Revision as of 17:46, 15 November 2009 editTobeBot (talk | contribs)44,321 editsm robot Adding: fr:Superatome← Previous edit | Latest revision as of 14:19, 9 January 2025 edit undoPreimage (talk | contribs)Extended confirmed users1,144 edits →Other superatom complexes: Add (Cp*)12 | ||
(132 intermediate revisions by 86 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Atom cluster that exhibits properties of elemental atoms}} | |||
In ], a '''superatom''' is any ] of ]s that seem to exhibit some of the properties of elemental atoms.<ref>{{cite journal |last1=Ariyarathna |first1=Isuru R. |title=Superatomic Chelates: The Cases of Metal Aza-Crown Ethers and Cryptands |journal=Inorganic Chemistry |date=21 December 2021 |volume=61 |issue=1 |pages=579–585 |doi=10.1021/acs.inorgchem.1c03261|pmid=34932345 }}</ref> One example of a superatom is the cluster {{chem|Al|13|4=−}}.<ref>{{Cite web |title=Developing Superatom Science |url=https://cen.acs.org/articles/91/i15/Developing-Superatom-Science.html |access-date=2024-12-21 |website=Chemical & Engineering News |language=en}}</ref> | |||
] atoms, when cooled from ], naturally condense into clusters, preferentially containing a ] of atoms (2, 8, 20, 40, 58 or 82). The first two of these can be recognized as the numbers of ]s needed to fill s and p ], respectively. The superatom suggestion is that free electrons in the cluster occupy a new set of orbitals that are defined by the entire group of atoms, i.e. cluster, rather than each individual atom separately (non-spherical or ] clusters show deviations in the number of electrons that form a ] as the potential is defined by the shape of the positive nuclei.) Superatoms tend to behave chemically in a way that will allow them to have a closed shell of electrons, in this new counting scheme. Therefore, a superatom with one more electron than a full shell should give up that electron very easily, similar to an ], and a cluster with one electron short of full shell should have a large electron affinity, such as a ]. | |||
] atoms, when cooled from ], naturally condense into clusters, preferentially containing a ] of atoms (2, 8, 20, 40, 58, etc.), with the outermost ] of each atom entering an ] encompassing all the atoms in the cluster. Superatoms tend to behave chemically in a way that will allow them to have a ] of electrons, in this new counting scheme.{{cn|date=March 2021}} | |||
⚫ | == |
||
Certain ] ] have superatom properties. These aluminium clusters are generated as ] (Al<sub>n</sub><sup>-</sup> with n = 1,2,3...) in ] gas and reacted with a gas containing iodine. When analyzed by ] one main reaction product turns out to be Al<sub>13</sub>I<sup>-</sup>.<ref name="bergeron/2004">''Formation of Al13I-: Evidence for the Superhalogen Character of Al13'' D. E. Bergeron, A.W. Castleman Jr., T. Morisato, S. N. Khanna ], Vol 304, Issue 5667, 84-87 , 2 April '''2004''' </ref> These clusters of 13 ] atoms with an extra electron added do not appear to react with ] when it is introduced in the same gas stream. Assuming each atom liberates its 3 valence electrons, this means that there are 40 electrons present, which is one of the ] noted above for sodium, and implies that these numbers are a reflection of the ]. Calculations show that the additional electron is located in the aluminium cluster at the location directly opposite from the iodine atom. The cluster must therefore have a higher ] for the electron than iodine and therefore the aluminium cluster is called a '''superhalogen'''. The cluster component in Al<sub>13</sub>I<sup>-</sup> ion is similar to an ] ion or better still a ] atom. The related Al<sub>13</sub>I<sub>2</sub><sup>-</sup> cluster is expected to behave chemically like the ] ion. | |||
⚫ | ==Aluminium clusters== | ||
⚫ | Similarly it has been noted that Al |
||
Certain ] ] have superatom properties. These aluminium clusters are generated as ] ({{chem|Al|''n''|−}} with ''n'' = 1, 2, 3, … ) in ] gas and reacted with a gas containing iodine. When analyzed by ] one main reaction product turns out to be {{chem|Al|13|I|−}}.<ref name="bergeron/2004">{{cite journal | last=Bergeron | first=D. E. | title=Formation of {{chem|Al|13|I|−}}: Evidence for the Superhalogen Character of Al13 | journal=] | publisher=American Association for the Advancement of Science (AAAS) | volume=304 | issue=5667 | date=2 April 2004 | issn=0036-8075 | doi=10.1126/science.1093902 | pmid=15066775 | pages=84–87| s2cid=26728239 }}</ref> These clusters of 13 aluminium atoms with an extra electron added do not appear to react with ] when it is introduced in the same gas stream, indicating a halide-like character and a magic number of 40 free electrons. Such a cluster is known as a '''superhalogen'''.<ref>{{Cite journal|last1=Reddy|first1=G. Naaresh|last2=Parida|first2=Rakesh|last3=Giri|first3=Santanab|date=2017-12-12|title=Functionalized deltahedral Zintl complexes Ge9R3 (R = CF<sub>3</sub>, CN, and NO<sub>2</sub>): a new class of superhalogens|journal=Chemical Communications|language=en|volume=53|issue=99|pages=13229–13232|doi=10.1039/C7CC08120K|pmid=29182179|issn=1364-548X}}</ref><ref>{{Cite journal|last1=Giri|first1=Santanab|last2=Child|first2=Brandon Z.|last3=Jena|first3=Puru|date=2014|title=Organic Superhalogens|journal=ChemPhysChem|language=en|volume=15|issue=14|pages=2903–2908|doi=10.1002/cphc.201402472|pmid=25056518|issn=1439-7641}}</ref><ref>{{Cite journal|last1=Reddy|first1=Gorre Naaresh|last2=Giri|first2=Santanab|date=2016-05-10|title=Super/hyperhalogen aromatic heterocyclic compounds|journal=RSC Advances|language=en|volume=6|issue=52|pages=47145–47150|doi=10.1039/C6RA08625J|bibcode=2016RSCAd...647145R|issn=2046-2069}}</ref><ref>{{Cite journal |last1=Sinha |first1=Swapan |last2=Jena |first2=Puru |last3=Giri |first3=Santanab |date=2022-08-12 |title=Functionalized nona-silicide Zintl clusters: a new class of superhalogens |journal=Physical Chemistry Chemical Physics |volume=24 |issue=35 |pages=21105–21111 |language=en |doi=10.1039/D2CP02619H |pmid=36018293 |bibcode=2022PCCP...2421105S |osti=1978872 |s2cid=251551751 |issn=1463-9084}}</ref> The cluster component in {{chem|Al|13|I|−}} ion is similar to an ] ion or better still a ] ion. The related {{chem|Al|13|I|2|−}} cluster is expected to behave chemically like the ] ion.<ref name="bergeron/2004"/> | |||
⚫ | Similarly it has been noted that {{chem|Al|14}} clusters with 42 electrons (2 more than the magic numbers) appear to exhibit the properties of an ] which typically adopt +2 ] states. This is only known to occur when there are at least 3 iodine atoms attached to an {{chem|Al|14|−}} cluster, {{chem|Al|14|I|3|−}}. The ] cluster has a total of 43 itinerant electrons, but the three iodine atoms each remove one of the itinerant electrons to leave 40 electrons in the ] shell.<ref name="ball">Philip Ball, "A New Kind of Alchemy", '']'' Issue dated 2005-04-16.</ref><ref name="bergeron/2005">{{cite journal | last=Bergeron | first=D. E. | title=Al Cluster Superatoms as Halogens in Polyhalides and as Alkaline Earths in Iodide Salts | journal=] | publisher=American Association for the Advancement of Science (AAAS) | volume=307 | issue=5707 | date=14 January 2005 | issn=0036-8075 | doi=10.1126/science.1105820 | pages=231–235| pmid=15653497 | bibcode=2005Sci...307..231B | s2cid=8003390 }}</ref> | ||
⚫ | It is particularly easy and reliable to study atomic clusters of inert gas atoms by computer simulation because interaction between two atoms can be approximated very well by the ]. Other methods are readily available and it has been established that the ]s are 13, 19, 23, 26, 29, 32, 34, 43, 46, 49, 55, etc. |
||
⚫ | It is particularly easy and reliable to study atomic clusters of inert gas atoms by computer simulation because interaction between two atoms can be approximated very well by the ]. Other methods are readily available and it has been established that the ]s are 13, 19, 23, 26, 29, 32, 34, 43, 46, 49, 55, etc.<ref>{{cite journal | last1=Harris | first1=I. A. | last2=Kidwell | first2=R. S. | last3=Northby | first3=J. A. | title=Structure of Charged Argon Clusters Formed in a Free Jet Expansion | journal=Physical Review Letters | publisher=American Physical Society (APS) | volume=53 | issue=25 | date=17 December 1984 | issn=0031-9007 | doi=10.1103/physrevlett.53.2390 | pages=2390–2393| bibcode=1984PhRvL..53.2390H | s2cid=13793440 | url=https://digitalcommons.uri.edu/cgi/viewcontent.cgi?article=1209&context=phys_facpubs }}</ref> | ||
===Aluminum clusters=== | |||
⚫ | * Al |
||
* Al |
* {{chem|Al|7}} = the property is similar to ] atoms. | ||
* {{chem|Al|13}} = the property is similar to ] atoms, more specifically, ]. | |||
** Al |
** {{chem|Al|13|I|''x''|−}}, where {{chem|1=''x'' = 1–13}}.<ref name="N.O.Jones">{{Dead link|date=June 2018 |bot=InternetArchiveBot |fix-attempted=no }}</ref>{{unreliable source|date=January 2025}} | ||
* Al<sub>14</sub> = the property is similar to ]. | |||
⚫ | * {{chem|Al|14}} = the property is similar to ]s. | ||
** Al |
** {{chem|Al|14|I|''x''|−}}, where {{chem|1=''x'' = 1–14}}.<ref name="N.O.Jones"/> | ||
* Al<sub>23</sub> | |||
* {{chem|Al|23}} | |||
* Al<sub>37</sub> | |||
* {{chem|Al|37}} | |||
* {{chem|Al|5|O|4|-}}<ref> {{cite journal | title=Al5O4 Superatom with Potential for New Materials Design | year = 2008| doi = 10.1021/ct800232b| last1 = Das| first1 = Ujjal| last2 = Raghavachari| first2 = Krishnan| journal = Journal of Chemical Theory and Computation| volume = 4| issue = 12| pages = 2011–2019| pmid = 26620474}} </ref> | |||
==Other clusters== | ==Other clusters== | ||
* Li(HF) |
* {{chem2|Li(HF)3Li}} = the {{chem2|(HF)3}} interior causes 2 valence electrons from the Li to orbit the entire molecule as if it were an atom's nucleus.<ref>{{cite journal | last1=Sun | first1=Xiao-Ying | last2=Li | first2=Zhi-Ru | last3=Wu | first3=Di | last4=Sun | first4=Chia-Chung | title=Extraordinary superatom containing double shell nucleus: Li(HF)<sub>3</sub>Li connected mainly by intermolecular interactions | journal=International Journal of Quantum Chemistry | publisher=Wiley | volume=107 | issue=5 | year=2007 | issn=0020-7608 | doi=10.1002/qua.21246 | pages=1215–1222| bibcode=2007IJQC..107.1215S }}</ref> | ||
* {{chem2|Li(NH3)4}} = Has one diffuse electron orbiting around {{chem2|Li(NH3)4+}} core, i.e., mimics an alkali-metal atom.<ref>{{Cite journal|last1=Ariyarathna|first1=Isuru R.|last2=Pawłowski|first2=Filip|last3=Ortiz|first3=Joseph Vincent|last4=Miliordos|first4=Evangelos|date=2018|title=Molecules mimicking atoms: monomers and dimers of alkali metal solvated electron precursors|journal=Physical Chemistry Chemical Physics|language=en|volume=20|issue=37|pages=24186–24191|doi=10.1039/C8CP05497E|pmid=30209476|bibcode=2018PCCP...2024186A|issn=1463-9076}}</ref><ref name="thesis">{{Cite thesis|last=Ariyarathna|first=Isuru|date=2021-03-01|title=First Principle Studies on Ground and Excited Electronic States: Chemical Bonding in Main-Group Molecules, Molecular Systems with Diffuse Electrons, and Water Activation using Transition Metal Monoxides|degree=PhD|url=https://etd.auburn.edu//handle/10415/7601|language=en}}</ref>{{unreliable source|date=January 2025}} | |||
* VSi<sub>16</sub>F = has ionic bonding.<ref>, Kiichirou Koyasu et al.</ref> | |||
* {{chem2|Be(NH3)4}} = Has two diffuse electrons orbiting around {{chem2|Be(NH3)4(2+)}} core, i.e., mimics He-atom.<ref>{{Cite journal|last1=Ariyarathna|first1=Isuru R.|last2=Khan|first2=Shahriar N.|last3=Pawłowski|first3=Filip|last4=Ortiz|first4=Joseph Vincent|last5=Miliordos|first5=Evangelos|date=2018-01-04|title=Aufbau Rules for Solvated Electron Precursors: Be(NH<sub>3</sub>)<sub>4</sub><sup>2+</sup> Complexes and Beyond|journal=The Journal of Physical Chemistry Letters|language=en|volume=9|issue=1|pages=84–88|doi=10.1021/acs.jpclett.7b03000|pmid=29232138|issn=1948-7185|doi-access=free}}</ref><ref name="thesis"/> | |||
⚫ | * A cluster of 13 ] becomes |
||
* A cluster of 2000 ] atoms.<ref>, NIST, 1995</ref> | |||
* {{chem2|VSi16F}} = has ionic bonding.<ref>{{cite journal | last1=Koyasu | first1=Kiichirou | last2=Atobe | first2=Junko | last3=Akutsu | first3=Minoru | last4=Mitsui | first4=Masaaki | last5=Nakajima | first5=Atsushi | title=Electronic and Geometric Stabilities of Clusters with Transition Metal Encapsulated by Silicon | journal=The Journal of Physical Chemistry A | publisher=American Chemical Society (ACS) | volume=111 | issue=1 | year=2007 | issn=1089-5639 | doi=10.1021/jp066757f | pages=42–49|pmid=17201386| bibcode=2007JPCA..111...42K}}</ref> | |||
⚫ | * A cluster of 13 ] atoms becomes highly ], much more so than platinum itself.<ref> {{Webarchive|url=https://web.archive.org/web/20071015064232/http://nanotechweb.org/cws/article/tech/26782 |date=2007-10-15}}, nanotechweb.org, 2007</ref> | ||
==Superatom complexes== | |||
Superatom complexes are a special group of superatoms that incorporate a metal core which is stabilized by organic ligands. In ] complexes, a simple electron counting rule can be used to determine the total number of electrons ({{mvar|n<sub>e</sub>}}) which correspond to a ]: | |||
:<math>n_e = N\nu_A - M -z</math> | |||
where {{mvar|N}} is the number of metal atoms (A) in the core, {{mvar|v}} is the atomic valence, {{mvar|M}} is the number of electron withdrawing ligands, and {{mvar|z}} is the overall charge on the complex.<ref>{{cite journal | last1=Walter | first1=M. | last2=Akola | first2=J. | last3=Lopez-Acevedo | first3=O. | last4=Jadzinsky | first4=P. D. | last5=Calero | first5=G. | last6=Ackerson | first6=C. J. | last7=Whetten | first7=R. L. | last8=Gronbeck | first8=H. | last9=Hakkinen | first9=H. | title=A unified view of ligand-protected gold clusters as superatom complexes | journal=Proceedings of the National Academy of Sciences | volume=105 | issue=27 | date=1 June 2008 | issn=0027-8424 | doi=10.1073/pnas.0801001105 | pages=9157–9162| pmid=18599443 | pmc=2442568 | bibcode=2008PNAS..105.9157W |doi-access=free}}</ref> For example the Au<sub>102</sub>(p-MBA)<sub>44</sub> has 58 electrons and corresponds to a closed shell magic number.<ref>{{cite journal | last1=Jadzinsky | first1=P. D. | last2=Calero | first2=G. | last3=Ackerson | first3=C. J. | last4=Bushnell | first4=D. A. | last5=Kornberg | first5=R. D. | title=Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution | journal=Science | publisher=American Association for the Advancement of Science (AAAS) | volume=318 | issue=5849 | date=19 October 2007 | issn=0036-8075 | doi=10.1126/science.1148624 | pmid=17947577 | pages=430–433| bibcode=2007Sci...318..430J | s2cid=1566019 }}</ref> | |||
===Gold superatom complexes=== | |||
*{{chem2|Au25(SMe)18-}}<ref>{{cite journal | last1=Akola | first1=Jaakko | last2=Walter | first2=Michael | last3=Whetten | first3=Robert L. | last4=Häkkinen | first4=Hannu | last5=Grönbeck | first5=Henrik | title=On the Structure of Thiolate-Protected Au<sub>25</sub> | journal=Journal of the American Chemical Society | publisher=American Chemical Society (ACS) | volume=130 | issue=12 | year=2008 | issn=0002-7863 | doi=10.1021/ja800594p | pmid=18321117 | pages=3756–3757}}</ref> | |||
* {{chem2|Au102(p-MBA)44}} | |||
* {{chem2|Au144(SR)60}}<ref>{{cite journal | last1=Lopez-Acevedo | first1=Olga | last2=Akola | first2=Jaakko | last3=Whetten | first3=Robert L. | last4=Grönbeck | first4=Henrik | last5=Häkkinen | first5=Hannu | title=Structure and Bonding in the Ubiquitous Icosahedral Metallic Gold Cluster Au<sub>144</sub>(SR)<sub>60</sub> | journal=The Journal of Physical Chemistry C | publisher=American Chemical Society (ACS) | volume=113 | issue=13 | date=16 January 2009 | issn=1932-7447 | doi=10.1021/jp8115098 | pages=5035–5038 }}</ref> | |||
===Other superatom complexes=== | |||
* {{chem2|Ga23(N(Si(CH3)3)2)11}}<ref>{{cite journal | last1=Hartig | first1=Jens | last2=Stößer | first2=Anna | last3=Hauser | first3=Petra | last4=Schnöckel | first4=Hansgeorg | title=A Metalloid Ga<sub>23</sub>{N(SiMe<sub>3</sub>)<sub>2</sub>}<sub>11</sub> Cluster: The Jellium Model Put to Test | journal=Angewandte Chemie International Edition | publisher=Wiley | volume=46 | issue=10 | date=26 February 2007 | issn=1433-7851 | doi=10.1002/anie.200604311 | pmid=17230594 | pages=1658–1662}}</ref> | |||
* {{chem2|Al50(C5(CH3)5)12}}<ref>{{cite journal | last1=Clayborne | first1=Peneé A. | last2=Lopez-Acevedo | first2=Olga | last3=Whetten | first3=Robert L. | last4=Grönbeck | first4=Henrik | last5=Häkkinen | first5=Hannu | title=The Al<sub>50</sub>Cp*<sub>12</sub> Cluster – A 138-Electron Closed Shell (L = 6) Superatom | journal=European Journal of Inorganic Chemistry | publisher=Wiley | volume=2011 | issue=17 | date=13 May 2011 | issn=1434-1948 | doi=10.1002/ejic.201100374 | pages=2649–2652}}</ref> | |||
* {{chem2|Re6Se8Cl2}} – In 2018 researchers produced 15-nm-thick flakes of this superatomic material. They anticipate that a monolayer will be a superatomic 2-D semiconductor and offer new 2-D materials with unusual, tunable properties.<ref>{{Cite news|url=https://phys.org/news/2018-02-superatomic-d-semiconductor.html#jCp|title=Researchers create first superatomic 2-D semiconductor|last=Zyga|first=Lisa|work=Phys.org|access-date=2018-02-18}}</ref> | |||
*Organo− Zintl-based superatoms: and <ref>{{Cite journal|date=2017-10-16|title=Organo−Zintl-based superatoms: and |journal=Chemical Physics Letters|language=en|volume=686|pages=195–202|doi=10.1016/j.cplett.2017.08.056|issn=0009-2614|last1=Reddy|first1=G. Naaresh|last2=Jena|first2=Puru|last3=Giri|first3=Santanab|bibcode=2017CPL...686..195R|doi-access=free}}</ref> | |||
* {{chem2|(Cp\*)12|link=Heterometallic copper-aluminum superatom}}<ref>{{cite journal |doi=10.1002/anie.201806039 |pmid=29981271 |title=The Mackay-Type Cluster [Cu<sub>43</sub> Al<sub>12</sub> ](Cp*)<sub>12</sub> : Open-Shell 67-Electron Superatom with Emerging Metal-Like Electronic Structure |journal=Angewandte Chemie International Edition |volume=57 |issue=44 |pages=14630–14634 |year=2018 |last1=Weßing |first1=Jana |last2=Ganesamoorthy |first2=Chelladurai |last3=Kahlal |first3=Samia |last4=Marchal |first4=Rémi |last5=Gemel |first5=Christian |last6=Cador |first6=Olivier |last7=Da Silva |first7=Augusto C. H. |last8=Da Silva |first8=Juarez L. F. |last9=Saillard |first9=Jean-Yves |last10=Fischer |first10=Roland A. |s2cid=49714793 |url=https://hal-univ-rennes1.archives-ouvertes.fr/hal-01834003/file/We%C3%9Fing%20et%20al_The%20Mackay-type%20cluster%20%5BCu43Al12%5D%28Cp%2912.pdf }}</ref> | |||
==See also== | ==See also== | ||
{{ |
{{Portal|Physics}} | ||
* ] | * ] | ||
* ] | |||
* ] | |||
* ] | |||
==References== | ==References== | ||
{{ |
{{Reflist}} | ||
* "Designer Magnetic Superatoms", J.U. Reveles, et al. 2009 {{doi|10.1038/nchem.249}} | |||
==External links== | |||
* "A unified view of ligand-protected gold clusters as superatom complexes", M. Walter et al. 2008 {{doi|10.1073/pnas.0801001105}} | |||
* The Scientist, 2005 | |||
* "Gold Superatom Complexes", P.D. Jadzinsky et al. 2007 {{doi|10.1126/science.1148624}} | |||
* , Bergeron, Dennis E et al., 2006 | |||
* "Multiple Valence Superatoms", J.U. Reveles, S.N. Khanna, P.J. Roach, and A.W. Castleman Jr., 2006 {{doi|10.1073/pnas.060878110}} | |||
* innovations report, 2004. Have pictures of Al<SUB>13</SUB>. | |||
* , innovations report, 2005. Have a picture of Al<SUB>14</SUB>. | |||
* , Computational Chemistry Portal, 2006 | |||
* , Penn State, Eberly College of Science, 2005 | |||
{{Particles}} | |||
⚫ | ] | ||
⚫ | ] | ||
⚫ | ] | ||
] | |||
] | |||
] | |||
⚫ | ] | ||
] |
Latest revision as of 14:19, 9 January 2025
Atom cluster that exhibits properties of elemental atomsIn chemistry, a superatom is any cluster of atoms that seem to exhibit some of the properties of elemental atoms. One example of a superatom is the cluster Al
13
.
Sodium atoms, when cooled from vapor, naturally condense into clusters, preferentially containing a magic number of atoms (2, 8, 20, 40, 58, etc.), with the outermost electron of each atom entering an orbital encompassing all the atoms in the cluster. Superatoms tend to behave chemically in a way that will allow them to have a closed shell of electrons, in this new counting scheme.
Aluminium clusters
Certain aluminium clusters have superatom properties. These aluminium clusters are generated as anions (Al
n with n = 1, 2, 3, … ) in helium gas and reacted with a gas containing iodine. When analyzed by mass spectrometry one main reaction product turns out to be Al
13I
. These clusters of 13 aluminium atoms with an extra electron added do not appear to react with oxygen when it is introduced in the same gas stream, indicating a halide-like character and a magic number of 40 free electrons. Such a cluster is known as a superhalogen. The cluster component in Al
13I
ion is similar to an iodide ion or better still a bromide ion. The related Al
13I
2 cluster is expected to behave chemically like the triiodide ion.
Similarly it has been noted that Al
14 clusters with 42 electrons (2 more than the magic numbers) appear to exhibit the properties of an alkaline earth metal which typically adopt +2 valence states. This is only known to occur when there are at least 3 iodine atoms attached to an Al
14 cluster, Al
14I
3. The anionic cluster has a total of 43 itinerant electrons, but the three iodine atoms each remove one of the itinerant electrons to leave 40 electrons in the jellium shell.
It is particularly easy and reliable to study atomic clusters of inert gas atoms by computer simulation because interaction between two atoms can be approximated very well by the Lennard-Jones potential. Other methods are readily available and it has been established that the magic numbers are 13, 19, 23, 26, 29, 32, 34, 43, 46, 49, 55, etc.
- Al
7 = the property is similar to germanium atoms. - Al
13 = the property is similar to halogen atoms, more specifically, chlorine.- Al
13I
x, where x = 1–13.
- Al
- Al
14 = the property is similar to alkaline earth metals.- Al
14I
x, where x = 1–14.
- Al
- Al
23 - Al
37 - Al
5O
4
Other clusters
- Li(HF)3Li = the (HF)3 interior causes 2 valence electrons from the Li to orbit the entire molecule as if it were an atom's nucleus.
- Li(NH3)4 = Has one diffuse electron orbiting around Li(NH3)+4 core, i.e., mimics an alkali-metal atom.
- Be(NH3)4 = Has two diffuse electrons orbiting around Be(NH3)2+4 core, i.e., mimics He-atom.
- VSi16F = has ionic bonding.
- A cluster of 13 platinum atoms becomes highly paramagnetic, much more so than platinum itself.
Superatom complexes
Superatom complexes are a special group of superatoms that incorporate a metal core which is stabilized by organic ligands. In thiolate-protected gold cluster complexes, a simple electron counting rule can be used to determine the total number of electrons (ne) which correspond to a magic number:
where N is the number of metal atoms (A) in the core, v is the atomic valence, M is the number of electron withdrawing ligands, and z is the overall charge on the complex. For example the Au102(p-MBA)44 has 58 electrons and corresponds to a closed shell magic number.
Gold superatom complexes
- Au25(SMe)−18
- Au102(pMBA)44
- Au144(SR)60
Other superatom complexes
- Ga23(N(Si(CH3)3)2)11
- Al50(C5(CH3)5)12
- Re6Se8Cl2 – In 2018 researchers produced 15-nm-thick flakes of this superatomic material. They anticipate that a monolayer will be a superatomic 2-D semiconductor and offer new 2-D materials with unusual, tunable properties.
- Organo− Zintl-based superatoms: and
- [Cu43Al12](Cp*)12
See also
References
- Ariyarathna, Isuru R. (21 December 2021). "Superatomic Chelates: The Cases of Metal Aza-Crown Ethers and Cryptands". Inorganic Chemistry. 61 (1): 579–585. doi:10.1021/acs.inorgchem.1c03261. PMID 34932345.
- "Developing Superatom Science". Chemical & Engineering News. Retrieved 2024-12-21.
- ^ Bergeron, D. E. (2 April 2004). "Formation of Al
13I
: Evidence for the Superhalogen Character of Al13". Science. 304 (5667). American Association for the Advancement of Science (AAAS): 84–87. doi:10.1126/science.1093902. ISSN 0036-8075. PMID 15066775. S2CID 26728239. - Reddy, G. Naaresh; Parida, Rakesh; Giri, Santanab (2017-12-12). "Functionalized deltahedral Zintl complexes Ge9R3 (R = CF3, CN, and NO2): a new class of superhalogens". Chemical Communications. 53 (99): 13229–13232. doi:10.1039/C7CC08120K. ISSN 1364-548X. PMID 29182179.
- Giri, Santanab; Child, Brandon Z.; Jena, Puru (2014). "Organic Superhalogens". ChemPhysChem. 15 (14): 2903–2908. doi:10.1002/cphc.201402472. ISSN 1439-7641. PMID 25056518.
- Reddy, Gorre Naaresh; Giri, Santanab (2016-05-10). "Super/hyperhalogen aromatic heterocyclic compounds". RSC Advances. 6 (52): 47145–47150. Bibcode:2016RSCAd...647145R. doi:10.1039/C6RA08625J. ISSN 2046-2069.
- Sinha, Swapan; Jena, Puru; Giri, Santanab (2022-08-12). "Functionalized nona-silicide Zintl clusters: a new class of superhalogens". Physical Chemistry Chemical Physics. 24 (35): 21105–21111. Bibcode:2022PCCP...2421105S. doi:10.1039/D2CP02619H. ISSN 1463-9084. OSTI 1978872. PMID 36018293. S2CID 251551751.
- Philip Ball, "A New Kind of Alchemy", New Scientist Issue dated 2005-04-16.
- Bergeron, D. E. (14 January 2005). "Al Cluster Superatoms as Halogens in Polyhalides and as Alkaline Earths in Iodide Salts". Science. 307 (5707). American Association for the Advancement of Science (AAAS): 231–235. Bibcode:2005Sci...307..231B. doi:10.1126/science.1105820. ISSN 0036-8075. PMID 15653497. S2CID 8003390.
- Harris, I. A.; Kidwell, R. S.; Northby, J. A. (17 December 1984). "Structure of Charged Argon Clusters Formed in a Free Jet Expansion". Physical Review Letters. 53 (25). American Physical Society (APS): 2390–2393. Bibcode:1984PhRvL..53.2390H. doi:10.1103/physrevlett.53.2390. ISSN 0031-9007. S2CID 13793440.
- ^ Naiche Owen Jones, 2006.
- Das, Ujjal; Raghavachari, Krishnan (2008). "Al5O4 Superatom with Potential for New Materials Design". Journal of Chemical Theory and Computation. 4 (12): 2011–2019. doi:10.1021/ct800232b. PMID 26620474.
- Sun, Xiao-Ying; Li, Zhi-Ru; Wu, Di; Sun, Chia-Chung (2007). "Extraordinary superatom containing double shell nucleus: Li(HF)3Li connected mainly by intermolecular interactions". International Journal of Quantum Chemistry. 107 (5). Wiley: 1215–1222. Bibcode:2007IJQC..107.1215S. doi:10.1002/qua.21246. ISSN 0020-7608.
- Ariyarathna, Isuru R.; Pawłowski, Filip; Ortiz, Joseph Vincent; Miliordos, Evangelos (2018). "Molecules mimicking atoms: monomers and dimers of alkali metal solvated electron precursors". Physical Chemistry Chemical Physics. 20 (37): 24186–24191. Bibcode:2018PCCP...2024186A. doi:10.1039/C8CP05497E. ISSN 1463-9076. PMID 30209476.
- ^ Ariyarathna, Isuru (2021-03-01). First Principle Studies on Ground and Excited Electronic States: Chemical Bonding in Main-Group Molecules, Molecular Systems with Diffuse Electrons, and Water Activation using Transition Metal Monoxides (PhD thesis).
- Ariyarathna, Isuru R.; Khan, Shahriar N.; Pawłowski, Filip; Ortiz, Joseph Vincent; Miliordos, Evangelos (2018-01-04). "Aufbau Rules for Solvated Electron Precursors: Be(NH3)4 Complexes and Beyond". The Journal of Physical Chemistry Letters. 9 (1): 84–88. doi:10.1021/acs.jpclett.7b03000. ISSN 1948-7185. PMID 29232138.
- Koyasu, Kiichirou; Atobe, Junko; Akutsu, Minoru; Mitsui, Masaaki; Nakajima, Atsushi (2007). "Electronic and Geometric Stabilities of Clusters with Transition Metal Encapsulated by Silicon". The Journal of Physical Chemistry A. 111 (1). American Chemical Society (ACS): 42–49. Bibcode:2007JPCA..111...42K. doi:10.1021/jp066757f. ISSN 1089-5639. PMID 17201386.
- Platinum nanoclusters go magnetic Archived 2007-10-15 at the Wayback Machine, nanotechweb.org, 2007
- Walter, M.; Akola, J.; Lopez-Acevedo, O.; Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Whetten, R. L.; Gronbeck, H.; Hakkinen, H. (1 June 2008). "A unified view of ligand-protected gold clusters as superatom complexes". Proceedings of the National Academy of Sciences. 105 (27): 9157–9162. Bibcode:2008PNAS..105.9157W. doi:10.1073/pnas.0801001105. ISSN 0027-8424. PMC 2442568. PMID 18599443.
- Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. (19 October 2007). "Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution". Science. 318 (5849). American Association for the Advancement of Science (AAAS): 430–433. Bibcode:2007Sci...318..430J. doi:10.1126/science.1148624. ISSN 0036-8075. PMID 17947577. S2CID 1566019.
- Akola, Jaakko; Walter, Michael; Whetten, Robert L.; Häkkinen, Hannu; Grönbeck, Henrik (2008). "On the Structure of Thiolate-Protected Au25". Journal of the American Chemical Society. 130 (12). American Chemical Society (ACS): 3756–3757. doi:10.1021/ja800594p. ISSN 0002-7863. PMID 18321117.
- Lopez-Acevedo, Olga; Akola, Jaakko; Whetten, Robert L.; Grönbeck, Henrik; Häkkinen, Hannu (16 January 2009). "Structure and Bonding in the Ubiquitous Icosahedral Metallic Gold Cluster Au144(SR)60". The Journal of Physical Chemistry C. 113 (13). American Chemical Society (ACS): 5035–5038. doi:10.1021/jp8115098. ISSN 1932-7447.
- Hartig, Jens; Stößer, Anna; Hauser, Petra; Schnöckel, Hansgeorg (26 February 2007). "A Metalloid Ga23{N(SiMe3)2}11 Cluster: The Jellium Model Put to Test". Angewandte Chemie International Edition. 46 (10). Wiley: 1658–1662. doi:10.1002/anie.200604311. ISSN 1433-7851. PMID 17230594.
- Clayborne, Peneé A.; Lopez-Acevedo, Olga; Whetten, Robert L.; Grönbeck, Henrik; Häkkinen, Hannu (13 May 2011). "The Al50Cp*12 Cluster – A 138-Electron Closed Shell (L = 6) Superatom". European Journal of Inorganic Chemistry. 2011 (17). Wiley: 2649–2652. doi:10.1002/ejic.201100374. ISSN 1434-1948.
- Zyga, Lisa. "Researchers create first superatomic 2-D semiconductor". Phys.org. Retrieved 2018-02-18.
- Reddy, G. Naaresh; Jena, Puru; Giri, Santanab (2017-10-16). "Organo−Zintl-based superatoms: [Ge9(CHO)3] and [Ge9(CHO)]". Chemical Physics Letters. 686: 195–202. Bibcode:2017CPL...686..195R. doi:10.1016/j.cplett.2017.08.056. ISSN 0009-2614.
- Weßing, Jana; Ganesamoorthy, Chelladurai; Kahlal, Samia; Marchal, Rémi; Gemel, Christian; Cador, Olivier; Da Silva, Augusto C. H.; Da Silva, Juarez L. F.; Saillard, Jean-Yves; Fischer, Roland A. (2018). "The Mackay-Type Cluster [Cu43 Al12 ](Cp*)12 : Open-Shell 67-Electron Superatom with Emerging Metal-Like Electronic Structure" (PDF). Angewandte Chemie International Edition. 57 (44): 14630–14634. doi:10.1002/anie.201806039. PMID 29981271. S2CID 49714793.
- "Designer Magnetic Superatoms", J.U. Reveles, et al. 2009 doi:10.1038/nchem.249
- "A unified view of ligand-protected gold clusters as superatom complexes", M. Walter et al. 2008 doi:10.1073/pnas.0801001105
- "Gold Superatom Complexes", P.D. Jadzinsky et al. 2007 doi:10.1126/science.1148624
- "Multiple Valence Superatoms", J.U. Reveles, S.N. Khanna, P.J. Roach, and A.W. Castleman Jr., 2006 doi:10.1073/pnas.060878110
Particles in physics | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Elementary |
| ||||||||||||||||||||||||
Composite |
| ||||||||||||||||||||||||
Quasiparticles | |||||||||||||||||||||||||
Lists | |||||||||||||||||||||||||
Related | |||||||||||||||||||||||||
Physics portal |