| booktitle=Conference Proceedings, Scientific Frontiers in Research on Extrasolar Planets
}}
| pages=75–79 | date=June 18-21, 2002
</ref><ref name=MacGregor>
| location=Washington DC
{{cite journal
| url=http://arxiv.org/abs/astro-ph/0208462
|last1=MacGregor |first1=Meredith A. |last2=Weinberger |first2=Alycia J.
| accessdate=2008-06-23 }}</ref> A planet orbiting within this zone will become ] to the star, completing a single rotation each orbit and maintaining the same face toward Proxima Centauri. However, the presence of an atmosphere could serve to redistribute the energy from the star-lit side to the far side of the planet.<ref name=tarter>{{cite journal
|last3=Wilner |first3=David J. |last4=Kowalski |first4=Adam F.
| author=Tarter, Jill C. ''et al''
|last5=Cranmer |first5=Steven R.
| title=A Reappraisal of The Habitability of Planets around M Dwarf Stars
|year=2018
| journal=Astrobiology | year=2007 | volume=7 | issue=1
|title=Detection of a millimeter flare from Proxima Centauri
| pages=30–65 | doi=10.1089/ast.2006.0124 }}</ref>
|journal=]
|volume=855 |issue=1 |page =L2
|arxiv=1802.08257 |bibcode=2018ApJ...855L...2M
|doi=10.3847/2041-8213/aaad6b |s2cid=119287614 |doi-access=free
}}
</ref>


===Planet b===
While the fact that Proxima Centauri is a flare star means that its flares could cause problems with the atmosphere of any planet in its habitable zone, the documentary's scientists thought that this obstacle could be overcome (see ]). In fact, Gibor Basri of the ], Berkeley, mentioned that "no one found any showstoppers to habitability." For example, one concern was that the torrents of charged particles from the star's flares could strip the atmosphere off any nearby planet. However, if the planet had a magnetic field, the field would deflect the particles from the atmosphere; even the slow rotation of a tidally locked M-dwarf planet&mdash;it spins once for every time it orbits its star&mdash;would be enough to generate a magnetic field, as long as part of the planet's interior remained molten.<ref>{{cite web
{{main|Proxima Centauri b}}
| last=Alpert | first=Mark | date=November 2005
| url=http://www.sciam.com/article.cfm?id=red-star-rising
| title=Red Star Rising | publisher=Scientific American
| accessdate=2008-05-19 }}</ref>


Proxima Centauri&nbsp;b, or Alpha Centauri&nbsp;Cb, orbits the star at a distance of roughly {{convert|0.05|AU|e6km|abbr=unit}} with an orbital period of approximately 11.2&nbsp;Earth days. Its estimated mass is at least 1.07&nbsp;times that of the ].<ref name=FariaSuárezMascareñoSilva2022/> Moreover, the equilibrium temperature of Proxima Centauri&nbsp;b is estimated to be within the range where water could exist as liquid on its surface; thus, placing it within the ] of Proxima Centauri.<ref name=Guillem2016/><ref name=NYT-20160824>
Other scientists, especially proponents of the ],<ref>{{cite book
{{cite news
| first=Peter D. | last=Ward
|last=Chang |first=Kenneth
| coauthors=Brownlee, Donald | year=2000
|date=24 August 2016
| title=Rare Earth: Why Complex Life is Uncommon in the Universe
|title=One star over, a planet that might be another Earth
| publisher=Springer | isbn=0387987010 }}</ref> disagree that red dwarf stars can sustain life. The tide-locked rotation may result in a relatively weak planetary ], leading to strong atmospheric erosion by ] from Proxima Centauri.<ref name=Khodachenko>{{cite journal
|newspaper=]
| author=Khodachenko, Maxim L. ''et al''
|url=https://www.nytimes.com/2016/08/25/science/earth-planet-proxima-centauri.html
| title=Coronal Mass Ejection (CME) Activity of Low Mass M Stars as An Important Factor for The Habitability of Terrestrial Exoplanets. I. CME Impact on Expected Magnetospheres of Earth-Like Exoplanets in Close-In Habitable Zones
|access-date=24 August 2016}}</ref><ref name=telegraph20160824>
| journal=Astrobiology | year=2007
{{cite news
| volume=7 | issue=1 | pages=167-184
|last =Knapton |first =Sarah
| doi=10.1089/ast.2006.0127
|date=24 August 2016
}}</ref>
|title=Proxima&nbsp;b: Alien life could exist on 'second Earth' found orbiting our nearest star in Alpha Centauri system
|newspaper=] |publisher=]
|url=https://www.telegraph.co.uk/science/2016/08/24/proxima-b-alien-life-could-exist-on-second-earth-found-orbiting/
|access-date=24 August 2016 | url-access=subscription |url-status=live
|archive-url=https://ghostarchive.org/archive/20220112/https://www.telegraph.co.uk/science/2016/08/24/proxima-b-alien-life-could-exist-on-second-earth-found-orbiting/
|archive-date=12 January 2022
}}{{cbignore}}
</ref>


The first indications of the ] Proxima Centauri&nbsp;b were found in 2013 by ] of the ] from archival observation data.<ref name=prd>
== Interstellar travel ==
{{cite news
]
|title=Proxima&nbsp;b is our neighbor ... better get used to it!
|date=24 August 2016
|website=Pale Red Dot
|url=https://palereddot.org/proxima-b-is-our-closest-neighbor-better-get-used-to-it/
|access-date=24 August 2016 |url-status=dead
|archive-url=https://web.archive.org/web/20200513054609/https://palereddot.org/proxima-b-is-our-closest-neighbor-better-get-used-to-it/
|archive-date=13 May 2020
}}
</ref><ref>
Aron, Jacob. August 24, 2016. . ''New Scientist''. Retrieved August 24, 2016
</ref> To confirm the possible discovery, a team of astronomers launched the Pale Red Dot<ref group="nb">
"]" is a reference to a distant photo of Earth taken by ].
</ref>
project in January&nbsp;2016.
<ref>
{{cite press release
|title=Follow a live planet hunt!
|url=https://www.eso.org/public/announcements/ann16002/
|date=January 15, 2016
|publisher=]
|access-date=24 August 2016}}</ref> On 24&nbsp;August 2016, the team of 31&nbsp;scientists from all around the world,<ref>
{{cite news
|last=Feltman |first=Rachel
|date=24 August 2016
|title=Scientists say they've found a planet orbiting Proxima Centauri, our closest neighbor
|newspaper=]
|url=https://www.washingtonpost.com/news/speaking-of-science/wp/2016/08/24/scientists-may-have-found-a-planet-orbiting-proxima-centauri-our-closest-star/
}}
</ref>
led by Guillem Anglada-Escudé of ], confirmed the existence of ]<ref name=spacecom>{{cite news
|first =Samantha |last =Mathewson
|date=24 August 2016
|title=Proxima&nbsp;b by the numbers: Possibly Earth-like world at the next star over
|website=Space.com
|url=http://www.space.com/33837-earth-like-planet-proxima-centauri-numbers.html
|access-date=August 25, 2016
}}
</ref>
through a peer-reviewed article published in '']''.<ref name=Guillem2016/><ref name="Nature 24 August 2016">
{{cite journal
|last =Witze |first =Alexandra
|date=24 August 2016
|title=Earth-sized planet around nearby star is astronomy dream come true
|journal=]
|volume=536 |issue=7617 |pages=381–382
|doi=10.1038/nature.2016.20445 |doi-access=free
|pmid=27558041 |bibcode=2016Natur.536..381W
}}
</ref>
The measurements were performed using two spectrographs: ] on the ] at ] and ] on the 8&nbsp;m ] at ].<ref name=Guillem2016/> Several attempts to detect a ] of this planet across the face of Proxima Centauri have been made. A transit-like signal appearing on 8&nbsp;September 2016, was tentatively identified, using the ] at the ] in Antarctica.<ref name=Liu2018>
{{cite journal
|last1=Liu |first1=Hui-Gen |last2=Jiang |first2=Peng
|last3=Huang |first3=Xingxing |last4=Yu |first4=Zhou-Yi
|last5=Yang |first5=Ming |last6=Jia |first6=Minghao
|last7=Awiphan |first7=Supachai |last8=Pan |first8=Xiang
|last9=Liu |first9=Bo |last10=Zhang |first10=Hongfei
|last11=Wang |first11=Jian |last12=Li |first12=Zhengyang
|last13=Du |first13=Fujia |last14=Li |first14=Xiaoyan
|last15=Lu |first15=Haiping |last16=Zhang |first16=Zhiyong
|last17=Tian |first17=Qi-Guo |last18=Li |first18=Bin
|last19=Ji |first19=Tuo |last20=Zhang |first20=Shaohua
|last21=Shi |first21=Xiheng |first22=Ji |last22=Wang
|first23=Ji-Lin |last23=Zhou |first24=Hongyan |last24=Zhou
|display-authors=6
|date=January 2018
|title=Searching for the transit of the Earth-mass exoplanet Proxima Centauri&nbsp;b in Antarctica: Preliminary result
|journal=]
|volume=155 |issue=1 |id=12 |page=10
|doi=10.3847/1538-3881/aa9b86 |doi-access=free
|bibcode=2018AJ....155...12L |s2cid=54773928
|arxiv=1711.07018
}}
</ref>


In 2016, in a paper that helped to confirm Proxima Centauri&nbsp;b's existence, a second signal in the range of 60–500&nbsp;days was detected. However, stellar activity and inadequate sampling causes its nature to remain unclear.<ref name=Guillem2016/>
Proxima Centauri has been suggested as a possible first destination for ],<ref name=gilster/> although as a ] it will not be particularly hospitable. In any case, at the ] currently attained by a manned vehicle, a journey to Proxima Centauri would take about 110,000 years.<ref>The distance to Proxima Centauri is:
:(4.22 ly) &times; (9.46{{Esp|12}}&nbsp;km/ly) = 4.0{{Esp|13}}&nbsp;km
The ] achieved a record velocity of 24,791&nbsp;mi/hr, or 11&nbsp;km/s. (See: {{cite web
| last=Orloff | first=Richard W. | date=2005-09-27
| url=http://history.nasa.gov/SP-4029/Apollo_10a_Summary.htm
| title=APOLLO 10, The Fourth Mission: Testing the LM in Lunar Orbit, 18 May&ndash;26 May 1969
| work=Apollo by the Numbers | publisher=NASA
| accessdate=2008-06-30 }}) Thus the journey would be completed in:
:time = distance/velocity = (4.0{{Esp|13}}&nbsp;km)/(11&nbsp;km/s) = 3.6{{Esp|12}}&nbsp;s
A year is about 3.2{{Esp|7}} seconds, so completing the journey would require 1.1{{Esp|5}}&nbsp;years.</ref> ] could theoretically reach the Alpha Centauri system in about 100 years by means of ].<ref name=longshot>{{cite web
| last=Beals | first=K. A.
| coauthors=Beaulieu, M.; Dembia, F. J.; Kerstiens, J.; Kramer, D. L.; West, J. R.; Zito, J. A.
| year=1988
| url=http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890007533_1989007533.pdf
| title=Project Longshot, an Unmanned Probe to Alpha Centauri
| work=NASA-CR-184718 | publisher=U. S. Naval Academy
| accessdate=2008-06-13 }}</ref> From Proxima Centauri, the Sun would appear as a bright, 0.4 magnitude star in the constellation ].<ref>The coordinates of the Sun would be diametrically opposite Proxima, at &alpha;={{RA|02|29|42.9487}}, &delta;={{DEC|+62|40|46.141}}. The absolute magnitude of the Sun is 4.83, so at a distance of 1.295&nbsp;pc the apparent magnitude is 4.83 - 5((log<sub>10</sub> 0.77199 + 1) = 0.40.</ref>


== See also == ===Planet c===
{{main|Proxima Centauri c}}


Proxima Centauri&nbsp;c is a candidate ] or ] about {{nobr|7 {{Earth mass}}}} orbiting at roughly {{convert|1.5|AU|km}} every {{convert|1900|days|years}}.<ref name=SA-20190412/> If Proxima Centauri&nbsp;b were the star's Earth, Proxima Centauri&nbsp;c would be equivalent to Neptune. Due to its large distance from Proxima Centauri, it is unlikely to be habitable, with a low equilibrium temperature of around 39&nbsp;K.<ref name=ProximaC/> The planet was first reported by Italian astrophysicist Mario Damasso and his colleagues in April&nbsp;2019.<ref name=ProximaC>
* ]
{{cite news
* ]
|first=Mike |last=Wall
* ]
|date=12 April 2019
|title=Possible 2nd&nbsp;planet spotted around Proxima Centauri
|website=Space.com
|url=https://www.space.com/proxima-centauri-possible-second-exoplanet.html
|access-date=12 April 2019
}}
</ref><ref name=SA-20190412>
{{cite news
|first=Lee |last=Billings
|date=12 April 2019
|title=A second planet may orbit Earth's nearest neighboring star
|magazine=]
|url=https://www.scientificamerican.com/article/a-second-planet-may-orbit-earths-nearest-neighboring-star/
|access-date=12 April 2019
}}
</ref>
Damasso's team had noticed minor movements of Proxima Centauri in the ] data from the ESO's HARPS instrument, indicating a possible additional planet orbiting Proxima Centauri.<ref name=ProximaC/> In 2020, the planet's existence was confirmed by Hubble ] data from {{Circa|1995}}.<ref name=McDonald>
{{cite press release
|last=Benedict |first=Fritz
|date=2 June 2020
|title=Texas astronomer uses 25&nbsp;year-old Hubble data to confirm [lanet Proxima Centauri&nbsp;c
|series=]
|publisher=]
|url=https://mcdonaldobservatory.org/news/releases/20200602
}}
</ref>
A possible direct imaging counterpart was detected in the infrared with the ], but the authors admit that they "did not obtain a clear detection." If their candidate source is in fact Proxima Centauri&nbsp;c, it is too bright for a planet of its mass and age, implying that the planet may have a ] with a radius of around {{nobr|5 {{Jupiter radius|link=y}}.<ref name=Gratton2020/>}} However, {{harvp|Artigau|Cadieux|Cook|Doyon|Vandal|2022}} disputed the radial velocity confirmation of the planet.<ref name=ArtigauCadieux2022/>


===Planet d===
== Notes and references ==
{{main|Proxima Centauri d}}


In 2019, a team of astronomers revisited the data from ] about Proxima Centauri&nbsp;b to refine its mass. While doing so, the team found another radial velocity spike with a periodicity of 5.15&nbsp;days. They estimated that if it were a planetary companion, it would be no less than 0.29&nbsp;Earth masses.<ref name="Suárez MascareñoFaria2020"/> Further analysis confirmed the signal's existence leading up to the announcement of the candidate planet in February&nbsp;2022.<ref name=FariaSuárezMascareñoSilva2022/>
{{reflist|2}}


===Habitability===
== External links ==
{{See also|Habitability of red dwarf systems}}
{{stack|]]]}}
Before the discovery of Proxima Centauri&nbsp;b, the TV documentary '']'' hypothesized that a life-sustaining planet could exist in orbit around Proxima Centauri or other red dwarfs. Such a planet would lie within the habitable zone of Proxima Centauri, about {{convert|0.023|–|0.054|AU|e6km|abbr=unit}} from the star, and would have an orbital period of 3.6–14&nbsp;days.<ref>
{{cite conference
|last1=Endl |first1=M. |last2=Kuerster |first2=M.
|last3=Rouesnel |first3=F. |last4=Els |first4=S.
|last5=Hatzes |first5=A.P. |last6=Cochran |first6=W.D.
|date=18–21 June 2002
|title=Extrasolar terrestrial planets: Can we detect them already?
|editor-first=Drake |editor-last=Deming
|conference=Scientific Frontiers in Research on Extrasolar Planets
|pages=75–79
|location=Washington, DC
|arxiv=astro-ph/0208462 |bibcode=2003ASPC..294...75E
}}
</ref>
A planet orbiting within this zone may experience ] to the star. If the orbital eccentricity of this hypothetical planet were low, Proxima Centauri would move little in the planet's sky, and most of the surface would experience either day or night perpetually. The presence of an atmosphere could serve to redistribute heat from the star-lit side to the far side of the planet.<ref name="tarter">{{cite journal |title=A reappraisal of the habitability of planets around M dwarf stars |journal=] |date=2007 |volume=7 |issue=1 |pages=30–65 |doi=10.1089/ast.2006.0124 |pmid=17407403 |bibcode=2007AsBio...7...30T |arxiv=astro-ph/0609799 | last1=Tarter | first1=Jill C. | last2=Mancinelli | first2=Rocco L. | last3=Aurnou | first3=Jonathan M. | last4=Backman | first4=Dana E. | last5=Basri | first5=Gibor S. | last6=Boss | first6=Alan P. | last7=Clarke | first7=Andrew | last8=Deming | first8=Drake|s2cid=10932355 }}</ref>


Proxima Centauri's ] outbursts could erode the atmosphere of any planet in its habitable zone, but the documentary's scientists thought that this obstacle could be overcome. ] of the ] argued: "No one found any showstoppers to habitability." For example, one concern was that the torrents of charged particles from the star's flares could strip the atmosphere off any nearby planet. If the planet had a strong magnetic field, the field would deflect the particles from the atmosphere; even the slow rotation of a tidally locked planet that spins once for every time it orbits its star would be enough to generate a magnetic field, as long as part of the planet's interior remained molten.<ref>{{cite journal |last=Alpert |first=Mark |date=November 2005 |title=Red star rising |journal=Scientific American |volume=293 |issue=5 |pages=28 |doi=10.1038/scientificamerican1105-28 |pmid=16318021 |bibcode=2005SciAm.293e..28A}}</ref>
* {{cite web
| url=http://antwrp.gsfc.nasa.gov/apod/ap020715.html
| title= Proxima Centauri: The Closest Star
| accessdate=2008-06-25 | work=]
| publisher=Astronomy Picture of the Day | date=2002-07-15 }}
* {{cite web
| url=http://chandra.harvard.edu/photo/2004/proxima/
| title= Proxima Centauri: The Nearest Star to the Sun
| accessdate=2008-07-01 | work=Chandra X-ray Observatory
| publisher=Astronomy Picture of the Day | date=2008-07-01 }}
* {{cite web
| url=http://www.uranometrianova.pro.br/astronomia/AA002/alphacen.htm
| title=O Sistema Alpha Centauri | accessdate=2008-06-25
| work=Astronomia & Astrofísica | language=Portuguese }}
* {{cite web
| url=http://www.extrasolar.net/startour.asp?StarCatId=&StarId=35
| title=Proxima Centauri | accessdate=2008-06-25
| work=Extrasolar Visions }}
* {{cite web
| url=http://www.extrasolar.net/planettour.asp?PlanetID=67
| title=Proxima Centauri b | accessdate=2008-06-25
| work=Extrasolar Visions }}


Other scientists, especially proponents of the ],<ref>{{cite book |first1=Peter D. |last1=Ward |author-link=Peter Ward (paleontologist) |last2=Brownlee |first2=Donald |author-link2=Donald E. Brownlee |date=2000 |title=Rare Earth: why complex life is uncommon in the universe |publisher=] |isbn=978-0-387-98701-9}}</ref> disagree that red dwarfs can sustain life. Any exoplanet in this star's habitable zone would likely be tidally locked, resulting in a relatively weak planetary ], leading to strong atmospheric erosion by ]s from Proxima Centauri.<ref name="Khodachenko">{{cite journal |title=Coronal Mass Ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of earth-like exoplanets in close-in habitable zones |journal=Astrobiology |date=2007 |volume=7 |issue=1 |pages=167–184 |doi=10.1089/ast.2006.0127 |pmid=17407406 |bibcode=2007AsBio...7..167K | last1=Khodachenko | first1=Maxim L. | last2=Lammer | first2=Helmut | last3=Grießmeier | first3=Jean-Mathias | last4=Leitner | first4=Martin | last5=Selsis | first5=Franck | last6=Eiroa | first6=Carlos | last7=Hanslmeier | first7=Arnold | last8=Biernat | first8=Helfried K. }}</ref> In December 2020, a candidate ] radio signal ] was announced as potentially coming from the star.<ref name="OCallaghan2000">{{Cite web
]
| last=O'Callaghan | first=Jonathan | date=2020-12-18
| title=Alien Hunters Discover Mysterious Radio Signal from Proxima Centauri
| url=https://www.scientificamerican.com/article/alien-hunters-discover-mysterious-signal-from-proxima-centauri/
| access-date=2020-12-19
| website=Scientific American | language=en }}</ref> The signal was later determined to be human-made radio interference.<ref>{{cite journal
| title=Mysterious 'alien beacon' was false alarm
| first=Alexandra | last=Witze
| journal=Nature | date=25 October 2021
| volume=599 | issue=7883 | pages=20–21 | doi=10.1038/d41586-021-02931-7 | pmid=34697482
| bibcode=2021Natur.599...20W | s2cid=239887089 | doi-access=free }}</ref>

== Observational history ==
]In 1915, the Scottish astronomer ], director of the ] in ], ], discovered a star that had the same ] as ].<ref name="Innes1915">{{cite journal |last1=Innes |first1=R. T. A. |date=October 1915 |title=A Faint Star of Large Proper Motion |journal=Circular of the Union Observatory Johannesburg |volume=30 |pages=235–236 |bibcode=1915CiUO...30..235I}} This is the original Proxima Centauri discovery paper.</ref><ref name="afrsky11_39">{{cite journal |last=Glass |first=I. S. |date=July 2007 |title=The discovery of the nearest star |journal=] |volume=11 |page=39 |bibcode=2007AfrSk..11...39G}}</ref><ref>{{cite web |last=Queloz |first=Didier |date=November 29, 2002 |title=How Small are Small Stars Really? |url=https://www.eso.org/public/news/eso0232/ |access-date=January 29, 2018 |publisher=European Southern Observatory |id=eso0232; PR 22/02}}</ref> He suggested that it be named ''Proxima Centauri''<ref name="aj39_913_20">{{cite journal |last=Alden |first=Harold L. |date=1928 |title=Alpha and Proxima Centauri |journal=Astronomical Journal |volume=39 |issue=913 |pages=20–23 |bibcode=1928AJ.....39...20A |doi=10.1086/104871|doi-access=free }}</ref> (actually ''Proxima Centaurus'').<ref name="Innes1917">{{cite journal |last1=Innes |first1=R. T. A. |date=September 1917 |title=Parallax of the Faint Proper Motion Star Near Alpha of Centaurus. 1900. R.A. 14{{sup|h}}22{{sup|m}}55{{sup|s}}.-0s 6t. Dec-62° 15'2 0'8 t |journal=Circular of the Union Observatory Johannesburg |volume=40 |pages=331–336 |bibcode=1917CiUO...40..331I}}</ref> In 1917, at the ] at the ], the Dutch astronomer ] measured the star's trigonometric ] at {{val|0.755|0.028|ul=″}} and determined that Proxima Centauri was approximately the same distance from the Sun as Alpha Centauri. It was the lowest-] star known at the time.<ref name="Voûte1917">{{cite journal |last=Voûte |first=J. |date=1917 |title=A 13th magnitude star in Centaurus with the same parallax as α Centauri |url=https://zenodo.org/record/1431901 |journal=] |volume=77 |issue=9 |pages=650–651 |bibcode=1917MNRAS..77..650V |doi=10.1093/mnras/77.9.650 |doi-access=free}}</ref> An equally accurate parallax determination of Proxima Centauri was made by American astronomer ] in 1928, who confirmed Innes's view that it is closer, with a parallax of {{val|0.783|0.005|u=″}}.<ref name="afrsky11_39" /><ref name="aj39_913_20" />

A size estimate for Proxima Centauri was obtained by the Canadian astronomer ] in 1925 using ]. The result was 207,000 miles (333,000 km), or approximately {{Solar radius|0.24}}.<ref>{{Cite journal |last=Plaskett |first=J. S. |date=1922 |title=The Dimensions of the Stars |url=https://www.jstor.org/stable/40668597 |journal=Publications of the Astronomical Society of the Pacific |volume=34 |issue=198 |pages=79–93 |doi=10.1086/123157 |jstor=40668597 |bibcode=1922PASP...34...79P |issn=0004-6280}}</ref>

In 1951, American astronomer ] announced that Proxima Centauri is a ]. Examination of past photographic records showed that the star displayed a measurable increase in magnitude on about 8% of the images, making it the most active flare star then known.<ref>{{cite journal |last=Shapley |first=Harlow |date=1951 |title=Proxima Centauri as a flare star |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=37 |issue=1 |pages=15–18 |bibcode=1951PNAS...37...15S |doi=10.1073/pnas.37.1.15 |pmc=1063292 |pmid=16588985 |doi-access=free}}</ref><ref>{{cite journal |last1=Kroupa |first1=Pavel |last2=Burman |first2=R. R. |last3=Blair |first3=D. G. |date=1989 |title=Photometric observations of flares on Proxima Centauri |journal=PASA |volume=8 |issue=2 |pages=119–122 |bibcode=1989PASA....8..119K |doi=10.1017/S1323358000023122|s2cid=117977034 }}</ref>
The proximity of the star allows for detailed observation of its flare activity. In 1980, the ] produced a detailed X-ray energy curve of a stellar flare on Proxima Centauri. Further observations of flare activity were made with the ] and ] ]s, and the X-ray emissions of smaller, solar-like flares were observed by the Japanese ] satellite in 1995.<ref>{{cite journal |last1=Haisch |first1=Bernhard |last2=Antunes |first2=A. |last3=Schmitt |first3=J. H. M. M. |date=1995 |title=Solar-like M-class X-ray flares on Proxima Centauri observed by the ASCA satellite |journal=Science |volume=268 |issue=5215 |pages=1327–1329 |bibcode=1995Sci...268.1327H |doi=10.1126/science.268.5215.1327 |pmid=17778978 |s2cid=46660210}}</ref> Proxima Centauri has since been the subject of study by most X-ray observatories, including ] and ].<ref name="aaa416" />

Because of Proxima Centauri's southern declination, it can only be viewed south of ] ].<ref group="nb">For a star south of the zenith, the angle to the zenith is equal to the Latitude minus the Declination. The star is hidden from sight when the zenith angle is 90° or more, i.e., below the horizon. Thus, for Proxima Centauri:

:Highest latitude = 90° + (−62.68°) = 27.32°.
See: {{cite book |last=Campbell |first=William Wallace |url=https://archive.org/details/elementspractic00campgoog |title=The elements of practical astronomy |date=1899 |publisher=Macmillan |location=London |pages=–110 |access-date=August 12, 2008}}</ref> Red dwarfs such as Proxima Centauri are too faint to be seen with the naked eye. Even from Alpha Centauri A or B, Proxima would only be seen as a fifth magnitude star.<ref>{{cite web |title=Proxima Centauri UV flux distribution |url=http://sdc.cab.inta-csic.es/ines/Ines_PCentre/Demos/Fluxdist/pcentauri.html |access-date=July 11, 2007 |publisher=ESA & The Astronomical Data Centre at CAB}}</ref><ref>{{cite web |last=Kaler |first=James B. |author-link=James B. Kaler |date=November 7, 2016 |title=Rigil Kentaurus |url=http://stars.astro.illinois.edu/sow/rigil-kent.html |access-date=August 3, 2008 |work=STARS |publisher=University of Illinois}}</ref> It has ]&nbsp;11, so a ] with an ] of at least {{convert|8|cm|abbr=on}} is needed to observe it, even under ideal viewing conditions—under clear, dark skies with Proxima Centauri well above the horizon.<ref>{{cite book |last1=Sherrod |first1=P. Clay |title=A complete manual of amateur astronomy: tools and techniques for astronomical observations |last2=Koed |first2=Thomas L. |date=2003 |publisher=Courier Dover Publications |isbn=978-0-486-42820-8}}</ref> In 2016, the ] organized a ] (WGSN) to catalogue and standardize proper names for stars.<ref name="WGSN">{{cite web |title=IAU Working Group on Star Names (WGSN) |url=https://www.iau.org/science/scientific_bodies/working_groups/280/ |access-date=May 22, 2016 |publisher=International Astronomical Union}}</ref> The WGSN approved the name ''Proxima Centauri'' for this star on August 21, 2016, and it is now so included in the List of IAU approved Star Names.<ref name="IAU-LSN">{{cite web |title=Naming Stars |url=https://www.iau.org/public/themes/naming_stars/ |access-date=March 3, 2018 |publisher=International Astronomical Union}}</ref>

In 2016, a ] was observed from Proxima Centauri, the strongest flare ever seen. The optical brightness increased by a factor of 68× to approximately magnitude&nbsp;6.8. It is estimated that similar flares occur around five times every year but are of such short duration, just a few minutes, that they have never been observed before.<ref name="howard">{{cite journal |last1=Howard |first1=Ward S. |last2=Tilley |first2=Matt A. |last3=Corbett |first3=Hank |last4=Youngblood |first4=Allison |last5=Loyd |first5=R. O. Parke |last6=Ratzloff |first6=Jeffrey K. |last7=Law |first7=Nicholas M. |last8=Fors |first8=Octavi |last9=Del Ser |first9=Daniel |last10=Shkolnik |first10=Evgenya L. |last11=Ziegler |first11=Carl |year=2018 |title=The First Naked-eye Superflare Detected from Proxima Centauri |journal=The Astrophysical Journal |volume=860 |issue=2 |pages=L30 |arxiv=1804.02001 |bibcode=2018ApJ...860L..30H |doi=10.3847/2041-8213/aacaf3 |last12=Goeke |first12=Erin E. |last13=Pietraallo |first13=Aaron D. |last14=Haislip |first14=Joshua |s2cid=59127420 |doi-access=free }}</ref> On 2020 April&nbsp;22 and 23, the '']'' spacecraft took images of two of the nearest stars, Proxima Centauri and ]. When compared with Earth-based images, a very large parallax effect was easily visible. However, this was only used for illustrative purposes and did not improve on previous distance measurements.<ref>{{cite web |date=29 January 2020 |title=Seeing Stars in 3D: The New Horizons Parallax Program |url=http://pluto.jhuapl.edu/News-Center/News-Article.php?page=20200129 |access-date=25 May 2020 |website=pluto.jhuapl.edu |publisher=Johns Hopkins University Applied Physics Laboratory}}</ref><ref>{{cite web |title=Parallax measurements for Wolf 359 and Proxima Centauri |url=https://www.dlr.de/content/en/images/2020/3/parallax-measurements-wolf-359-and-proxima-centauri.html |access-date=19 January 2021 |website=German Aerospace Center}}</ref>

== Future exploration ==
{{Main|Proxima Centauri in fiction|Interstellar travel}}
Because of the star's proximity to Earth, Proxima Centauri has been proposed as a flyby destination for interstellar travel.<ref name="gilster">{{cite book |last=Gilster |first=Paul |url=https://archive.org/details/centauridreamsim00gils |title=Centauri dreams: imagining and planning |date=2004 |publisher=Springer |isbn=978-0-387-00436-5}}</ref> If non-nuclear, conventional propulsion technologies are used, the flight of a spacecraft to Proxima Centauri and its planets would probably require thousands of years.<ref>{{cite journal |last=Crawford |first=I. A. |date=September 1990 |title=Interstellar Travel: A Review for Astronomers |journal=Quarterly Journal of the Royal Astronomical Society |volume=31 |pages=377–400 |bibcode=1990QJRAS..31..377C}}</ref> For example, '']'', which is now travelling {{convert|17|km/s|mph|abbr=on}}<ref>{{cite web |last=Peat |first=Chris |title=Spacecraft escaping the Solar System |url=http://www.heavens-above.com/SolarEscape.aspx |access-date=December 25, 2016 |work=Heavens Above}}</ref> relative to the Sun, would reach Proxima Centauri in 73,775 years, were the spacecraft travelling in the direction of that star and Proxima was standing still. Proxima's actual galactic orbit means a slow-moving probe would have only several tens of thousands of years to catch the star at its closest approach, before it recedes out of reach.<ref name="longshot">{{cite web |last1=Beals |first1=K. A. |last2=Beaulieu |first2=M. |last3=Dembia |first3=F. J. |last4=Kerstiens |first4=J. |last5=Kramer |first5=D. L. |last6=West |first6=J. R. |last7=Zito |first7=J. A. |date=1988 |title=Project Longshot, an Unmanned Probe to Alpha Centauri |url=https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890007533_1989007533.pdf |access-date=June 13, 2008 |work=NASA-CR-184718 |publisher=U. S. Naval Academy}}</ref>

] might enable such interstellar travel with a trip timescale of a century, inspiring several studies such as ], ], and ].<ref name="longshot" /> Project ] aims to reach the Alpha Centauri system within the first half of the 21st century, with microprobes travelling at 20% of the speed of light propelled by around 100 ] of Earth-based lasers.<ref>{{cite journal |last=Merali |first=Zeeya |date=May 27, 2016 |title=Shooting for a star |journal=] |volume=352 |issue=6289 |pages=1040–1041 |doi=10.1126/science.352.6289.1040 |pmid=27230357}}</ref> The probes would perform a fly-by of Proxima Centauri about 20 years after its launch, or possibly go into orbit after about 140 years if ]'s around Proxima Centauri or Alpha Centauri are to be employed.<ref name="Heller Hippke 2023 k319">{{cite web | last1=Heller | first1=René | last2=Hippke | first2=Michael | title=Full braking at Alpha Centauri | website=Max-Planck-Gesellschaft | date=July 11, 2023 | url=https://www.mpg.de/11019256/full-braking-at-alpha-centauri | access-date=December 3, 2023}}</ref> Then the probes would take photos and collect data of the planets of the stars, and their atmospheric compositions. It would take 4.25 years for the information collected to be sent back to Earth.<ref name="Popkin2017">{{cite journal |last=Popkin |first=Gabriel |date=February 2, 2017 |title=What it would take to reach the stars |journal=] |volume=542 |issue=7639 |pages=20–22 |bibcode=2017Natur.542...20P |doi=10.1038/542020a |pmid=28150784 |doi-access=free}}</ref>

== Explanatory notes==
{{Reflist|group="nb"}}
{{notelist}}

==References==
{{reflist|25em|refs=

<ref name=aaa397>
{{cite journal
|last1=Ségransan |first1=Damien |last2=Kervella |first2=Pierre
|last3=Forveille |first3=Thierry |last4=Queloz |first4=Didier
|name-list-style=amp
|year=2003
|title=First radius measurements of very low mass stars with the VLTI
|journal=]
|volume=397 |issue=3 |pages=L5–L8
|bibcode=2003A&A...397L...5S
|arxiv=astro-ph/0211647 |s2cid=10748478
|doi=10.1051/0004-6361:20021714
}}
</ref>

<ref name=aaa519_A105>
{{cite journal
| last1=Schlaufman | first1=K.C.
| last2=Laughlin | first2=G.
| name-list-style=amp
| date=September 2010
| title=A {{sic|hide=y|physically|-}}motivated photometric calibration of M&nbsp;dwarf metallicity
| journal=]
| volume=519 | page=A105
| doi=10.1051/0004-6361/201015016
| bibcode=2010A&A...519A.105S
| arxiv = 1006.2850 | s2cid=119260592
}}
</ref>

<ref name=Guillem2017>
{{cite journal
|last1=Anglada |first1=Guillem |last2=Amado |first2=Pedro J.
|last3=Ortiz |first3=Jose L. |last4=Gómez |first4=José F.
|last5=Macías |first5=Enrique |last6=Alberdi |first6=Antxon
|last7=Osorio |first7=Mayra |last8=Gómez |first8=José L.
|last9=de&nbsp;Gregorio-Monsalvo |first9=Itziar
|last10=Pérez-Torres |first10=Miguel A.
|last11=Anglada-Escudé |first11=Guillem
|last12=Berdiñas |first12=Zaira M. |last13=Jenkins |first13=James S.
|last14=Jimenez-Serra |first14=Izaskun
|last15=Lara |first15=Luisa M. |author-link15=Luisa María Lara
|last16=López-González |first16=Maria J.
|last17=López-Puertas |first17=Manuel
|last18=Morales |first18=Nicolas |last19=Ribas |first19=Ignasi
|last20=Richards |first20=Anita M.S.
|last21=Rodríguez-López |first21=Cristina
|last22=Rodriguez |first22=Eloy
|display-authors=6
|year=2017
|title=ALMA discovery of dust belts around Proxima Centauri
|journal=]
|volume=850 |issue=1 |page=L6
|doi=10.3847/2041-8213/aa978b |doi-access=free
|bibcode=2017ApJ...850L...6A |s2cid=13431834
|arxiv=1711.00578
|url=http://zaguan.unizar.es/record/64319 |via=unizar.es
}}
</ref>

<ref name=Damasso2020>
{{cite journal
|last1=Damasso |first1=Mario |last2=del&nbsp;Sordo |first2=Fabio
|last3=Anglada-Escudé |first3=Guillem |last4=Giacobbe |first4=Paolo
|last5=Sozzetti |first5=Alessandro |last6=Morbidelli |first6=Alessandro
|last7=Pojmanski |first7=Grzegorz |last8=Barbato |first8=Domenico
|last9=Butler |first9=R. Paul |last10=Jones |first10=Hugh R.A.
|last11=Hambsch |first11=Franz-Josef
|last12=Jenkins |first12=James S.
|last13=López-González |first13=María José
|last14=Morales |first14=Nicolás |last15=Peña Rojas |first15=Pablo A.
|last16=Rodríguez-López |first16=Cristina
|last17=Rodríguez |first17=Eloy
|last18=Amado |first18=Pedro J. |last19=Anglada |first19=Guillem
|last20=Feng |first20=Fabo |last21=Gómez |first21=Jose F.
|display-authors=6
|title=A low-mass planet candidate orbiting Proxima Centauri at a distance of {{nobr|1.5 {{sc|AU}}}}
|date=15 January 2020
|journal=]
|volume=6 |issue=3 |page=eaax7467
|doi=10.1126/sciadv.aax7467 |pmc=6962037
|bibcode=2020SciA....6.7467D |pmid=31998838
}}
</ref>

<ref name=FariaSuárezMascareñoSilva2022>
{{cite journal
|last1=Faria |first1=J.P. |last2=Suárez Mascareño |first2=A.
|last3=Figueira |first3=P. |last4=Silva |first4=A.M.
|last5=Damasso |first5=M. |last6=Demangeon |first6=O.
|last7=Pepe |first7=F. |last8=Santos |first8=N.C.
|last9=Rebolo |first9=R. |last10=Cristiani |first10=S.
|last11=Adibekyan |first11=V. |last12=Alibert |first12=Y.
|last13=Allart |first13=R. |last14=Barros |first14=S.C.C.
|last15=Cabral |first15=A. |last16=D’Odorico |first16=V.
|last17=di&nbsp;Marcantonio |first17=P.
|last18=Dumusque |first18=X. |last19=Ehrenreich |first19=D.
|last20=González Hernández |first20=J.I.
|last21=Hara |first21=N. |last22=Lillo-Box |first22=J.
|last23=lo&nbsp;Curto |first23=G. |last24=Lovis |first24=C.
|last25=Martins |first25=C.J.A.P. |last26=Mégevand |first26=D.
|last27=Mehner |first27=A. |last28=Micela |first28=G.
|last29=Molaro |first29=P. |last30=Nunes |first30=N.J.
|last31=Pallé |first31=E. |last32=Poretti |first32=E.
|last33=Sousa |first33=S.G. |last34=Sozzetti |first34=A.
|last35=Tabernero |first35=H. |last36=Udry |first36=S.
|last37=Zapatero Osorio |first37=M.R.
|display-authors=6
|year=2022
|title=A candidate short-period sub-Earth orbiting Proxima Centauri
|journal=]
|volume=658 |page=A115
|doi=10.1051/0004-6361/202142337 |doi-access=free
|arxiv=2202.05188 |bibcode=2022A&A...658A.115F
|url=https://www.eso.org/public/archives/releases/sciencepapers/eso2202/eso2202a.pdf
|via=eso.org
<!-- |publisher=EDP Sciences -->
}}
</ref>

<ref name=Gratton2020>
{{cite journal
| last1=Gratton | first1=R. | last2=Zurlo | first2=A.
| last3=le&nbsp;Coroller | first3=H. | last4=Damasso | first4=M.
| last5=del&nbsp;Sordo | first5=F. | last6=Langlois | first6=M.
| last7=Mesa | first7=D. | last8=Milli | first8=J.
| last9=Chauvin | first9=G. | last10=Desidera | first10=S.
| last11=Hagelberg | first11=J. | last12=Lagadec | first12=E.
| last13=Vigan | first13=A. | last14=Boccaletti | first14=A.
| last15=Bonnefoy | first15=M. | last16=Brandner | first16=W.
| last17=Brown | first17=S. | last18=Cantalloube | first18=F.
| last19=Delorme | first19=P. | last20=d'Orazi | first20=V.
| last21=Feldt | first21=M. | last22=Galicher | first22=R.
| last23=Henning | first23=T. | last24=Janson | first24=M.
| last25=Kervella | first25=P. | last26=Lagrange | first26=A.-M.
| last27=Lazzoni | first27=C. | last28=Ligi | first28=R.
| last29=Maire | first29=A.-L. | last30=Ménard | first30=F.
| last31=Meyer | first31=M. | last32=Mugnier | first32=L.
| last33=Potier | first33=A. | last34=Rickman | first34=E.L.
| last35=Rodet | first35=L. | last36=Romero | first36=C.
| last37=Schmidt | first37=T. | last38=Sissa | first38=E.
| last39=Sozzetti | first39=A. | last40=Szulágyi | first40=J.
| last41=Wahhaj | first41=Z. | last42=Antichi | first42=J.
| last43=Fusco | first43=T. | last44=Stadler | first44=E.
| last45=Suarez | first45=M. | last46=Wildi | first46=F.
| display-authors=6
| date= June 2020
| title = Searching for the near-infrared counterpart of Proxima c using multi-epoch high-contrast SPHERE data at VLT
| journal = ]
| volume= 638 | page= A120
| doi=10.1051/0004-6361/202037594 | s2cid = 215754278
| bibcode= 2020A&A...638A.120G | arxiv = 2004.06685
}}
</ref>

<ref name=Li-2017>
{{cite journal
|last1=Li |first1=Yiting |last2=Stefansson |first2=Gudmundur
|last3=Robertson |first3=Paul |last4=Monson |first4=Andrew
|last5=Cañas |first5=Caleb
|last6=Mahadevan |first6=Suvrath |author6-link=Suvrath Mahadevan
|name-list-style=amp
|date=14 December 2017
|title=A candidate transit event around Proxima Centauri
|journal=]
|volume=1 |issue=1 |page=49
|doi=10.3847/2515-5172/aaa0d5 |doi-access=free
|arxiv=1712.04483 |s2cid=119034883
|bibcode=2017RNAAS...1...49L
}}
</ref>

<ref name=Masc2016>
{{cite journal
|last1=Mascareño |first1=A. Suárez
|last2=Rebolo |first2=R.
|last3=González Hernández |first3=J.I.
|name-list-style=amp
|date=October 2016
|title=Magnetic cycles and rotation periods of late-type stars from photometric time series
|journal=]
|volume=595 |page=A12
|doi=10.1051/0004-6361/201628586 |arxiv=1607.03049
|bibcode=2016A&A...595A..12S |s2cid=118555782
|url=https://ui.adsabs.harvard.edu/abs/2016A&A...595A..12S
|access-date=30 November 2021 |via=adsabs.harvard.edu
}}
</ref>

<ref name="PasseggerWende-von Berg2016">
{{cite journal
|last1=Passegger |first1=Vera Maria
|last2=Wende-von&nbsp;Berg |first2=Sebastian
|last3=Reiners |first3=Ansgar
|name-list-style=amp
|date=March 2016
|title=Fundamental M-dwarf parameters from high-resolution spectra using PHOENIX ACES models: I.&nbsp;Parameter accuracy and benchmark stars
|journal=]
|volume=587 |page=A19
|bibcode=2016A&A...587A..19P |issn=0004-6361
|doi=10.1051/0004-6361/201322261 |s2cid=10458151
|arxiv=1709.03560
}}
</ref>

<ref name="Suárez MascareñoFaria2020">
{{cite journal
|last1=Suárez Mascareño |first1=A. |last2=Faria |first2=J.P.
|last3=Figueira |first3=P. |last4=Lovis |first4=C.
|last5=Damasso |first5=M. |last6=González Hernández |first6=J.I.
|last7=Rebolo |first7=R. |last8=Cristiano |first8=S.
|last9=Pepe |first9=F. |last10=Santos |first10=N.C.
|last11=Zapatero Osorio |first11=M.R. |last12=Adibekyan |first12=V.
|last13=Hojjatpanah |first13=S. |last14=Sozzetti |first14=A.
|last15=Murgas |first15=F. |last16=Abreu |first16=M.
|display-authors=6
|year=2020
|title=Revisiting Proxima with ESPRESSO
|journal=]
|volume=639 |page=A77
|issn=0004-6361 |bibcode=2020A&A...639A..77S
|doi=10.1051/0004-6361/202037745 |doi-access=free
|arxiv=2005.12114
}}
</ref>

<ref name=Yadav2016>
{{cite journal
|last1=Yadav |first1=Rakesh K. |last2=Christensen |first2=Ulrich R.
|last3=Wolk |first3=Scott J. |last4=Poppenhaeger |first4=Katja
|name-list-style=amp
|date=December 2016
|title=Magnetic cycles in a dynamo simulation of fully convective M-star Proxima Centauri
|journal=]
|volume=833 |issue=2 |id=L28 |page=6
|doi=10.3847/2041-8213/833/2/L28 |doi-access=free
|arxiv=1610.02721 |bibcode=2016ApJ...833L..28Y
|s2cid=54849623
}}
</ref>

}} <!-- end "refs=" -->

==Further reading==
{{Div col|small=yes}}
*{{cite journal
| title=Laser communication with Proxima and Alpha Centauri using the solar gravitational lens
| display-authors=1 | last1=Marcy | first1=Geoffrey W.
| last2=Tellis | first2=Nathaniel K. | last3=Wishnow | first3=Edward H.
| journal=Monthly Notices of the Royal Astronomical Society
| volume=509 | issue=3 | pages=3798–3814
| date=January 2022 | doi=10.1093/mnras/stab3074
| doi-access=free | arxiv=2110.10247 | bibcode=2022MNRAS.509.3798M }}
*{{cite journal
| title=A radio technosignature search towards Proxima Centauri resulting in a signal of interest
| last1=Smith | first1=Shane | last2=Price | first2=Danny C.
| last3=Sheikh | first3=Sofia Z. | last4=Czech | first4=Daniel J.
| last5=Croft | first5=Steve | last6=DeBoer | first6=David
| last7=Gajjar | first7=Vishal | last8=Isaacson | first8=Howard
| last9=Lacki | first9=Brian C. | last10=Lebofsky | first10=Matt
| last11=MacMahon | first11=David H. E. | last12=Ng | first12=Cherry
| last13=Perez | first13=Karen I. | last14=Siemion | first14=Andrew P. V.
| last15=Webb | first15=Claire Isabel | last16=Drew | first16=Jamie
| last17=Worden | first17=S. Pete | last18=Zic | first18=Andrew
| display-authors=1 | journal=Nature Astronomy
| volume=5 | pages=1148–1152
| date=October 2021 | issue=11 | doi=10.1038/s41550-021-01479-w
| arxiv=2111.08007 | bibcode=2021NatAs...5.1148S | s2cid=239948037 }}
*{{cite journal
| title=A search for optical laser emission from Proxima Centauri
| last=Marcy | first=G. W.
| journal=Monthly Notices of the Royal Astronomical Society
| volume=505 | issue=3 | pages=3537–3548
| date=August 2021 | doi=10.1093/mnras/stab1440
| doi-access=free | arxiv=2102.01910 | bibcode=2021MNRAS.505.3537M }}
*{{cite journal
| title=Planet-induced radio emission from the coronae of M dwarfs: the case of Prox Cen and AU Mic
| last1=Kavanagh | first1=Robert D. | last2=Vidotto | first2=Aline A.
| last3=Klein | first3=Baptiste | last4=Jardine | first4=Moira M.
| last5=Donati | first5=Jean-François | last6=Ó Fionnagáin | first6=Dúalta
| journal=Monthly Notices of the Royal Astronomical Society
| volume=504 | issue=1 | pages=1511–1518 | display-authors=1
| date=June 2021 | doi=10.1093/mnras/stab929
| doi-access=free | arxiv=2103.16318 | bibcode=2021MNRAS.504.1511K }}
*{{cite journal
| title=Monitoring the radio emission of Proxima Centauri
| last1=Pérez-Torres | first1=M. | last2=Gómez | first2=J. F.
| last3=Ortiz | first3=J. L. | last4=Leto | first4=P.
| last5=Anglada | first5=G. | last6=Gómez | first6=J. L.
| last7=Rodríguez | first7=E. | last8=Trigilio | first8=C.
| last9=Amado | first9=P. J. | last10=Alberdi | first10=A.
| last11=Anglada-Escudé | first11=G. | last12=Osorio | first12=M.
| last13=Umana | first13=G. | last14=Berdiñas | first14=Z.
| last15=López-González | first15=M. J. | last16=Morales | first16=N.
| last17=Rodríguez-López | first17=C. | last18=Chibueze | first18=J.
| display-authors=1 | journal=Astronomy & Astrophysics
| volume=645 | id=A77 | date=January 2021
| pages=A77 | doi=10.1051/0004-6361/202039052
| arxiv=2012.02116 | bibcode=2021A&A...645A..77P | s2cid=227255606 }}
*{{cite journal
| title=A Flare-type IV Burst Event from Proxima Centauri and Implications for Space Weather
| last1=Zic | first1=Andrew | last2=Murphy | first2=Tara
| last3=Lynch | first3=Christene | last4=Heald | first4=George
| last5=Lenc | first5=Emil | last6=Kaplan | first6=David L.
| last7=Cairns | first7=Iver H. | last8=Coward | first8=David
| last9=Gendre | first9=Bruce | last10=Johnston | first10=Helen
| last11=MacGregor | first11=Meredith | last12=Price | first12=Danny C.
| last13=Wheatland | first13=Michael S. | display-authors=1
| journal=The Astrophysical Journal
| volume=905 | issue=1 | id=23
| date=December 2020 | page=23 | doi=10.3847/1538-4357/abca90
| arxiv=2012.04642 | bibcode=2020ApJ...905...23Z | s2cid=227745378 | doi-access=free }}
*{{cite journal
| title=Proxima Centauri - the nearest planet host observed simultaneously with AstroSat, Chandra, and HST
| last1=Lalitha | first1=S. | last2=Schmitt | first2=J. H. M. M.
| last3=Singh | first3=K. P. | last4=Schneider | first4=P. C.
| last5=Parke Loyd | first5=R. O. | last6=France | first6=K.
| last7=Predehl | first7=P. | last8=Burwitz | first8=V.
| last9=Robrade | first9=J. | display-authors=1
| journal=Monthly Notices of the Royal Astronomical Society
| volume=498 | issue=3 | pages=3658–3663
| date=November 2020 | doi=10.1093/mnras/staa2574
| doi-access=free | arxiv=2008.07175 | bibcode=2020MNRAS.498.3658L }}
*{{cite journal
| title=Flaring Activity of Proxima Centauri from TESS Observations: Quasiperiodic Oscillations during Flare Decay and Inferences on the Habitability of Proxima b
| last1=Vida | first1=Krisztián | last2=Oláh | first2=Katalin
| last3=Kővári | first3=Zsolt | last4=van Driel-Gesztelyi | first4=Lidia
| last5=Moór | first5=Attila | last6=Pál | first6=András
| display-authors=1 | journal=The Astrophysical Journal
| volume=884 | issue=2 | id=160
| date=October 2019 | page=160 | doi=10.3847/1538-4357/ab41f5
| arxiv=1907.12580 | bibcode=2019ApJ...884..160V | s2cid=198985707 | doi-access=free }}
*{{cite journal
| title=Directly testing gravity with Proxima Centauri
| last1=Banik | first1=Indranil | last2=Kroupa | first2=Pavel
| journal=Monthly Notices of the Royal Astronomical Society
| volume=487 | issue=2 | pages=1653–1661
| date=August 2019 | doi=10.1093/mnras/stz1379
| doi-access=free | arxiv=1906.08264 | bibcode=2019MNRAS.487.1653B }}
*{{cite journal
| title=Temporal changes of the flare activity of Proxima Centauri
| last1=Pavlenko | first1=Ya. V. | last2=Suárez Mascareño | first2=A.
| last3=Zapatero Osorio | first3=M. R. | last4=Rebolo | first4=R.
| last5=Lodieu | first5=N. | last6=Béjar | first6=V. J. S.
| last7=González Hernández | first7=J. I. | last8=Mohorian | first8=M.
| display-authors=1 | journal=Astronomy & Astrophysics
| volume=626 | id=A111 | date=June 2019
| pages=A111 | doi=10.1051/0004-6361/201834258 | arxiv=1905.07347
| bibcode=2019A&A...626A.111P | s2cid=158047128 }}
*{{cite journal
| title=A Multi-year Search for Transits of Proxima Centauri. II. No Evidence for Transit Events with Periods between 1 and 30 days
| last1=Feliz | first1=Dax L. | last2=Blank | first2=David L.
| last3=Collins | first3=Karen A. | last4=White | first4=Graeme L.
| last5=Stassun | first5=Keivan G. | last6=Curtis | first6=Ivan A.
| last7=Hart | first7=Rhodes | last8=Kielkopf | first8=John F.
| last9=Nelson | first9=Peter | last10=Relles | first10=Howard
| last11=Stockdale | first11=Christopher | last12=Jayawardene | first12=Bandupriya
| last13=Shankland | first13=Paul | last14=Reichart | first14=Daniel E.
| last15=Haislip | first15=Joshua B. | last16=Kouprianov | first16=Vladimir V.
| display-authors=1 | journal=The Astronomical Journal
| volume=157 | issue=6 | id=226
| date=June 2019 | page=226 | doi=10.3847/1538-3881/ab184f
| arxiv=1901.07034 | bibcode=2019AJ....157..226F | doi-access=free }}
*{{cite journal
| title=Observation of a possible superflare on Proxima Centauri
| last1=Kielkopf | first1=John F. | last2=Hart | first2=Rhodes
| last3=Carter | first3=Bradley D. | last4=Marsden | first4=Stephen C.
| journal=Monthly Notices of the Royal Astronomical Society: Letters
| volume=486 | issue=1 | pages=L31–L35 | display-authors=1
| date=June 2019 | doi=10.1093/mnrasl/slz054
| doi-access=free | arxiv=1904.06875 | bibcode=2019MNRAS.486L..31K }}
*{{cite journal
| title=Dynamical evolution and stability maps of the Proxima Centauri system
| last1=Meng | first1=Tong | last2=Ji | first2=Jianghui
| last3=Dong | first3=Yao | display-authors=1
| journal=Monthly Notices of the Royal Astronomical Society
| volume=482 | issue=1 | pages=372–383
| date=January 2019 | doi=10.1093/mnras/sty2682
| doi-access=free | arxiv=1809.08210 | bibcode=2019MNRAS.482..372M }}
*{{cite journal
| title=Exocomets in the Proxima Centauri system and their importance for water transport
| last1=Schwarz | first1=R. | last2=Bazsó | first2=Á.
| last3=Georgakarakos | first3=N. | last4=Loibnegger | first4=B.
| last5=Maindl | first5=T. I. | last6=Bancelin | first6=D.
| last7=Pilat-Lohinger | first7=E. | last8=Kislyakova | first8=K. G.
| last9=Dvorak | first9=R. | last10=Dobbs-Dixon | first10=I.
| journal=Monthly Notices of the Royal Astronomical Society
| volume=480 | issue=3 | pages=3595–3608 | display-authors=1
| date=November 2018 | doi=10.1093/mnras/sty2064
| doi-access=free | arxiv=1711.04685 | bibcode=2018MNRAS.480.3595S }}
*{{cite journal
| title=The First Naked-eye Superflare Detected from Proxima Centauri
| last1=Howard | first1=Ward S. | last2=Tilley | first2=Matt A.
| last3=Corbett | first3=Hank | last4=Youngblood | first4=Allison
| last5=Loyd | first5=R. O. Parke | last6=Ratzloff | first6=Jeffrey K.
| last7=Law | first7=Nicholas M. | last8=Fors | first8=Octavi
| last9=del Ser | first9=Daniel | last10=Shkolnik | first10=Evgenya L.
| last11=Ziegler | first11=Carl | last12=Goeke | first12=Erin E.
| last13=Pietraallo | first13=Aaron D. | last14=Haislip | first14=Joshua
| journal=The Astrophysical Journal Letters
| volume=860 | issue=2 | id=L30 | display-authors=1
| date=June 2018 | pages=L30 | doi=10.3847/2041-8213/aacaf3
| arxiv=1804.02001 | bibcode=2018ApJ...860L..30H | s2cid=59127420 | doi-access=free }}
*{{cite journal
| title=Detection of a Millimeter Flare from Proxima Centauri
| last1=MacGregor | first1=Meredith A. | last2=Weinberger | first2=Alycia J.
| last3=Wilner | first3=David J. | last4=Kowalski | first4=Adam F.
| last5=Cranmer | first5=Steven R. | display-authors=1
| journal=The Astrophysical Journal Letters
| volume=855 | issue=1 | id=L2
| date=March 2018 | pages=L2 | doi=10.3847/2041-8213/aaad6b
| arxiv=1802.08257 | bibcode=2018ApJ...855L...2M | s2cid=119287614 | doi-access=free }}
*{{cite journal
| title=Proxima Centauri reloaded: Unravelling the stellar noise in radial velocities
| last1=Damasso | first1=M. | last2=Del Sordo | first2=F.
| journal=Astronomy & Astrophysics
| volume=599 | id=A126 | date=March 2017
| pages=A126 | doi=10.1051/0004-6361/201630050 | arxiv=1612.03786
| bibcode=2017A&A...599A.126D | s2cid=119335949 }}
{{Div col end}}

==External links==
{{Commons category|Proxima Centauri}}
* {{Cite APOD |title=Proxima Centauri: the closest star |date=July 15, 2002 |access-date=June 25, 2008}}
* {{cite web |url=https://chandra.harvard.edu/photo/2004/proxima/ |title=Proxima Centauri: The Nearest Star to the Sun |agency=Chandra X-ray Observatory |publisher=Harvard University |date=July 1, 2008 |access-date=July 1, 2008}}
* {{cite web |url=http://www.southastrodel.com/PageAlphaCen006.htm |title=Voyage to Alpha Centauri |series=The Imperial Star – Alpha Centauri |publisher=Southern Astronomical Delights |last=James |first=Andrew |date=March 11, 2008 |access-date=August 5, 2008}}
* {{cite web |url=http://www.solstation.com/stars/alp-cent3.htm |title=Alpha Centauri 3 |work=SolStation |access-date=August 5, 2008}}
* {{cite web |url=http://www.uranometrianova.pro.br/astronomia/AA002/alphacen.htm |title=O Sistema Alpha Centauri |access-date=June 25, 2008 |work=Astronomia & Astrofísica |language=pt |archive-date=3 March 2016 |archive-url=https://web.archive.org/web/20160303190444/http://www.uranometrianova.pro.br/astronomia/AA002/alphacen.htm |url-status=dead }}
* {{cite web |url=http://www.wikisky.org/?ra=14.495264&de=-62.67948000000001&zoom=8&show_grid=1&show_constellation_lines=1&show_constellation_boundaries=1&show_const_names=0&show_galaxies=1&show_box=1&box_ra=14.495264&box_de=-62.67948&box_width=50&box_height=50&img_source=DSS2 |title=Image of Proxima Centauri |work=Wikisky |access-date=July 1, 2017}}
* {{cite web |url=http://www.constellation-guide.com/proxima-centauri/ |title=Proxima Centauri |website=Constellation-guide.com |access-date=August 25, 2016}}
* {{cite web |url=http://www.eso.org/public/news/eso1629/ |title=Planet Found in Habitable Zone Around Nearest Star |publisher=] |date=August 24, 2016 |access-date=September 6, 2016}}
* {{cite news |url=https://www.space.com/33834-discovery-of-planet-proxima-b.html |title=Found! Potentially Earth-Like Planet at Proxima Centauri Is Closest Ever |work=] |first=Mike |last=Wall |date=April 24, 2016}}
{{Authority control}}
{{Alpha Centauri}}
{{Sky|14|29|42.9487|-|62|40|46.141|4.25}}
{{nearest systems|1}}
{{Stars of Centaurus}}
{{Portal bar|Astronomy|Stars|Spaceflight|Outer space|Solar System}}

{{DEFAULTSORT:Proxima Centauri}}
<!-- Properties -->
]
]
] ]
] ]
]
]
<!-- Location/Catalogues -->
]
]
]
]
]
] ]
]

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

Latest revision as of 16:52, 3 January 2025

Nearest star to the Solar System This article is about the star. For other uses, see Proxima Centauri (disambiguation).

Proxima Centauri

False color Hubble Space Telescope WFPC2 image taken in 2013. The bright lines are diffraction spikes.
Observation data
Epoch J2000.0      Equinox J2000.0 (ICRS)
Constellation Centaurus
Pronunciation /ˌprɒksəmə sɛnˈtɔːri/ or
/ˈprɒksɪmə sɛnˈtɔːraɪ/
Right ascension 14 29 42.946
Declination −62° 40′ 46.16″
Apparent magnitude (V) 10.43 – 11.11
Characteristics
Evolutionary stage Main sequence
Spectral type M5.5Ve
U−B color index 1.26
B−V color index 1.82
V−R color index 1.68
R−I color index 2.04
J−H color index 0.522
J−K color index 0.973
Variable type UV Cet + BY Dra
Astrometry
Radial velocity (Rv)−22.204±0.032 km/s
Proper motion (μ) RA: −3781.741 mas/yr
Dec.: 769.465 mas/yr
Parallax (π)768.0665 ± 0.0499 mas
Distance4.2465 ± 0.0003 ly
(1.30197 ± 0 pc)
Absolute magnitude (MV)15.60
Orbit
PrimaryAlpha Centauri AB
CompanionProxima Centauri
Period (P)547000+6600
−4000 yr
Semi-major axis (a)8700+700
−400 AU
Eccentricity (e)0.50+0.08
−0.09
Inclination (i)107.6+1.8
−2.0°
Longitude of the node (Ω)126±5°
Periastron epoch (T)+283+59
−41
Argument of periastron (ω)
(secondary)
72.3+8.7
−6.6°
Details
Mass0.1221±0.0022 M
Radius0.1542±0.0045 R
Luminosity (bolometric)0.001567±0.000020 L
Luminosity (visual, LV)0.00005 L
Surface gravity (log g)5.20±0.23 cgs
Temperature2,992+49
−47 K
Metallicity 0.21 dex
Rotation89.8±4 days
Rotational velocity (v sin i)< 0.1 km/s
Age4.85 Gyr
Other designations
Alf Cen C, Alpha Centauri C, V645 Centauri, GJ 551, HIP 70890, CCDM J14396-6050C, LFT 1110, LHS 49, LPM 526, LTT 5721, NLTT 37460
Database references
SIMBADdata
ARICNSdata

Proxima Centauri is the nearest star to Earth after the Sun, located 4.25 light-years away in the southern constellation of Centaurus. This object was discovered in 1915 by Robert Innes. It is a small, low-mass star, too faint to be seen with the naked eye, with an apparent magnitude of 11.13. Its Latin name means the 'nearest of Centaurus'. Proxima Centauri is a member of the Alpha Centauri star system, being identified as component Alpha Centauri C, and is 2.18° to the southwest of the Alpha Centauri AB pair. It is currently 12,950 AU (0.2 ly) from AB, which it orbits with a period of about 550,000 years.

Proxima Centauri is a red dwarf star with a mass about 12.5% of the Sun's mass (M), and average density about 33 times that of the Sun. Because of Proxima Centauri's proximity to Earth, its angular diameter can be measured directly. Its actual diameter is about one-seventh (14%) the diameter of the Sun. Although it has a very low average luminosity, Proxima Centauri is a flare star that randomly undergoes dramatic increases in brightness because of magnetic activity. The star's magnetic field is created by convection throughout the stellar body, and the resulting flare activity generates a total X-ray emission similar to that produced by the Sun. The internal mixing of its fuel by convection through its core and Proxima's relatively low energy-production rate, mean that it will be a main-sequence star for another four trillion years.

Proxima Centauri has one known exoplanet and two candidate exoplanets: Proxima Centauri b, the candidate Proxima Centauri d and the disputed Proxima Centauri c. Proxima Centauri b orbits the star at a distance of roughly 0.05 AU (7.5 million km) with an orbital period of approximately 11.2 Earth days. Its estimated mass is at least 1.07 times that of Earth. Proxima b orbits within Proxima Centauri's habitable zone—the range where temperatures are right for liquid water to exist on its surface—but, because Proxima Centauri is a red dwarf and a flare star, the planet's habitability is highly uncertain. A candidate super-Earth, Proxima Centauri c, roughly 1.5 AU (220 million km) away from Proxima Centauri, orbits it every 1,900 d (5.2 yr). A candidate sub-Earth, Proxima Centauri d, roughly 0.029 AU (4.3 million km) away, orbits it every 5.1 days.

General characteristics

Three visual band light curves for Proxima Centauri are shown. Plot A shows a superflare which dramatically increased the star's brightness for a few minutes. Plot B shows the relative brightness variation over the course of the star's 83 day rotation period. Plot C shows variation over a 6.8 year period, which may be the length of the star's magnetic activity period. Adapted from Howard et al. (2018) and Mascareño et al. (2016)

Proxima Centauri is a red dwarf, because it belongs to the main sequence on the Hertzsprung–Russell diagram and is of spectral class M5.5. The M5.5 class means that it falls in the low-mass end of M-type dwarf stars, with its hue shifted toward red-yellow by an effective temperature of ~3,000 K. Its absolute visual magnitude, or its visual magnitude as viewed from a distance of 10 parsecs (33 ly), is 15.5. Its total luminosity over all wavelengths is only 0.16% that of the Sun, although when observed in the wavelengths of visible light to which the eye is most sensitive, it is only 0.0056% as luminous as the Sun. More than 85% of its radiated power is at infrared wavelengths.

In 2002, optical interferometry with the Very Large Telescope (VLTI) found that the angular diameter of Proxima Centauri is 1.02±0.08 mas. Because its distance is known, the actual diameter of Proxima Centauri can be calculated to be about 1/7 that of the Sun, or 1.5 times that of Jupiter. The star's mass, estimated from stellar theory, is 12.2% M, or 129 Jupiter masses (MJ). The mass has been calculated directly, although with less precision, from observations of microlensing events to be 0.150+0.062
−0.051 M.

Lower mass main-sequence stars have higher mean density than higher mass ones, and Proxima Centauri is no exception: it has a mean density of 47.1×10 kg/m (47.1 g/cm), compared with the Sun's mean density of 1.411×10 kg/m (1.411 g/cm). The measured surface gravity of Proxima Centauri, given as the base-10 logarithm of the acceleration in units of cgs, is 5.20. This is 162 times the surface gravity on Earth.

A 1998 study of photometric variations indicates that Proxima Centauri completes a full rotation once every 83.5 days. A subsequent time series analysis of chromospheric indicators in 2002 suggests a longer rotation period of 116.6±0.7 days. Later observations of the star's magnetic field subsequently revealed that the star rotates with a period of 89.8±4 days, consistent with a measurement of 92.1+4.2
−3.5 days from radial velocity observations.

Structure and fusion

Because of its low mass, the interior of the star is completely convective, causing energy to be transferred to the exterior by the physical movement of plasma rather than through radiative processes. This convection means that the helium ash left over from the thermonuclear fusion of hydrogen does not accumulate at the core but is instead circulated throughout the star. Unlike the Sun, which will only burn through about 10% of its total hydrogen supply before leaving the main sequence, Proxima Centauri will consume nearly all of its fuel before the fusion of hydrogen comes to an end.

Convection is associated with the generation and persistence of a magnetic field. The magnetic energy from this field is released at the surface through stellar flares that briefly (as short as per ten seconds) increase the overall luminosity of the star. On May 6, 2019, a flare event bordering Solar M and X flare class, briefly became the brightest ever detected, with a far ultraviolet emission of 2×10 erg. These flares can grow as large as the star and reach temperatures measured as high as 27 million K—hot enough to radiate X-rays. Proxima Centauri's quiescent X-ray luminosity, approximately (4–16) × 10 erg/s ((4–16) × 10 W), is roughly equal to that of the much larger Sun. The peak X-ray luminosity of the largest flares can reach 10 erg/s (10 W).

Proxima Centauri's chromosphere is active, and its spectrum displays a strong emission line of singly ionized magnesium at a wavelength of 280 nm. About 88% of the surface of Proxima Centauri may be active, a percentage that is much higher than that of the Sun even at the peak of the solar cycle. Even during quiescent periods with few or no flares, this activity increases the corona temperature of Proxima Centauri to 3.5 million K, compared to the 2 million K of the Sun's corona, and its total X-ray emission is comparable to the sun's. Proxima Centauri's overall activity level is considered low compared to other red dwarfs, which is consistent with the star's estimated age of 4.85 × 10 years, since the activity level of a red dwarf is expected to steadily wane over billions of years as its stellar rotation rate decreases. The activity level appears to vary with a period of roughly 442 days, which is shorter than the Sun's solar cycle of 11 years.

Proxima Centauri has a relatively weak stellar wind, no more than 20% of the mass loss rate of the solar wind. Because the star is much smaller than the Sun, the mass loss per unit surface area from Proxima Centauri may be eight times that from the Sun's surface.

Life phases

A red dwarf with the mass of Proxima Centauri will remain on the main sequence for about four trillion years. As the proportion of helium increases because of hydrogen fusion, the star will become smaller and hotter, gradually transforming into a so-called "blue dwarf". Near the end of this period it will become significantly more luminous, reaching 2.5% of the Sun's luminosity (L) and warming any orbiting bodies for a period of several billion years. When the hydrogen fuel is exhausted, Proxima Centauri will then evolve into a helium white dwarf (without passing through the red giant phase) and steadily lose any remaining heat energy.

The Alpha Centauri system may have formed through a low-mass star being dynamically captured by a more massive binary of 1.5–2 M within their embedded star cluster before the cluster dispersed. However, more accurate measurements of the radial velocity are needed to confirm this hypothesis. If Proxima Centauri was bound to the Alpha Centauri system during its formation, the stars are likely to share the same elemental composition. The gravitational influence of Proxima might have disturbed the Alpha Centauri protoplanetary disks. This would have increased the delivery of volatiles such as water to the dry inner regions, so possibly enriching any terrestrial planets in the system with this material.

Alternatively, Proxima Centauri may have been captured at a later date during an encounter, resulting in a highly eccentric orbit that was then stabilized by the galactic tide and additional stellar encounters. Such a scenario may mean that Proxima Centauri's planetary companions have had a much lower chance for orbital disruption by Alpha Centauri. As the members of the Alpha Centauri pair continue to evolve and lose mass, Proxima Centauri is predicted to become unbound from the system in around 3.5 billion years from the present. Thereafter, the star will steadily diverge from the pair.

Motion and location

Alpha Centauri A and B are the bright apparent star to the left, which are in a triple star system with Proxima Centauri, circled in red. The bright star system to the right is the unrelated Beta Centauri.

Based on a parallax of 768.0665±0.0499 mas, published in 2020 in Gaia Data Release 3, Proxima Centauri is 4.2465 light-years (1.3020 pc; 268,550 AU) from the Sun. Previously published parallaxes include: 768.5±0.2 mas in 2018 by Gaia DR2, 768.13±1.04 mas, in 2014 by the Research Consortium On Nearby Stars; 772.33±2.42 mas, in the original Hipparcos Catalogue, in 1997; 771.64±2.60 mas in the Hipparcos New Reduction, in 2007; and 768.77±0.37 mas using the Hubble Space Telescope's fine guidance sensors, in 1999. From Earth's vantage point, Proxima Centauri is separated from Alpha Centauri by 2.18 degrees, or four times the angular diameter of the full Moon. Proxima Centauri has a relatively large proper motion—moving 3.85 arcseconds per year across the sky. It has a radial velocity towards the Sun of 22.2 km/s. From Proxima Centauri, the Sun would appear as a bright 0.4-magnitude star in the constellation Cassiopeia, similar to that of Achernar or Procyon from Earth.

Among the known stars, Proxima Centauri has been the closest star to the Sun for about 32,000 years and will be so for about another 25,000 years, after which Alpha Centauri A and Alpha Centauri B will alternate approximately every 79.91 years as the closest star to the Sun. In 2001, J. García-Sánchez et al. predicted that Proxima Centauri will make its closest approach to the Sun in approximately 26,700 years, coming within 3.11 ly (0.95 pc). A 2010 study by V. V. Bobylev predicted a closest approach distance of 2.90 ly (0.89 pc) in about 27,400 years, followed by a 2014 study by C. A. L. Bailer-Jones predicting a perihelion approach of 3.07 ly (0.94 pc) in roughly 26,710 years. Proxima Centauri is orbiting through the Milky Way at a distance from the Galactic Centre that varies from 27 to 31 kly (8.3 to 9.5 kpc), with an orbital eccentricity of 0.07.

Alpha Centauri

Main article: Alpha Centauri
A radar map of all stellar objects or stellar systems within 9 light years from its center the Sun (Sol). Proxima Centauri is the unlabled mark just next to Alpha Centauri. The diamond-shapes are their positions entered according to right ascension in hours angle (indicated at the edge of the map's reference disc), and according to their declination. The second mark shows each object's distance from Sol, with the concentric circles indicating the distance in steps of one light year.

Proxima Centauri has been suspected to be a companion of the Alpha Centauri binary star system since its discovery in 1915. For this reason, it is sometimes referred to as Alpha Centauri C. Data from the Hipparcos satellite, combined with ground-based observations, were consistent with the hypothesis that the three stars are a gravitationally bound system. Kervella et al. (2017) used high-precision radial velocity measurements to determine with a high degree of confidence that Proxima and Alpha Centauri are gravitationally bound. Proxima Centauri's orbital period around the Alpha Centauri AB barycenter is 547000+6600
−4000 years with an eccentricity of 0.5±0.08; it approaches Alpha Centauri to 4300+1100
−900 AU at periastron and retreats to 13000+300
−100 AU at apastron. At present, Proxima Centauri is 12,947 ± 260 AU (1.94 ± 0.04 trillion km) from the Alpha Centauri AB barycenter, nearly to the furthest point in its orbit.

Six single stars, two binary star systems, and a triple star share a common motion through space with Proxima Centauri and the Alpha Centauri system. (The co-moving stars include HD 4391, γ Normae, and Gliese 676.) The space velocities of these stars are all within 10 km/s of Alpha Centauri's peculiar motion. Thus, they may form a moving group of stars, which would indicate a common point of origin, such as in a star cluster.

Planetary system

The Proxima Centauri planetary system
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
d (unconfirmed) ≥0.26±0.05 M🜨 0.02885+0.00019
−0.00022
5.122+0.002
−0.0036
0.04+0.15
−0.04
0.81±0.08 R🜨
b ≥1.07±0.06 M🜨 0.04856+0.00030
−0.00030
11.1868+0.0029
−0.0031
0.02+0.04
−0.02
≙1.30+1.20
−0.62 R🜨
c (disputed) 7±1 M🜨 1.489±0.049 1928±20 0.04±0.01 133±1°
Schematic of the three planets (d, b, and c) of the Proxima Centauri system, with the habitable zone identified

As of 2022, three planets (one confirmed and two candidates) have been detected in orbit around Proxima Centauri, with one possibly being among the lightest ever detected by radial velocity ("d"), one close to Earth's size within the habitable zone ("b"), and a possible gas dwarf that orbits much further out than the inner two ("c"), although its status remains disputed.

Searches for exoplanets around Proxima Centauri date to the late 1970s. In the 1990s, multiple measurements of Proxima Centauri's radial velocity constrained the maximum mass that a detectable companion could possess. The activity level of the star adds noise to the radial velocity measurements, complicating detection of a companion using this method. In 1998, an examination of Proxima Centauri using the Faint Object Spectrograph on board the Hubble Space Telescope appeared to show evidence of a companion orbiting at a distance of about 0.5 AU. A subsequent search using the Wide Field and Planetary Camera 2 failed to locate any companions. Astrometric measurements at the Cerro Tololo Inter-American Observatory appear to rule out a Jupiter-sized planet with an orbital period of 2−12 years.

In 2017, a team of astronomers using the Atacama Large Millimeter Array reported detecting a belt of cold dust orbiting Proxima Centauri at a range of 1−4 AU from the star. This dust has a temperature of around 40 K and has a total estimated mass of 1% of the planet Earth. They tentatively detected two additional features: a cold belt with a temperature of 10 K orbiting around 30 AU and a compact emission source about 1.2 arcseconds from the star. There was a hint at an additional warm dust belt at a distance of 0.4 AU from the star. However, upon further analysis, these emissions were determined to be most likely the result of a large flare emitted by the star in March 2017. The presence of dust within 4 AU radius from the star is not needed to model the observations.

Planet b

Main article: Proxima Centauri b

Proxima Centauri b, or Alpha Centauri Cb, orbits the star at a distance of roughly 0.05 AU (7.5 million km) with an orbital period of approximately 11.2 Earth days. Its estimated mass is at least 1.07 times that of the Earth. Moreover, the equilibrium temperature of Proxima Centauri b is estimated to be within the range where water could exist as liquid on its surface; thus, placing it within the habitable zone of Proxima Centauri.

The first indications of the exoplanet Proxima Centauri b were found in 2013 by Mikko Tuomi of the University of Hertfordshire from archival observation data. To confirm the possible discovery, a team of astronomers launched the Pale Red Dot project in January 2016. On 24 August 2016, the team of 31 scientists from all around the world, led by Guillem Anglada-Escudé of Queen Mary University of London, confirmed the existence of Proxima Centauri b through a peer-reviewed article published in Nature. The measurements were performed using two spectrographs: HARPS on the ESO 3.6 m Telescope at La Silla Observatory and UVES on the 8 m Very Large Telescope at Paranal Observatory. Several attempts to detect a transit of this planet across the face of Proxima Centauri have been made. A transit-like signal appearing on 8 September 2016, was tentatively identified, using the Bright Star Survey Telescope at the Zhongshan Station in Antarctica.

In 2016, in a paper that helped to confirm Proxima Centauri b's existence, a second signal in the range of 60–500 days was detected. However, stellar activity and inadequate sampling causes its nature to remain unclear.

Planet c

Main article: Proxima Centauri c

Proxima Centauri c is a candidate super-Earth or gas dwarf about 7 ME orbiting at roughly 1.5 astronomical units (220,000,000 km) every 1,900 days (5.2 yr). If Proxima Centauri b were the star's Earth, Proxima Centauri c would be equivalent to Neptune. Due to its large distance from Proxima Centauri, it is unlikely to be habitable, with a low equilibrium temperature of around 39 K. The planet was first reported by Italian astrophysicist Mario Damasso and his colleagues in April 2019. Damasso's team had noticed minor movements of Proxima Centauri in the radial velocity data from the ESO's HARPS instrument, indicating a possible additional planet orbiting Proxima Centauri. In 2020, the planet's existence was confirmed by Hubble astrometry data from c. 1995. A possible direct imaging counterpart was detected in the infrared with the SPHERE, but the authors admit that they "did not obtain a clear detection." If their candidate source is in fact Proxima Centauri c, it is too bright for a planet of its mass and age, implying that the planet may have a ring system with a radius of around 5 RJ. However, Artigau et al. (2022) disputed the radial velocity confirmation of the planet.

Planet d

Main article: Proxima Centauri d

In 2019, a team of astronomers revisited the data from ESPRESSO about Proxima Centauri b to refine its mass. While doing so, the team found another radial velocity spike with a periodicity of 5.15 days. They estimated that if it were a planetary companion, it would be no less than 0.29 Earth masses. Further analysis confirmed the signal's existence leading up to the announcement of the candidate planet in February 2022.

Habitability

See also: Habitability of red dwarf systems
Overview and comparison of the orbital distance of the habitable zone

Before the discovery of Proxima Centauri b, the TV documentary Alien Worlds hypothesized that a life-sustaining planet could exist in orbit around Proxima Centauri or other red dwarfs. Such a planet would lie within the habitable zone of Proxima Centauri, about 0.023–0.054 AU (3.4–8.1 million km) from the star, and would have an orbital period of 3.6–14 days. A planet orbiting within this zone may experience tidal locking to the star. If the orbital eccentricity of this hypothetical planet were low, Proxima Centauri would move little in the planet's sky, and most of the surface would experience either day or night perpetually. The presence of an atmosphere could serve to redistribute heat from the star-lit side to the far side of the planet.

Proxima Centauri's flare outbursts could erode the atmosphere of any planet in its habitable zone, but the documentary's scientists thought that this obstacle could be overcome. Gibor Basri of the University of California, Berkeley argued: "No one found any showstoppers to habitability." For example, one concern was that the torrents of charged particles from the star's flares could strip the atmosphere off any nearby planet. If the planet had a strong magnetic field, the field would deflect the particles from the atmosphere; even the slow rotation of a tidally locked planet that spins once for every time it orbits its star would be enough to generate a magnetic field, as long as part of the planet's interior remained molten.

Other scientists, especially proponents of the Rare Earth hypothesis, disagree that red dwarfs can sustain life. Any exoplanet in this star's habitable zone would likely be tidally locked, resulting in a relatively weak planetary magnetic moment, leading to strong atmospheric erosion by coronal mass ejections from Proxima Centauri. In December 2020, a candidate SETI radio signal BLC-1 was announced as potentially coming from the star. The signal was later determined to be human-made radio interference.

Observational history

The location of Proxima Centauri (circled in red)

In 1915, the Scottish astronomer Robert Innes, director of the Union Observatory in Johannesburg, South Africa, discovered a star that had the same proper motion as Alpha Centauri. He suggested that it be named Proxima Centauri (actually Proxima Centaurus). In 1917, at the Royal Observatory at the Cape of Good Hope, the Dutch astronomer Joan Voûte measured the star's trigonometric parallax at 0.755±0.028 and determined that Proxima Centauri was approximately the same distance from the Sun as Alpha Centauri. It was the lowest-luminosity star known at the time. An equally accurate parallax determination of Proxima Centauri was made by American astronomer Harold L. Alden in 1928, who confirmed Innes's view that it is closer, with a parallax of 0.783″±0.005″.

A size estimate for Proxima Centauri was obtained by the Canadian astronomer John Stanley Plaskett in 1925 using interferometry. The result was 207,000 miles (333,000 km), or approximately 0.24 R.

In 1951, American astronomer Harlow Shapley announced that Proxima Centauri is a flare star. Examination of past photographic records showed that the star displayed a measurable increase in magnitude on about 8% of the images, making it the most active flare star then known. The proximity of the star allows for detailed observation of its flare activity. In 1980, the Einstein Observatory produced a detailed X-ray energy curve of a stellar flare on Proxima Centauri. Further observations of flare activity were made with the EXOSAT and ROSAT satellites, and the X-ray emissions of smaller, solar-like flares were observed by the Japanese ASCA satellite in 1995. Proxima Centauri has since been the subject of study by most X-ray observatories, including XMM-Newton and Chandra.

Because of Proxima Centauri's southern declination, it can only be viewed south of latitude 27° N. Red dwarfs such as Proxima Centauri are too faint to be seen with the naked eye. Even from Alpha Centauri A or B, Proxima would only be seen as a fifth magnitude star. It has apparent visual magnitude 11, so a telescope with an aperture of at least 8 cm (3.1 in) is needed to observe it, even under ideal viewing conditions—under clear, dark skies with Proxima Centauri well above the horizon. In 2016, the International Astronomical Union organized a Working Group on Star Names (WGSN) to catalogue and standardize proper names for stars. The WGSN approved the name Proxima Centauri for this star on August 21, 2016, and it is now so included in the List of IAU approved Star Names.

In 2016, a superflare was observed from Proxima Centauri, the strongest flare ever seen. The optical brightness increased by a factor of 68× to approximately magnitude 6.8. It is estimated that similar flares occur around five times every year but are of such short duration, just a few minutes, that they have never been observed before. On 2020 April 22 and 23, the New Horizons spacecraft took images of two of the nearest stars, Proxima Centauri and Wolf 359. When compared with Earth-based images, a very large parallax effect was easily visible. However, this was only used for illustrative purposes and did not improve on previous distance measurements.

Future exploration

Main articles: Proxima Centauri in fiction and Interstellar travel

Because of the star's proximity to Earth, Proxima Centauri has been proposed as a flyby destination for interstellar travel. If non-nuclear, conventional propulsion technologies are used, the flight of a spacecraft to Proxima Centauri and its planets would probably require thousands of years. For example, Voyager 1, which is now travelling 17 km/s (38,000 mph) relative to the Sun, would reach Proxima Centauri in 73,775 years, were the spacecraft travelling in the direction of that star and Proxima was standing still. Proxima's actual galactic orbit means a slow-moving probe would have only several tens of thousands of years to catch the star at its closest approach, before it recedes out of reach.

Nuclear pulse propulsion might enable such interstellar travel with a trip timescale of a century, inspiring several studies such as Project Orion, Project Daedalus, and Project Longshot. Project Breakthrough Starshot aims to reach the Alpha Centauri system within the first half of the 21st century, with microprobes travelling at 20% of the speed of light propelled by around 100 gigawatts of Earth-based lasers. The probes would perform a fly-by of Proxima Centauri about 20 years after its launch, or possibly go into orbit after about 140 years if swing-by's around Proxima Centauri or Alpha Centauri are to be employed. Then the probes would take photos and collect data of the planets of the stars, and their atmospheric compositions. It would take 4.25 years for the information collected to be sent back to Earth.

Explanatory notes

  1. From knowing the absolute visual magnitude of Proxima Centauri, M V = 15.6 {\displaystyle \scriptstyle M_{V_{\ast }}=15.6} , and the absolute visual magnitude of the Sun, M V = 4.83 {\displaystyle \scriptstyle M_{V_{\odot }}=4.83} , the visual luminosity of Proxima Centauri can therefore be calculated: L V L V = 10 0.4 ( M V M V ) = 4.92 × 10 5 {\displaystyle \scriptstyle {\frac {L_{V_{\ast }}}{L_{V_{\odot }}}}=10^{0.4\left(M_{V_{\odot }}-M_{V_{\ast }}\right)}=4.92\times 10^{-5}}
  2. If Proxima Centauri was a later capture into the Alpha Centauri star system then its metallicity and age could be quite different to that of Alpha Centauri A and B. Through comparing Proxima Centauri to other similar stars it was estimated that it had a lower metallicity, ranging from less than a third, to about the same, of the Sun's.
  3. Extrasolar planet names are designated following the International Astronomical Union's naming conventions in alphabetical order according to their respective dates of discovery, with 'Proxima Centauri a' being the star itself.
  4. The density (ρ) is given by the mass divided by the volume. Relative to the Sun, therefore, the density is:
    ρ {\displaystyle \rho } = M M ( R R ) 3 ρ {\displaystyle {\begin{smallmatrix}{\frac {M}{M_{\odot }}}\cdot \left({\frac {R}{R_{\odot }}}\right)^{-3}\cdot \rho _{\odot }\end{smallmatrix}}}
    = 0.122 · 0.154 · (1.41 × 10 kg/m)
    = 33.4 · (1.41 × 10 kg/m)
    = 4.71 × 10 kg/m

    where ρ {\displaystyle {\begin{smallmatrix}\rho _{\odot }\end{smallmatrix}}} is the average solar density. See:

    • Munsell, Kirk; Smith, Harman; Davis, Phil; Harvey, Samantha (11 June 2008). "Sun: facts & figures". Solar system exploration. NASA. Archived from the original on 2 January 2008. Retrieved 12 July 2008.
    • Bergman, Marcel W.; Clark, T. Alan; Wilson, William J. F. (2007). Observing projects using Starry Night Enthusiast (8th ed.). Macmillan. pp. 220–221. ISBN 978-1-4292-0074-5.
  5. The standard surface gravity on the Earth is 980.665 cm/s, for a 'log g' value of 2.992. The difference in logarithms is 5.20 − 2.99 = 2.21, yielding a multiplier of 10 = 162. For the Earth's gravity, see:
    • Taylor, Barry N., ed. (2001). The International System of Units (SI) (PDF). United States Department of Commerce: National Institute of Standards and Technology. p. 29. Retrieved 8 March 2012.
  6. The coordinates of the Sun would be diametrically opposite Proxima Centauri, at α=02 29 42.9487, δ=+62° 40′ 46.141″. The absolute magnitude Mv of the Sun is 4.83, so at a parallax π of 0.77199 the apparent magnitude m is given by 4.83 − 5(log10(0.77199) + 1) = 0.40. See: Tayler, Roger John (1994). The Stars: Their Structure and Evolution. Cambridge University Press. p. 16. ISBN 978-0-521-45885-6.
  7. "Pale Blue Dot" is a reference to a distant photo of Earth taken by Voyager 1.
  8. For a star south of the zenith, the angle to the zenith is equal to the Latitude minus the Declination. The star is hidden from sight when the zenith angle is 90° or more, i.e., below the horizon. Thus, for Proxima Centauri:
    Highest latitude = 90° + (−62.68°) = 27.32°.
    See: Campbell, William Wallace (1899). The elements of practical astronomy. London: Macmillan. pp. 109–110. Retrieved 12 August 2008.

References

  1. "Collins English Dictionary". HarperCollins Publishers. Retrieved 30 September 2020.
  2. ^ Brown, A. G. A.; et al. (Gaia collaboration) (2021). "Gaia Early Data Release 3: Summary of the contents and survey properties". Astronomy & Astrophysics. 649: A1. arXiv:2012.01533. Bibcode:2021A&A...649A...1G. doi:10.1051/0004-6361/202039657. S2CID 227254300. (Erratum: doi:10.1051/0004-6361/202039657e). Gaia EDR3 record for this source at VizieR.
  3. ^ Samus', N. N; Kazarovets, E. V; Durlevich, O. V; Kireeva, N. N; Pastukhova, E. N (2017). "General catalogue of variable stars". Astronomy Reports. GCVS 5.1. 61 (1): 80. Bibcode:2017ARep...61...80S. doi:10.1134/S1063772917010085. S2CID 125853869.
  4. Bessell, M. S. (1991). "The late-M dwarfs". The Astronomical Journal. 101: 662. Bibcode:1991AJ....101..662B. doi:10.1086/115714.
  5. ^ Kervella, P.; Thévenin, F.; Lovis, C. (2017). "Proxima's orbit around α Centauri". Astronomy & Astrophysics. 598: L7. arXiv:1611.03495. Bibcode:2017A&A...598L...7K. doi:10.1051/0004-6361/201629930. ISSN 0004-6361. S2CID 50867264. Separation: 3.1, left column of page 3; Orbital period and epoch of periastron: Table 3, right column of page 3.
  6. ^ Benedict, G. Fritz; Chappell, D.W.; Nelan, E.; Jefferys, W.H.; van Altena, W.; Lee, J.; et al. (1999). "Interferometric astrometry of Proxima Centauri and Barnard's Star using Hubble Space Telescope fine guidance sensor. 3: Detection limits for substellar companions". The Astronomical Journal. 118 (2): 1086–1100. arXiv:astro-ph/9905318. Bibcode:1999AJ....118.1086B. doi:10.1086/300975. S2CID 18099356.
  7. ^ Pineda, J. Sebastian; Youngblood, Allison; France, Kevin (September 2021). "The M-dwarf Ultraviolet Spectroscopic Sample. I. Determining Stellar Parameters for Field Stars". The Astrophysical Journal. 918 (1): 23. arXiv:2106.07656. Bibcode:2021ApJ...918...40P. doi:10.3847/1538-4357/ac0aea. S2CID 235435757. 40.
  8. ^ Ségransan, Damien; Kervella, Pierre; Forveille, Thierry & Queloz, Didier (2003). "First radius measurements of very low mass stars with the VLTI". Astronomy & Astrophysics. 397 (3): L5 – L8. arXiv:astro-ph/0211647. Bibcode:2003A&A...397L...5S. doi:10.1051/0004-6361:20021714. S2CID 10748478.
  9. Schlaufman, K.C. & Laughlin, G. (September 2010). "A physically-motivated photometric calibration of M dwarf metallicity". Astronomy & Astrophysics. 519: A105. arXiv:1006.2850. Bibcode:2010A&A...519A.105S. doi:10.1051/0004-6361/201015016. S2CID 119260592.
  10. Passegger, Vera Maria; Wende-von Berg, Sebastian & Reiners, Ansgar (March 2016). "Fundamental M-dwarf parameters from high-resolution spectra using PHOENIX ACES models: I. Parameter accuracy and benchmark stars". Astronomy & Astrophysics. 587: A19. arXiv:1709.03560. Bibcode:2016A&A...587A..19P. doi:10.1051/0004-6361/201322261. ISSN 0004-6361. S2CID 10458151.
  11. ^ Feng, F.; Jones, H. R. A. (January 2018). "Was Proxima captured by Alpha Centauri A and B?". Monthly Notices of the Royal Astronomical Society. 473 (3): 3185−3189. arXiv:1709.03560. Bibcode:2018MNRAS.473.3185F. doi:10.1093/mnras/stx2576. S2CID 55711316.
  12. ^ Klein, Baptiste; et al. (January 2021). "The large-scale magnetic field of Proxima Centauri near activity maximum". Monthly Notices of the Royal Astronomical Society. 500 (2): 1844–1850. arXiv:2010.14311. Bibcode:2021MNRAS.500.1844K. doi:10.1093/mnras/staa3396.
  13. Collins, John M.; Jones, Hugh R. A.; Barnes, John R. (June 2017). "Calculations of periodicity from Hα profiles of Proxima Centauri". Astronomy & Astrophysics. 602. A48. arXiv:1608.07834. Bibcode:2017A&A...602A..48C. doi:10.1051/0004-6361/201628827. S2CID 18949162. See section 4: "the vsini is probably less than 0.1 km/s for Proxima Centauri".
  14. ^ Kervella, Pierre; Thevenin, Frederic (15 March 2003). "A family portrait of the Alpha Centauri system: VLT interferometer studies the nearest stars". European Southern Observatory. Retrieved 10 May 2016.
  15. "Proxima centauri". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 28 April 2022.—some of the data is located under "Measurements".
  16. ^ Faria, J.P.; Suárez Mascareño, A.; Figueira, P.; Silva, A.M.; Damasso, M.; Demangeon, O.; et al. (2022). "A candidate short-period sub-Earth orbiting Proxima Centauri" (PDF). Astronomy & Astrophysics. 658: A115. arXiv:2202.05188. Bibcode:2022A&A...658A.115F. doi:10.1051/0004-6361/202142337 – via eso.org.
  17. ^ Damasso, Mario; del Sordo, Fabio; Anglada-Escudé, Guillem; Giacobbe, Paolo; Sozzetti, Alessandro; Morbidelli, Alessandro; et al. (15 January 2020). "A low-mass planet candidate orbiting Proxima Centauri at a distance of 1.5 AU". Science Advances. 6 (3): eaax7467. Bibcode:2020SciA....6.7467D. doi:10.1126/sciadv.aax7467. PMC 6962037. PMID 31998838.
  18. ^ Benedict, G. Fritz; McArthur, Barbara E. (16 June 2020). "A moving target: Revising the mass of Proxima Centauri c". Research Notes of the AAS. 4 (6): 86. Bibcode:2020RNAAS...4...86B. doi:10.3847/2515-5172/ab9ca9. S2CID 225798015.
  19. ^ Howard, Ward S.; Tilley, Matt A.; Corbett, Hank; Youngblood, Allison; Loyd, R. O. Parke; Ratzloff, Jeffrey K.; Law, Nicholas M.; Fors, Octavi; Del Ser, Daniel; Shkolnik, Evgenya L.; Ziegler, Carl; Goeke, Erin E.; Pietraallo, Aaron D.; Haislip, Joshua (2018). "The First Naked-eye Superflare Detected from Proxima Centauri". The Astrophysical Journal. 860 (2): L30. arXiv:1804.02001. Bibcode:2018ApJ...860L..30H. doi:10.3847/2041-8213/aacaf3. S2CID 59127420.
  20. Mascareño, A. Suárez; Rebolo, R. & González Hernández, J.I. (October 2016). "Magnetic cycles and rotation periods of late-type stars from photometric time series". Astronomy & Astrophysics. 595: A12. arXiv:1607.03049. Bibcode:2016A&A...595A..12S. doi:10.1051/0004-6361/201628586. S2CID 118555782. Retrieved 30 November 2021 – via adsabs.harvard.edu.
  21. Czysz, Paul A.; Bruno, Claudio (2009). Future Spacecraft Propulsion Systems: Enabling Technologies for Space Exploration. Springer Berlin Heidelberg. p. 36. ISBN 9783540888147.
  22. Kamper, K. W.; Wesselink, A. J. (1978). "Alpha and Proxima Centauri". Astronomical Journal. 83: 1653–1659. Bibcode:1978AJ.....83.1653K. doi:10.1086/112378.
  23. Binney, James; Tremaine, Scott (1987). Galactic dynamics. Princeton, New Jersey: Princeton University Press. p. 8. ISBN 978-0-691-08445-9.
  24. Leggett, S. K. (1992). "Infrared colors of low-mass stars". Astrophysical Journal Supplement Series. 82 (1): 351–394, 357. Bibcode:1992ApJS...82..351L. doi:10.1086/191720.
  25. Queloz, Didier (29 November 2002). "How Small are Small Stars Really?". European Southern Observatory. Retrieved 5 September 2016.
  26. Zurlo, A.; Gratton, R.; Mesa, D.; Desidera, S.; Enia, A.; Sahu, K.; Almenara, J. -M.; Kervella, P.; Avenhaus, H.; Girard, J.; Janson, M.; Lagadec, E.; Langlois, M.; Milli, J.; Perrot, C.; Schlieder, J. -E.; Thalmann, C.; Vigan, A.; Giro, E.; Gluck, L.; Ramos, J.; Roux, A. (2018). "The gravitational mass of Proxima Centauri measured with SPHERE from a microlensing event". Monthly Notices of the Royal Astronomical Society. 480 (1): 236. arXiv:1807.01318. Bibcode:2018MNRAS.480..236Z. doi:10.1093/mnras/sty1805. S2CID 118971274.
  27. Zombeck, Martin V. (2007). Handbook of space astronomy and astrophysics (Third ed.). Cambridge, UK: Cambridge University Press. pp. 109. ISBN 978-0-521-78242-5.
  28. Benedict, G. F.; McArthur, B.; Nelan, E.; Story, D.; Whipple, A. L.; Shelus, P. J.; Jefferys, W. H.; Hemenway, P. D.; Franz, Otto G. (1998). "Photometry of Proxima Centauri and Barnard's Star using Hubble Space Telescope fine guidance sensor 3: a search for periodic variations". The Astronomical Journal. 116 (1): 429–439. arXiv:astro-ph/9806276. Bibcode:1998AJ....116..429B. doi:10.1086/300420. S2CID 15880053.
  29. Suárez Mascareño, A.; Rebolo, R.; González Hernández, J. I.; Esposito, M. (September 2015). "Rotation periods of late-type dwarf stars from time series high-resolution spectroscopy of chromospheric indicators". Monthly Notices of the Royal Astronomical Society. 452 (3): 2745–2756. arXiv:1506.08039. Bibcode:2015MNRAS.452.2745S. doi:10.1093/mnras/stv1441. S2CID 119181646.
  30. ^ Artigau, Étienne; Cadieux, Charles; Cook, Neil J.; Doyon, René; Vandal, Thomas; Donati, Jean-Françcois; et al. (23 June 2022). "Line-by-line velocity measurements, an outlier-resistant method for precision velocimetry". The Astronomical Journal. 164 (3) (published 8 August 2022): 84. arXiv:2207.13524. Bibcode:2022AJ....164...84A. doi:10.3847/1538-3881/ac7ce6.
  31. Yadav, Rakesh K.; Christensen, Ulrich R.; Wolk, Scott J. & Poppenhaeger, Katja (December 2016). "Magnetic cycles in a dynamo simulation of fully convective M-star Proxima Centauri". The Astrophysical Journal Letters. 833 (2): 6. arXiv:1610.02721. Bibcode:2016ApJ...833L..28Y. doi:10.3847/2041-8213/833/2/L28. S2CID 54849623. L28.
  32. ^ Adams, Fred C.; Laughlin, Gregory; Graves, Genevieve J. M. Red dwarfs and the end of the main sequence (PDF). Gravitational collapse: from massive stars to planets. Revista Mexicana de Astronomía y Astrofísica. pp. 46–49. Archived from the original (PDF) on 11 July 2019. Retrieved 24 June 2008.
  33. ^ MacGregor, Meredith A.; Weinberger, Alycia J.; Parke Loyd, R. O.; Shkolnik, Evgenya; Barclay, Thomas; Howard, Ward S.; Zic, Andrew; Osten, Rachel A.; Cranmer, Steven R.; Kowalski, Adam F.; Lenc, Emil; Youngblood, Allison; Estes, Anna; Wilner, David J.; Forbrich, Jan; Hughes, Anna; Law, Nicholas M.; Murphy, Tara; Boley, Aaron; Matthews, Jaymie (2021). "Discovery of an Extremely Short Duration Flare from Proxima Centauri Using Millimeter through Far-ultraviolet Observations". The Astrophysical Journal Letters. 911 (2): L25. arXiv:2104.09519. Bibcode:2021ApJ...911L..25M. doi:10.3847/2041-8213/abf14c. S2CID 233307258.
  34. Howard, Ward S.; MacGregor, Meredith A.; Osten, Rachel; Forbrich, Jan; Cranmer, Steven R.; Tristan, Isaiah; Weinberger, Alycia J.; Youngblood, Allison; Barclay, Thomas; Parke Loyd, R. O.; Shkolnik, Evgenya L.; Zic, Andrew; Wilner, David J. (2022), "The Mouse That Squeaked: A Small Flare from Proxima Cen Observed in the Millimeter, Optical, and Soft X-Ray with Chandra and ALMA", The Astrophysical Journal, 938 (2): 103, arXiv:2209.05490, Bibcode:2022ApJ...938..103H, doi:10.3847/1538-4357/ac9134, S2CID 252211788
  35. ^ Guedel, M.; Audard, M.; Reale, F.; Skinner, S. L.; Linsky, J. L. (2004). "Flares from small to large: X-ray spectroscopy of Proxima Centauri with XMM-Newton". Astronomy and Astrophysics. 416 (2): 713–732. arXiv:astro-ph/0312297. Bibcode:2004A&A...416..713G. doi:10.1051/0004-6361:20031471. S2CID 7725125.
  36. "Proxima Centauri: the nearest star to the Sun". Harvard-Smithsonian Center for Astrophysics. 30 August 2006. Retrieved 9 July 2007.
  37. E. F., Guinan; Morgan, N. D. (1996). "Proxima Centauri: rotation, chromospheric activity, and flares". Bulletin of the American Astronomical Society. 28: 942. Bibcode:1996AAS...188.7105G.
  38. Wargelin, Bradford J.; Drake, Jeremy J. (2002). "Stringent X-ray constraints on mass loss from Proxima Centauri". The Astrophysical Journal. 578 (1): 503–514. Bibcode:2002ApJ...578..503W. doi:10.1086/342270.
  39. ^ Wood, B. E.; Linsky, J. L.; Müller, H.-R.; Zank, G. P. (2001). "Observational estimates for the mass-loss rates of α Centauri and Proxima Centauri using Hubble Space Telescope Lyα spectra". The Astrophysical Journal. 547 (1): L49 – L52. arXiv:astro-ph/0011153. Bibcode:2001ApJ...547L..49W. doi:10.1086/318888. S2CID 118537213.
  40. Stauffer, J. R.; Hartmann, L. W. (1986). "Chromospheric activity, kinematics, and metallicities of nearby M dwarfs". Astrophysical Journal Supplement Series. 61 (2): 531–568. Bibcode:1986ApJS...61..531S. doi:10.1086/191123.
  41. Pulliam, Christine (12 October 2016). "Proxima Centauri Might Be More Sunlike Than We Thought". Smithsonian Insider. Retrieved 7 July 2020.
  42. Cincunegui, C.; Díaz, R. F.; Mauas, P. J. D. (2007). "A possible activity cycle in Proxima Centauri". Astronomy and Astrophysics. 461 (3): 1107–1113. arXiv:astro-ph/0703514. Bibcode:2007A&A...461.1107C. doi:10.1051/0004-6361:20066027. S2CID 14672316.
  43. Wood, B. E.; Linsky, J. L.; Muller, H.-R.; Zank, G. P. (2000). "Observational estimates for the mass-loss rates of Alpha Centauri and Proxima Centauri using Hubble Space Telescope Lyman-alpha spectra". Astrophysical Journal. 537 (2): L49 – L52. arXiv:astro-ph/0011153. Bibcode:2000ApJ...537..304W. doi:10.1086/309026. S2CID 119332314.
  44. Adams, Fred C. & Laughlin, Gregory (1997). "A Dying Universe: The Long Term Fate and Evolution of Astrophysical Objects". Reviews of Modern Physics. 69 (2): 337–372. arXiv:astro-ph/9701131. Bibcode:1997RvMP...69..337A. doi:10.1103/RevModPhys.69.337. S2CID 12173790.
  45. Kroupa, Pavel (1995). "The dynamical properties of stellar systems in the Galactic disc". MNRAS. 277 (4): 1507–1521. arXiv:astro-ph/9508084. Bibcode:1995MNRAS.277.1507K. doi:10.1093/mnras/277.4.1507. S2CID 15557806.
  46. ^ Wertheimer, Jeremy G.; Laughlin, Gregory (2006). "Are Proxima and α Centauri gravitationally bound?". The Astronomical Journal. 132 (5): 1995–1997. arXiv:astro-ph/0607401. Bibcode:2006AJ....132.1995W. doi:10.1086/507771. S2CID 16650143.
  47. Beech, M. (2011). "The Far Distant Future of Alpha Centauri". Journal of the British Interplanetary Society. 64: 387–395. Bibcode:2011JBIS...64..387B.
  48. Lurie, John C.; Henry, Todd J.; Jao, Wei-Chun; Quinn, Samuel N.; Winters, Jennifer G.; Ianna, Philip A.; Koerner, David W.; Riedel, Adric R.; Subasavage, John P. (2014). "The Solar neighborhood. XXXIV. A search for planets orbiting nearby M dwarfs using astrometry". The Astronomical Journal. 148 (5): 91. arXiv:1407.4820. Bibcode:2014AJ....148...91L. doi:10.1088/0004-6256/148/5/91. S2CID 118492541.
  49. Perryman, M. A. C.; Lindegren, L.; Kovalevsky, J.; Hoeg, E.; Bastian, U.; Bernacca, P. L.; Crézé, M.; Donati, F.; Grenon, M.; Grewing, M.; van Leeuwen, F.; van der Marel, H.; Mignard, F.; Murray, C. A.; Le Poole, R. S.; Schrijver, H.; Turon, C.; Arenou, F.; Froeschlé, M.; Petersen, C. S. (July 1997). "The Hipparcos catalogue". Astronomy and Astrophysics. 323: L49 – L52. Bibcode:1997A&A...323L..49P.
  50. Van Leeuwen, F. (2007). "Validation of the new Hipparcos reduction". Astronomy and Astrophysics. 474 (2): 653–664. arXiv:0708.1752. Bibcode:2007A&A...474..653V. doi:10.1051/0004-6361:20078357. S2CID 18759600.
  51. Kirkpatrick, J. D.; Davy, J.; Monet, David G.; Reid, I. Neill; Gizis, John E.; Liebert, James; Burgasser, Adam J. (2001). "Brown dwarf companions to G-type stars. I: Gliese 417B and Gliese 584C". The Astronomical Journal. 121 (6): 3235–3253. arXiv:astro-ph/0103218. Bibcode:2001AJ....121.3235K. doi:10.1086/321085. S2CID 18515414.
  52. Williams, D. R. (10 February 2006). "Moon Fact Sheet". Lunar & Planetary Science. NASA. Retrieved 12 October 2007.
  53. Benedict, G. F.; Mcarthur, B.; Nelan, E.; Story, D.; Jefferys, W. H.; Wang, Q.; Shelus, P. J.; Hemenway, P. D.; Mccartney, J.; Van Altena, Wm. F.; Duncombe, R.; Franz, O. G.; Fredrick, L. W. Astrometric stability and precision of fine guidance sensor #3: the parallax and proper motion of Proxima Centauri (PDF). Proceedings of the HST calibration workshop. pp. 380–384. Retrieved 11 July 2007.
  54. García-Sánchez, J.; Weissman, P. R.; Preston, R. A.; Jones, D. L.; Lestrade, J.-F.; Latham, . W.; Stefanik, R. P.; Paredes, J. M. (2001). "Stellar encounters with the solar system" (PDF). Astronomy and Astrophysics. 379 (2): 634–659. Bibcode:2001A&A...379..634G. doi:10.1051/0004-6361:20011330.
  55. Bobylev, V. V. (March 2010). "Searching for stars closely encountering with the solar system". Astronomy Letters. 36 (3): 220–226. arXiv:1003.2160. Bibcode:2010AstL...36..220B. doi:10.1134/S1063773710030060. S2CID 118374161.
  56. Bailer-Jones, C. A. L. (March 2015). "Close encounters of the stellar kind". Astronomy & Astrophysics. 575: 13. arXiv:1412.3648. Bibcode:2015A&A...575A..35B. doi:10.1051/0004-6361/201425221. S2CID 59039482. A35.
  57. Allen, C.; Herrera, M. A. (1998). "The galactic orbits of nearby UV Ceti stars". Revista Mexicana de Astronomía y Astrofísica. 34: 37–46. Bibcode:1998RMxAA..34...37A.
  58. Anosova, J.; Orlov, V. V.; Pavlova, N. A. (1994). "Dynamics of nearby multiple stars. The α Centauri system". Astronomy and Astrophysics. 292 (1): 115–118. Bibcode:1994A&A...292..115A.
  59. ^ Anglada-Escudé, Guillem; Amado, Pedro J.; Barnes, John; Berdiñas, Zaira M.; Butler, R. Paul; Coleman, Gavin A.L.; et al. (2016). "A terrestrial planet candidate in a temperate orbit around Proxima Centauri". Nature. 536 (7617): 437–440. arXiv:1609.03449. Bibcode:2016Natur.536..437A. doi:10.1038/nature19106. PMID 27558064. S2CID 4451513 – via nature.com.
  60. Li, Yiting; Stefansson, Gudmundur; Robertson, Paul; Monson, Andrew; Cañas, Caleb & Mahadevan, Suvrath (14 December 2017). "A candidate transit event around Proxima Centauri". Research Notes of the AAS. 1 (1): 49. arXiv:1712.04483. Bibcode:2017RNAAS...1...49L. doi:10.3847/2515-5172/aaa0d5. S2CID 119034883.
  61. Kervella, Pierre; Arenou, Frédéric; Schneider, Jean (2020). "Orbital inclination and mass of the exoplanet candidate Proxima c". Astronomy & Astrophysics. 635: L14. arXiv:2003.13106. Bibcode:2020A&A...635L..14K. doi:10.1051/0004-6361/202037551. ISSN 0004-6361. S2CID 214713486.
  62. ^ Suárez Mascareño, A.; Faria, J.P.; Figueira, P.; Lovis, C.; Damasso, M.; González Hernández, J.I.; et al. (2020). "Revisiting Proxima with ESPRESSO". Astronomy & Astrophysics. 639: A77. arXiv:2005.12114. Bibcode:2020A&A...639A..77S. doi:10.1051/0004-6361/202037745. ISSN 0004-6361.
  63. "Proxima Centauri c". Extrasolar Planets Encyclopaedia. Retrieved 30 July 2022.
  64. Kürster, M.; Hatzes, A.P.; Cochran, W.D.; Döbereiner, S.; Dennerl, K.; Endl, M. (1999). "Precise radial velocities of Proxima Centauri. Strong constraints on a substellar companion". Astronomy & Astrophysics Letters. 344: L5 – L8. arXiv:astro-ph/9903010. Bibcode:1999A&A...344L...5K.
  65. Saar, Steven H.; Donahue, Robert A. (1997). "Activity-related radial velocity variation in cool stars" (PDF). Astrophysical Journal. 485 (1): 319–326. Bibcode:1997ApJ...485..319S. doi:10.1086/304392. S2CID 17628232. Archived from the original (PDF) on 9 March 2019.
  66. Schultz, A.B.; Hart, H.M.; Hershey, J.L.; Hamilton, F.C.; Kochte, M.; Bruhweiler, F.C.; et al. (1998). "A possible companion to Proxima Centauri". The Astronomical Journal. 115 (1): 345–350. Bibcode:1998AJ....115..345S. doi:10.1086/300176. S2CID 120356725.
  67. Schroeder, Daniel J.; Golimowski, David A.; Brukardt, Ryan A.; Burrows, Christopher J.; Caldwell, John J.; Fastie, William G.; et al. (2000). "A search for faint companions to nearby stars using the Wide Field Planetary Camera 2". The Astronomical Journal. 119 (2): 906–922. Bibcode:2000AJ....119..906S. doi:10.1086/301227.
  68. Lurie, John C.; Henry, Todd J.; Jao, Wei-Chun; Quinn, Samuel N.; Winters, Jennifer G.; Ianna, Philip A.; et al. (November 2014). "The Solar neighborhood. XXXIV. A search for planets orbiting nearby M dwarfs using astrometry". The Astronomical Journal. 148 (5): 12. arXiv:1407.4820. Bibcode:2014AJ....148...91L. doi:10.1088/0004-6256/148/5/91. S2CID 118492541. 91.
  69. Anglada, Guillem; Amado, Pedro J.; Ortiz, Jose L.; Gómez, José F.; Macías, Enrique; Alberdi, Antxon; et al. (2017). "ALMA discovery of dust belts around Proxima Centauri". The Astrophysical Journal. 850 (1): L6. arXiv:1711.00578. Bibcode:2017ApJ...850L...6A. doi:10.3847/2041-8213/aa978b. S2CID 13431834 – via unizar.es.
  70. "Proxima Centauri's no good, very bad day". Science Daily. 26 February 2018. Retrieved 1 March 2018.
  71. MacGregor, Meredith A.; Weinberger, Alycia J.; Wilner, David J.; Kowalski, Adam F.; Cranmer, Steven R. (2018). "Detection of a millimeter flare from Proxima Centauri". Astrophysical Journal Letters. 855 (1): L2. arXiv:1802.08257. Bibcode:2018ApJ...855L...2M. doi:10.3847/2041-8213/aaad6b. S2CID 119287614.
  72. Chang, Kenneth (24 August 2016). "One star over, a planet that might be another Earth". The New York Times. Retrieved 24 August 2016.
  73. Knapton, Sarah (24 August 2016). "Proxima b: Alien life could exist on 'second Earth' found orbiting our nearest star in Alpha Centauri system". The Telegraph. Telegraph Media Group. Archived from the original on 12 January 2022. Retrieved 24 August 2016.
  74. "Proxima b is our neighbor ... better get used to it!". Pale Red Dot. 24 August 2016. Archived from the original on 13 May 2020. Retrieved 24 August 2016.
  75. Aron, Jacob. August 24, 2016. Proxima b: Closest Earth-like planet discovered right next door. New Scientist. Retrieved August 24, 2016
  76. "Follow a live planet hunt!" (Press release). European Southern Observatory. 15 January 2016. Retrieved 24 August 2016.
  77. Feltman, Rachel (24 August 2016). "Scientists say they've found a planet orbiting Proxima Centauri, our closest neighbor". The Washington Post.
  78. Mathewson, Samantha (24 August 2016). "Proxima b by the numbers: Possibly Earth-like world at the next star over". Space.com. Retrieved 25 August 2016.
  79. Witze, Alexandra (24 August 2016). "Earth-sized planet around nearby star is astronomy dream come true". Nature. 536 (7617): 381–382. Bibcode:2016Natur.536..381W. doi:10.1038/nature.2016.20445. PMID 27558041.
  80. Liu, Hui-Gen; Jiang, Peng; Huang, Xingxing; Yu, Zhou-Yi; Yang, Ming; Jia, Minghao; et al. (January 2018). "Searching for the transit of the Earth-mass exoplanet Proxima Centauri b in Antarctica: Preliminary result". The Astronomical Journal. 155 (1): 10. arXiv:1711.07018. Bibcode:2018AJ....155...12L. doi:10.3847/1538-3881/aa9b86. S2CID 54773928. 12.
  81. ^ Billings, Lee (12 April 2019). "A second planet may orbit Earth's nearest neighboring star". Scientific American. Retrieved 12 April 2019.
  82. ^ Wall, Mike (12 April 2019). "Possible 2nd planet spotted around Proxima Centauri". Space.com. Retrieved 12 April 2019.
  83. Benedict, Fritz (2 June 2020). "Texas astronomer uses 25 year-old Hubble data to confirm [lanet Proxima Centauri c" (Press release). McDonald Observatory. University of Texas.
  84. Gratton, R.; Zurlo, A.; le Coroller, H.; Damasso, M.; del Sordo, F.; Langlois, M.; et al. (June 2020). "Searching for the near-infrared counterpart of Proxima c using multi-epoch high-contrast SPHERE data at VLT". Astronomy & Astrophysics. 638: A120. arXiv:2004.06685. Bibcode:2020A&A...638A.120G. doi:10.1051/0004-6361/202037594. S2CID 215754278.
  85. Endl, M.; Kuerster, M.; Rouesnel, F.; Els, S.; Hatzes, A.P.; Cochran, W.D. (18–21 June 2002). Deming, Drake (ed.). Extrasolar terrestrial planets: Can we detect them already?. Scientific Frontiers in Research on Extrasolar Planets. Washington, DC. pp. 75–79. arXiv:astro-ph/0208462. Bibcode:2003ASPC..294...75E.
  86. Tarter, Jill C.; Mancinelli, Rocco L.; Aurnou, Jonathan M.; Backman, Dana E.; Basri, Gibor S.; Boss, Alan P.; Clarke, Andrew; Deming, Drake (2007). "A reappraisal of the habitability of planets around M dwarf stars". Astrobiology. 7 (1): 30–65. arXiv:astro-ph/0609799. Bibcode:2007AsBio...7...30T. doi:10.1089/ast.2006.0124. PMID 17407403. S2CID 10932355.
  87. Alpert, Mark (November 2005). "Red star rising". Scientific American. 293 (5): 28. Bibcode:2005SciAm.293e..28A. doi:10.1038/scientificamerican1105-28. PMID 16318021.
  88. Ward, Peter D.; Brownlee, Donald (2000). Rare Earth: why complex life is uncommon in the universe. Springer Publishing. ISBN 978-0-387-98701-9.
  89. Khodachenko, Maxim L.; Lammer, Helmut; Grießmeier, Jean-Mathias; Leitner, Martin; Selsis, Franck; Eiroa, Carlos; Hanslmeier, Arnold; Biernat, Helfried K. (2007). "Coronal Mass Ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of earth-like exoplanets in close-in habitable zones". Astrobiology. 7 (1): 167–184. Bibcode:2007AsBio...7..167K. doi:10.1089/ast.2006.0127. PMID 17407406.
  90. O'Callaghan, Jonathan (18 December 2020). "Alien Hunters Discover Mysterious Radio Signal from Proxima Centauri". Scientific American. Retrieved 19 December 2020.
  91. Witze, Alexandra (25 October 2021). "Mysterious 'alien beacon' was false alarm". Nature. 599 (7883): 20–21. Bibcode:2021Natur.599...20W. doi:10.1038/d41586-021-02931-7. PMID 34697482. S2CID 239887089.
  92. Innes, R. T. A. (October 1915). "A Faint Star of Large Proper Motion". Circular of the Union Observatory Johannesburg. 30: 235–236. Bibcode:1915CiUO...30..235I. This is the original Proxima Centauri discovery paper.
  93. ^ Glass, I. S. (July 2007). "The discovery of the nearest star". African Skies. 11: 39. Bibcode:2007AfrSk..11...39G.
  94. Queloz, Didier (29 November 2002). "How Small are Small Stars Really?". European Southern Observatory. eso0232; PR 22/02. Retrieved 29 January 2018.
  95. ^ Alden, Harold L. (1928). "Alpha and Proxima Centauri". Astronomical Journal. 39 (913): 20–23. Bibcode:1928AJ.....39...20A. doi:10.1086/104871.
  96. Innes, R. T. A. (September 1917). "Parallax of the Faint Proper Motion Star Near Alpha of Centaurus. 1900. R.A. 142255.-0s 6t. Dec-62° 15'2 0'8 t". Circular of the Union Observatory Johannesburg. 40: 331–336. Bibcode:1917CiUO...40..331I.
  97. Voûte, J. (1917). "A 13th magnitude star in Centaurus with the same parallax as α Centauri". Monthly Notices of the Royal Astronomical Society. 77 (9): 650–651. Bibcode:1917MNRAS..77..650V. doi:10.1093/mnras/77.9.650.
  98. Plaskett, J. S. (1922). "The Dimensions of the Stars". Publications of the Astronomical Society of the Pacific. 34 (198): 79–93. Bibcode:1922PASP...34...79P. doi:10.1086/123157. ISSN 0004-6280. JSTOR 40668597.
  99. Shapley, Harlow (1951). "Proxima Centauri as a flare star". Proceedings of the National Academy of Sciences of the United States of America. 37 (1): 15–18. Bibcode:1951PNAS...37...15S. doi:10.1073/pnas.37.1.15. PMC 1063292. PMID 16588985.
  100. Kroupa, Pavel; Burman, R. R.; Blair, D. G. (1989). "Photometric observations of flares on Proxima Centauri". PASA. 8 (2): 119–122. Bibcode:1989PASA....8..119K. doi:10.1017/S1323358000023122. S2CID 117977034.
  101. Haisch, Bernhard; Antunes, A.; Schmitt, J. H. M. M. (1995). "Solar-like M-class X-ray flares on Proxima Centauri observed by the ASCA satellite". Science. 268 (5215): 1327–1329. Bibcode:1995Sci...268.1327H. doi:10.1126/science.268.5215.1327. PMID 17778978. S2CID 46660210.
  102. "Proxima Centauri UV flux distribution". ESA & The Astronomical Data Centre at CAB. Retrieved 11 July 2007.
  103. Kaler, James B. (7 November 2016). "Rigil Kentaurus". STARS. University of Illinois. Retrieved 3 August 2008.
  104. Sherrod, P. Clay; Koed, Thomas L. (2003). A complete manual of amateur astronomy: tools and techniques for astronomical observations. Courier Dover Publications. ISBN 978-0-486-42820-8.
  105. "IAU Working Group on Star Names (WGSN)". International Astronomical Union. Retrieved 22 May 2016.
  106. "Naming Stars". International Astronomical Union. Retrieved 3 March 2018.
  107. "Seeing Stars in 3D: The New Horizons Parallax Program". pluto.jhuapl.edu. Johns Hopkins University Applied Physics Laboratory. 29 January 2020. Retrieved 25 May 2020.
  108. "Parallax measurements for Wolf 359 and Proxima Centauri". German Aerospace Center. Retrieved 19 January 2021.
  109. Gilster, Paul (2004). Centauri dreams: imagining and planning. Springer. ISBN 978-0-387-00436-5.
  110. Crawford, I. A. (September 1990). "Interstellar Travel: A Review for Astronomers". Quarterly Journal of the Royal Astronomical Society. 31: 377–400. Bibcode:1990QJRAS..31..377C.
  111. Peat, Chris. "Spacecraft escaping the Solar System". Heavens Above. Retrieved 25 December 2016.
  112. ^ Beals, K. A.; Beaulieu, M.; Dembia, F. J.; Kerstiens, J.; Kramer, D. L.; West, J. R.; Zito, J. A. (1988). "Project Longshot, an Unmanned Probe to Alpha Centauri" (PDF). NASA-CR-184718. U. S. Naval Academy. Retrieved 13 June 2008.
  113. Merali, Zeeya (27 May 2016). "Shooting for a star". Science. 352 (6289): 1040–1041. doi:10.1126/science.352.6289.1040. PMID 27230357.
  114. Heller, René; Hippke, Michael (11 July 2023). "Full braking at Alpha Centauri". Max-Planck-Gesellschaft. Retrieved 3 December 2023.
  115. Popkin, Gabriel (2 February 2017). "What it would take to reach the stars". Nature. 542 (7639): 20–22. Bibcode:2017Natur.542...20P. doi:10.1038/542020a. PMID 28150784.

Further reading

External links

The Alpha Centauri system
Stars "A" and "B"."Proxima", or "C".
Planets
Proposed mission concepts
    Celestial objects within 10 light-years
Primary member type
Celestial objects by systems.
Main-sequence
stars
A-type
G-type
M-type
(red dwarfs)
Brown dwarfs
L-type
  • Luhman 16 (6.5029±0.0011 ly)
  • T-type brown dwarf B
Sub-brown dwarfs
and rogue planets
Y-type
Constellation of Centaurus
Stars
Bayer
Flamsteed
Variable
HR
HD
Other
Exoplanets
Star clusters
Nebulae
Galaxies
NGC
Other
Galaxy clusters
Astronomical events
Category
Portals: Categories: