Misplaced Pages

Riemann hypothesis: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 22:07, 31 December 2011 editCRGreathouse (talk | contribs)Autopatrolled, Administrators12,955 edits rv good faith edit -- log is never used to mean the base-10 log in mathematics outside of elementary and possibly high school← Previous edit Latest revision as of 13:28, 8 December 2024 edit undoIra Leviton (talk | contribs)Extended confirmed users332,647 editsm Fixed a reference. Please see Category:Articles using duplicate arguments in template calls
Line 1: Line 1:
{{short description|Conjecture on zeros of the zeta function}}
]
{{For|the musical term|Riemannian theory}}
{{Millennium Problems}}
{{Unsolved|mathematics|Do all non-trivial zeroes of the Riemann zeta function have a real part of one half?}}] = 1/2 and slopes of absolute values.]]
{{Portal:Mathematics/Featured article template}}
In mathematics, the '''Riemann hypothesis''', proposed by {{harvs|txt|first=Bernhard|last= Riemann|year=1859|author-link=Bernhard Riemann}}, is a ] about the location of the ] of the ] which states that all ] zeros (as defined below) have real part 1/2. The name is also used for some closely related analogues, such as the ].


In mathematics, the '''Riemann hypothesis''' is the ] that the ] has its ] only at the negative even integers and ]s with ] {{sfrac|2}}. Many consider it to be the most important ] in ].{{sfnp|Bombieri|2000}} It is of great interest in ] because it implies results about the distribution of ]. It was proposed by {{harvs|txt|first=Bernhard|last= Riemann|year=1859|author-link=Bernhard Riemann}}, after whom it is named.
The Riemann hypothesis implies results about the distribution of ] that are in some ways as good as possible. Along with suitable generalizations, it is considered by some mathematicians to be the most important unresolved problem in ] {{harv|Bombieri|2000}}. The Riemann hypothesis is part of ], along with the ], in ]'s list of ], and is also one of the ] ]. Since it was formulated, it has withstood concentrated efforts from many outstanding mathematicians. In 1973, ] proved an analogue of the Riemann Hypothesis for zeta functions of varieties defined over finite fields. The full version of the hypothesis remains unsolved, although modern computer calculations have shown that the first 10 trillion zeros lie on the critical line.


The Riemann hypothesis and some of its generalizations, along with ] and the ], make up ] in ]'s list of ]; it is also one of the ] of the ], which offers ]1 million for a solution to any of them. The name is also used for some closely related analogues, such as the ].
The Riemann zeta function ζ(''s'') is defined for all ]s ''s'' ≠ 1. It has zeros at the negative even integers (i.e. at ''s'' = −2, −4, −6, ...). These are called the '''trivial zeros'''. The Riemann hypothesis is concerned with the non-trivial zeros, and states that:


The Riemann zeta function ''ζ''(''s'') is a ] whose ] ''s'' may be any complex number other than 1, and whose values are also complex. It has zeros at the negative even integers; that is, ''ζ''(''s'') = 0 when ''s'' is one of −2, −4, −6, .... These are called its ''trivial zeros''. The zeta function is also zero for other values of ''s'', which are called ''nontrivial zeros''. The Riemann hypothesis is concerned with the locations of these nontrivial zeros, and states that:
:The real part of any non-trivial zero of the Riemann zeta function is 1/2.


{{bquote|The real part of every nontrivial zero of the Riemann zeta function is {{sfrac|2}}.}}{{Millennium Problems}}
Thus the non-trivial zeros should lie on the '''critical line''', 1/2 + ''it'', where ''t'' is a ] and ''i'' is the ].


Thus, if the hypothesis is correct, all the nontrivial zeros lie on the ''critical line'' consisting of the complex numbers {{nowrap|{{sfrac|2}} + ''i{{hsp}}t'',}} where ''t'' is a ] and ''i'' is the ].
There are several nontechnical books on the Riemann hypothesis, such as {{harvtxt|Derbyshire|2003}}, {{harvtxt|Rockmore|2005}}, {{harvtxt|Sabbagh|2003}},
{{harvtxt|du Sautoy|2003}}. The books {{harvtxt|Edwards|1974}}, {{harvtxt|Patterson|1988}} and {{harvtxt|Borwein|Choi|Rooney|Weirathmueller|2008}} give mathematical introductions, while
{{harvtxt|Titchmarsh|1986}}, {{harvtxt|Ivić|1985}} and {{harvtxt|Karatsuba|Voronin|1992}} are advanced monographs.


==Riemann zeta function== ==Riemann zeta function==
The ] is defined for complex ''s'' with real part greater than 1 by the ] ] The ] is defined for complex ''s'' with real part greater than 1 by the ] ]
:<math>\zeta(s) = \sum_{n=1}^\infty \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots</math>
:<math>
] considered this series in the 1730s for real values of s, in conjunction with his solution to the ]. He also proved that it equals the ]
\zeta(s) =
:<math>\zeta(s) = \prod_{p \text{ prime}} \frac{1}{1-p^{-s}}= \frac{1}{1-2^{-s}}\cdot\frac{1}{1-3^{-s}}\cdot\frac{1}{1-5^{-s}}\cdot\frac{1}{1-7^{-s}} \cdots</math>
\sum_{n=1}^\infty \frac{1}{n^s} =
where the ] extends over all prime numbers ''p''.<ref>Euler, Leonhard (1744). ''Commentarii academiae scientiarum Petropolitanae'' 9, pp. 160–188, Theorems 7 and 8. In Theorem 7 Euler proves the formula in the special case <math>s=1</math>, and in Theorem 8 he proves it more generally. In the first corollary to his Theorem 7 he notes that <math>\zeta(1)=\log\infty</math>, and he makes use of this latter result in his Theorem 19, to show that the sum of the inverses of the prime numbers is <math>\log\log\infty</math>.</ref>
\frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots.
\!</math>
] showed that this series equals the ]
:<math>\zeta(s) = \prod_{p \text{ prime}} \frac{1}{1-p^{-s}}= \frac{1}{1-2^{-s}}\cdot\frac{1}{1-3^{-s}}\cdot\frac{1}{1-5^{-s}}\cdot\frac{1}{1-7^{-s}} \cdots \frac{1}{1-p^{-s}} \cdots</math>
where the ] extends over all prime numbers ''p'', and again converges for complex ''s'' with real part greater than 1. The convergence of the Euler product shows that ζ(''s'') has no zeros in this region, as none of the factors have zeros.


The Riemann hypothesis discusses zeros outside the region of convergence of this series, so it needs to be ] to all complex ''s''. This can be done by expressing it in terms of the ] as follows. If ''s'' is greater than one, then the zeta function satisfies The Riemann hypothesis discusses zeros outside the ] of this series and Euler product. To make sense of the hypothesis, it is necessary to ] the function to obtain a form that is valid for all complex ''s''. Because the zeta function is ], all choices of how to perform this analytic continuation will lead to the same result, by the ]. A first step in this continuation observes that the series for the zeta function and the ] satisfy the relation
:<math>\left(1-\frac{2}{2^s}\right)\zeta(s) = \eta(s) = \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n^s} = \frac{1}{1^s} - \frac{1}{2^s} + \frac{1}{3^s} - \cdots,</math>
:<math>
\left(1-\frac{2}{2^s}\right)\zeta(s) =
\sum_{n=1}^\infty \frac{(-1)^{n+1}}{n^s} =
\frac{1}{1^s} - \frac{1}{2^s} + \frac{1}{3^s} - \cdots
\, .</math>
However, the series on the right converges not just when ''s'' is greater than one, but more generally whenever ''s'' has positive real part. Thus, this alternative series extends the zeta function from {{nowrap|Re(''s'') > 1}} to the larger domain {{nowrap|Re(''s'') > 0}}.


within the region of convergence for both series. But the eta function series on the right converges not just when the real part of ''s'' is greater than one, but more generally whenever ''s'' has positive real part. Thus the zeta function can be redefined as <math>\eta(s)/(1-2/2^s)</math>, extending it from {{nowrap|Re(''s'') > 1}} to a larger domain: {{nowrap|Re(''s'') > 0}}, except for the points where <math>1-2/2^s</math> is zero. These are the points <math>s = 1 + 2\pi in/\log 2</math> where <math>n</math> can be any nonzero integer; the zeta function can be extended to these values too by taking limits (see {{slink|1=Dirichlet eta function|2=Landau's problem with ''ζ''(''s'') = ''η''(''s'')/0 and solutions}}), giving a finite value for all values of ''s'' with positive real part except the ] at ''s''&nbsp;=&nbsp;1.
In the strip {{nowrap|0 < Re(''s'') < 1}} the zeta function also satisfies the ]
:<math>
\zeta(s) = 2^s\pi^{s-1}\ \sin\left(\frac{\pi s}{2}\right)\ \Gamma(1-s)\ \zeta(1-s)
\!.</math>
One may then define ζ(''s'') for all remaining nonzero complex numbers ''s'' by assuming that this equation holds outside the strip as well, and letting ζ(''s'') equal the right-hand side of the equation whenever ''s'' has non-positive real part. If ''s'' is a negative even integer then
ζ(''s'') = 0 because the factor sin(π''s''/2) vanishes; these are the '''trivial zeros''' of the zeta function.
(If ''s'' is a positive even integer this argument does not apply because the zeros of sin are cancelled by the poles of the ] as it takes negative integer arguments.) The value ] is not determined by the functional equation, but is the limiting value of ζ(''s'') as ''s'' approaches zero. The functional equation also implies that the zeta function has no zeros with negative real part other than the trivial zeros, so all non-trivial zeros lie in the '''critical strip''' where ''s'' has real part between 0 and 1.


In the strip {{nowrap|0 < Re(''s'') < 1}} this extension of the zeta function satisfies the ]
==History==
:<math>\zeta(s) = 2^s\pi^{s-1}\ \sin\left(\frac{\pi s}{2}\right)\ \Gamma(1-s)\ \zeta(1-s).</math>
{{quote box
One may then define ''ζ''(''s'') for all remaining nonzero complex numbers ''s'' ({{nowrap|Re(''s'') ≤ 0}} and ''s'' ≠ 0) by applying this equation outside the strip, and letting ''ζ''(''s'') equal the right side of the equation whenever ''s'' has non-positive real part (and ''s'' ≠ 0).
|align=right
|width=30%
|quote="{{lang|de|…es ist sehr wahrscheinlich, dass alle Wurzeln reell sind. Hiervon wäre allerdings ein strenger Beweis zu wünschen; ich habe indess die Aufsuchung desselben nach einigen flüchtigen vergeblichen Versuchen vorläufig bei Seite gelassen, da er für den nächsten Zweck meiner Untersuchung entbehrlich schien.}}"<br /><br />"…it is very probable that all roots are real. Of course one would wish for a rigorous proof here; I have for the time being, after some fleeting vain attempts, provisionally put aside the search for this, as it appears dispensable for the next objective of my investigation."
|source=Riemann's statement of the Riemann hypothesis, from {{harv|Riemann|1859}}. (He was discussing a version of the zeta function, modified so that its roots are real rather than on the critical line.)
}}
In his 1859 paper '']'' Riemann found an ] for the ] π(''x'') less than a given number ''x''. His formula was given in terms of the related function
:<math>\Pi(x) =\pi(x)+\frac{1}{2}\pi(x^{1/2})+\frac{1}{3}\pi(x^{1/3})+\frac{1}{4}\pi(x^{1/4})+\frac{1}{5}\pi(x^{1/5})+\frac{1}{6}\pi(x^{1/6})+\cdots</math>
which counts primes where a prime power ''p''<sup>''n''</sup> counts as 1/''n'' of a prime. The number of primes can be recovered from this function by
:<math>\pi(x) = \sum_{n=1}^{\infty}\frac{\mu(n)}{n}\Pi(x^{1/n}) = \Pi(x) -\frac{1}{2}\Pi(x^{1/2})-\frac{1}{3}\Pi(x^{1/3}) +\frac{1}{4}\Pi(x^{1/4}) -\frac{1}{5}\Pi(x^{1/5}) +\frac{1}{6}\Pi(x^{1/6}) - \cdots,</math>
where μ is the ]. Riemann's formula is then
:<math>\Pi_0(x) = \operatorname{Li}(x) - \sum_\rho \operatorname{Li}(x^\rho) -\log(2) +\int_x^\infty\frac{dt}{t(t^2-1)\log(t)}</math>


If ''s'' is a negative even integer, then ''ζ''(''s'') = 0, because the factor sin({{pi}}''s''/2) vanishes; these are the zeta function's ''trivial zeros''. (If ''s'' is a positive even integer this argument does not apply because the zeros of the ] function are canceled by the poles of the ] as it takes negative integer arguments.)
where the sum is over the nontrivial zeros of the zeta function and where Π<sub>0</sub> is a slightly modified version of Π that replaces its value at its points of discontinuity by the average of its upper and lower limits:


The value ] is not determined by the functional equation, but is the limiting value of ''ζ''(''s'') as ''s'' approaches zero. The functional equation also implies that the zeta function has no zeros with negative real part other than the trivial zeros, so all nontrivial zeros lie in the ''critical strip'' where ''s'' has real part between 0 and 1.<gallery mode="packed" heights="200">
:<math>\Pi_0(x) = \lim_{\varepsilon \rightarrow 0}\frac{\Pi(x-\varepsilon)+\Pi(x+\varepsilon)}2.</math>
File:ParametricZeta.svg|Riemann zeta function along the critical line with Re(''s'') = 1/2. Real values are shown on the horizontal axis and imaginary values are on the vertical axis. Re(''ζ''(1/2 + ''it'')), Im(''ζ''(1/2 + ''it'')) is plotted with ''t'' ranging between −30 and 30.<ref>Values for ''ζ'' can be found by calculating, e.g., ''ζ''(1/2&nbsp;−&nbsp;30''i'').({{cite web |last= |first= |date= |title=Wolframalpha computational intelligence |url=https://www.wolframalpha.com/input |access-date=2 October 2022 |website=wolframalpha.com |publisher=Wolfram |quote=}}</ref>
File:Riemann3d Re 0.1 to 0.9 Im 1 to 51.ogg|Animation showing in 3D the Riemann zeta function critical strip (blue, where ''s'' has real part between 0 and 1), critical line (red, for real part of ''s'' equals 0.5) and zeroes (cross between red and orange): = with 0.1 ≤ ''r'' ≤ 0.9 and 1 ≤ ''t'' ≤ 51
File:RiemannCriticalLine.svg|The real part (red) and imaginary part (blue) of the Riemann zeta function ''ζ''(''s'') along the critical line in the ] with real part Re(''s'') = 1/2. The first ] zeros, where ζ(''s'') equals zero, occur where both curves touch the horizontal x-axis, for complex numbers with imaginary parts Im(''s'') equaling ±14.135, ±21.022 and ±25.011.
</gallery>


==Origin==
The summation in Riemann's formula is not ], but may be evaluated by taking the zeros ρ in order of the absolute value of their imaginary part. The function Li occurring in the first term is the (unoffset) ] given by the ] of the divergent integral
{{quote | text={{lang|de|... es ist sehr wahrscheinlich, dass alle Wurzeln reell sind. Hiervon wäre allerdings ein strenger Beweis zu wünschen; ich habe indess die Aufsuchung desselben nach einigen flüchtigen vergeblichen Versuchen vorläufig bei Seite gelassen, da er für den nächsten Zweck meiner Untersuchung entbehrlich schien.}}<br /><br />... it is very probable that all roots are real. Of course one would wish for a rigorous proof here; I have for the time being, after some fleeting vain attempts, provisionally put aside the search for this, as it appears dispensable for the immediate objective of my investigation.|source=Riemann's statement of the Riemann hypothesis, from {{harv|Riemann|1859}}. (He was discussing a variant of the zeta function, modified in a way that the real line be mapped to the critical line.)}}{{quote | text=At the death of Riemann, a note was found among his papers, saying "These properties of ''ζ''(''s'') (the function in question) are deduced from an expression of it which, however, I did not succeed in simplifying enough to publish it."
:<math>\operatorname{Li}(x) = \int_0^x\frac{dt}{\log(t)}.</math>
The terms Li(''x''<sup>ρ</sup>) involving the zeros of the zeta function need some care in their definition as Li has branch points at 0 and 1, and are defined (for ''x''&nbsp;>&nbsp;1) by analytic continuation in the complex variable ρ in the region Re(ρ)&nbsp;>&nbsp;0, i.e. they should be considered as ](ρ ln x). The other terms also correspond to zeros: the dominant term Li(''x'') comes from the pole at ''s''&nbsp;=&nbsp;1, considered as a zero of multiplicity −1, and the remaining small terms come from the trivial zeros. For some graphs of the sums of the first few terms of this series see {{harvtxt|Riesel|Göhl|1970}} or {{harvtxt|Zagier|1977}}.


We still have not the slightest idea of what the expression could be. As to the properties he simply enunciated, some thirty years elapsed before I was able to prove all of them but one .|source=VIII. Paradoxical Cases of Intuition|author=]|title=The Mathematician's Mind}}
This formula says that the zeros of the Riemann zeta function control the oscillations of primes around their "expected" positions. Riemann knew that the non-trivial zeros of the zeta function were symmetrically distributed about the line {{nowrap|''s'' {{=}} 1/2 + ''it'',}} and he knew that all of its non-trivial zeros must lie in the range {{nowrap|0 ≤ Re(''s'') ≤ 1.}} He checked that a few of the zeros lay on the critical line with real part 1/2 and suggested that they all do; this is the Riemann hypothesis.


Riemann's original motivation for studying the zeta function and its zeros was their occurrence in his ] for the ] {{pi}}(''x'') less than or equal to a given number ''x'', which he published in his 1859 paper "]". His formula was given in terms of the related function
==Consequences of the Riemann hypothesis==

The practical uses of the Riemann hypothesis include many propositions which
:<math>\Pi(x) = \pi(x) + \tfrac{1}{2} \pi(x^{1/2}) +\tfrac{1}{3} \pi(x^{1/3}) + \tfrac{1}{4}\pi(x^{1/4}) + \tfrac{1}{5} \pi(x^{1/5}) +\tfrac{1}{6}\pi(x^{1/6}) +\cdots </math>
are known to be true under the Riemann hypothesis, and some which can be

shown to be equivalent to the Riemann hypothesis.
which counts the primes and prime powers up to ''x'', counting a prime power ''p''<sup>''n''</sup> as {{frac|1|''n''}}. The number of primes can be recovered from this function by using the ],

:<math>\begin{align}
\pi(x) &= \sum_{n=1}^\infty \frac{\mu(n)} n \Pi(x^{1/n}) \\
&= \Pi(x) -\frac{1}{2}\Pi(x^{1/2}) - \frac{1}{3}\Pi(x^{1/3}) - \frac{1}{5}\Pi(x^{1/5}) + \frac{1}{6} \Pi(x^{1/6}) -\cdots,
\end{align}</math>

where ''μ'' is the ]. Riemann's formula is then

:<math>\Pi_0(x) = \operatorname{li}(x) - \sum_\rho \operatorname{li}(x^\rho) -\log 2 + \int_x^\infty\frac{dt}{t(t^2-1) \log t}</math>

where the sum is over the nontrivial zeros of the zeta function and where Π<sub>0</sub> is a slightly modified version of Π that replaces its value at its points of ] by the average of its upper and lower limits:

:<math>\Pi_0(x) = \lim_{\varepsilon \to 0}\frac{\Pi(x-\varepsilon) + \Pi(x+\varepsilon)}2. </math>

The summation in Riemann's formula is not absolutely convergent, but may be evaluated by taking the zeros ''ρ'' in order of the absolute value of their imaginary part. The function li occurring in the first term is the (unoffset) ] given by the ] of the divergent integral

:<math>\operatorname{li}(x) = \int_0^x \frac{dt}{\log t}.</math>

The terms li(''x''<sup>''ρ''</sup>) involving the zeros of the zeta function need some care in their definition as li has branch points at 0 and 1, and are defined (for ''x''&nbsp;>&nbsp;1) by analytic continuation in the complex variable ''ρ'' in the region Re(''ρ'')&nbsp;>&nbsp;0, i.e. they should be considered as {{nowrap|](''ρ'' log ''x'')}}. The other terms also correspond to zeros: the dominant term li(''x'') comes from the pole at ''s''&nbsp;=&nbsp;1, considered as a zero of multiplicity −1, and the remaining small terms come from the trivial zeros. For some graphs of the sums of the first few terms of this series see {{harvtxt|Riesel|Göhl|1970}} or {{harvtxt|Zagier|1977}}.

This formula says that the zeros of the Riemann zeta function control the ]s of primes around their "expected" positions. Riemann knew that the non-trivial zeros of the zeta function were symmetrically distributed about the line {{nowrap|''s'' {{=}} 1/2 + ''it'',}} and he knew that all of its non-trivial zeros must lie in the range {{nowrap|0 ≤ Re(''s'') ≤ 1.}} He checked that a few of the zeros lay on the critical line with real part 1/2 and suggested that they all do; this is the Riemann hypothesis.

{{quote|The result has caught the imagination of most mathematicians because it is so unexpected, connecting two seemingly unrelated areas in mathematics; namely, ], which is the study of the discrete, and ], which deals with continuous processes.|{{harv|Burton|2006|p=376}}}}

==Consequences==
The practical uses of the Riemann hypothesis include many propositions known to be true under the Riemann hypothesis, and some that can be shown to be equivalent to the Riemann hypothesis.


===Distribution of prime numbers=== ===Distribution of prime numbers===
Riemann's ] for the number of primes less than a given number in terms of a sum over the zeros of the Riemann zeta function says that the magnitude of the oscillations of primes around their expected position is controlled by the real parts of the zeros of the zeta function. In particular the error term in the ] is closely related to the position of the zeros: for example, the ] of real parts of the zeros is the ] of numbers β such that the error is O(''x''<sup>β</sup>) {{harv|Ingham|1932}}. ] for ] states that, in terms of a sum over the zeros of the Riemann zeta function, the magnitude of the oscillations of primes around their expected position is controlled by the real parts of the zeros of the zeta function. In particular, the error term in the ] is closely related to the position of the zeros. For example, if ''β'' is the ] of the real parts of the zeros, then<ref>{{harvtxt|Ingham|1932}}, Theorem 30, p. 83; {{harvtxt|Montgomery|Vaughan|2007}}, p. 430.</ref>
<math>\pi(x) - \operatorname{li}(x) = O \left( x^\beta \log x \right)</math>, where <math>\pi(x)</math> is the ], <math>\operatorname{li}(x)</math> is the ], <math>\log(x)</math> is the ] of ''x'', and ] is used here.
It is already known that 1/2&nbsp;≤&nbsp;''β''&nbsp;≤&nbsp;1.{{sfnp|Ingham|1932|p=82}}
] of the prime-counting function using zeros of the zeta function. The magnitude of the correction term is determined by the real part of the zero being added in the correction. ]]
] proved that the Riemann hypothesis implies the "best possible" bound for the error of the prime number theorem. A precise version of von Koch's result, due to {{harvtxt|Schoenfeld|1976}}, says that the Riemann hypothesis implies

:<math>|\pi(x) - \operatorname{li}(x)| < \frac{1}{8\pi} \sqrt{x} \log(x), \qquad \text{for all } x \ge 2657,</math>

{{harvtxt|Schoenfeld|1976}} also showed that the Riemann hypothesis implies

:<math>|\psi(x) - x| < \frac{1}{8\pi} \sqrt{x} \log^2 x, \qquad \text{for all } x \ge 73.2, </math>


where <math>\psi(x)</math> is ].
] proved that the Riemann hypothesis is equivalent to the "best possible" bound for the error of the prime number theorem.


A precise version of Koch's result, due to {{harvtxt|Schoenfeld|1976}}, says that the Riemann hypothesis is equivalent to {{harvtxt|Dudek|2014}} proved that the Riemann hypothesis implies that for all <math>x \geq 2</math> there is a prime <math>p</math> satisfying
:<math>|\pi(x) - \operatorname{Li}(x)| < \frac{1}{8\pi} \sqrt{x} \, \log(x), \qquad \text{for all } x \ge 2657. </math> :<math>x - \frac{4}{\pi} \sqrt x \log x < p \leq x</math>.
The constant 4/{{pi}} may
be reduced to (1&nbsp;+&nbsp;''ε'') provided that ''x'' is taken to be sufficiently large.
This is an explicit version of a theorem of ].


===Growth of arithmetic functions=== ===Growth of arithmetic functions===
The Riemann hypothesis implies strong bounds on the growth of many other arithmetic functions, in addition to the primes counting function above. The Riemann hypothesis implies strong bounds on the growth of many other ]s, in addition to the primes counting function above.


One example involves the ] μ. The statement that the equation One example involves the ] μ. The statement that the equation
Line 93: Line 108:
then the claim that then the claim that


:<math>M(x) = O(x^{1/2+\varepsilon}) \,</math> :<math>M(x) = O\left(x^{\frac{1}{2}+\varepsilon}\right)</math>


for every positive ε is equivalent to the Riemann hypothesis (], 1912; see for instance: paragraph 14.25 in {{harvtxt|Titchmarsh|1986}}). The ] of the order ''n'' ] is equal to ''M''(''n''), so the Riemann hypothesis can also be stated as a condition on the growth of these determinants. Littlewood's result has been improved several times since then, by ],<ref>{{Citation | last1=Landau | first1=Edmund | author1-link=Edmund Landau | title=Über die Möbiussche Funktion | year=1924 | journal=Rend. Circ. Mat. Palermo | volume=48 | issue=2 | pages=277–280| doi=10.1007/BF03014702 | s2cid=123636883 }}</ref> ],<ref>{{Citation | last1=Titchmarsh | first1=Edward Charles | title=A consequence of the Riemann hypothesis | year=1927 | journal=J. London Math. Soc. | volume=2 | issue=4 | pages=247–254| doi=10.1112/jlms/s1-2.4.247 }}</ref> Helmut Maier and ],<ref>{{Citation | last1=Maier | first1=Helmut | last2=Montgomery | first2=Hugh | title=The sum of the Möbius function | year=2009 | journal=Bull. London Math. Soc. | volume=41 | issue=2 | pages=213–226 | doi=10.1112/blms/bdn119| hdl=2027.42/135214 | s2cid=121272525 | hdl-access=free }}</ref> and ].<ref>{{Citation | last1=Soundararajan | first1=Kannan | author1-link=Kannan Soundararajan | title=Partial sums of the Möbius function | journal=J. Reine Angew. Math. | volume=2009 | year=2009 | issue=631 | pages=141–152 | doi=10.1515/CRELLE.2009.044| arxiv=0705.0723 | s2cid=16501321 }}</ref> Soundararajan's result is that, conditional on the Riemann hypothesis,
for every positive ε is equivalent to the Riemann hypothesis {{harv|Titchmarsh|1986}}. (For the meaning of these symbols, see ].) The determinant of the order ''n'' ] is equal to ''M''(''n''), so the Riemann hypothesis can also be stated as a condition on the growth of these determinants. The Riemann hypothesis puts a rather tight bound on the growth of ''M'', since {{harvtxt|Odlyzko|te Riele|1985}} disproved the slightly stronger ]
:<math>M(x) = O\left(x^{1/2}\exp\left((\log x)^{1/2}(\log \log x)^{14}\right)\right).</math>
The Riemann hypothesis puts a rather tight bound on the growth of ''M'', since {{harvtxt|Odlyzko|te Riele|1985}} disproved the slightly stronger ]


:<math>|M(x)| \le \sqrt x.</math> :<math>|M(x)| \le \sqrt x.</math>


Another closely related result is due to {{harvtxt|Björner|2011}}, that the Riemann hypothesis is equivalent to the statement that the ] of the ] determined by the lattice of integers under divisibility is <math>o(n^{1/2+\epsilon})</math> for all <math>\epsilon>0</math> (see ]).
The Riemann hypothesis is equivalent to many other conjectures about the rate of growth of other arithmetic functions aside from μ(''n''). A typical example is ] {{harv|Robin|1984}}, which states that if σ(''n'') is the ], given by


The Riemann hypothesis is equivalent to many other conjectures about the rate of growth of other arithmetic functions aside from μ(''n''). A typical example is ],{{sfnp|Robin|1984}} which states that if σ(''n'') is the ], given by
:<math>\sigma(n) = \sum_{d\mid n} d \,</math>

:<math>\sigma(n) = \sum_{d\mid n} d</math>


then then


:<math>\sigma(n) < e^\gamma n \log \log n \,</math> :<math>\sigma(n) < e^\gamma n \log \log n</math>


for all ''n'' > 5040 if and only if the Riemann hypothesis is true, where γ is the ]. for all ''n'' > 5040 if and only if the Riemann hypothesis is true, where ''γ'' is the ].


A related bound was given by ] in 2002, who proved that the Riemann hypothesis is equivalent to the statement that:
Another example was found by {{harvtxt|Franel|Landau|1924}} showing that the Riemann hypothesis is equivalent to a statement that the terms of the ] are fairly regular. More precisely, if ''F''<sub>''n''</sub> is the Farey sequence of order ''n'', beginning with 1/''n'' and up to 1/1, then the claim that for all ε > 0
:<math> \sigma(n) < H_n + \log(H_n)e^{H_n}</math>
for every ] ''n'' &gt; 1, where <math>H_n</math> is the ''n''th ].<ref>{{Citation | last1=Lagarias | first1=Jeffrey C. | author1-link=Jeffrey C. Lagarias | title=An elementary problem equivalent to the Riemann hypothesis | doi=10.2307/2695443 | jstor=2695443 | mr=1908008 | year=2002 | journal=] | issn=0002-9890 | volume=109 | issue=6 | pages=534–543| arxiv=math/0008177 | s2cid=15884740 }}</ref>


The Riemann hypothesis is also true if and only if the inequality
:<math>\sum_{i=1}^m|F_n(i) - i/m| = O(n^{1/2+\epsilon})</math>
:<math>\frac{n}{\varphi (n)}<e^\gamma \log\log n+\frac{e^\gamma (4+\gamma-\log 4\pi)}{\sqrt{\log n}}</math>
is true for all ''n'' ≥ 120569# where ''φ''(''n'') is ] and 120569# is the ] 120569 primes.{{sfnp|Broughan|2017|loc=Corollary 5.35}}


Another example was found by ], and extended by ] (see {{harvtxt|Franel|Landau|1924}}). The Riemann hypothesis is equivalent to several statements showing that the terms of the ] are fairly regular. One such equivalence is as follows: if ''F''<sub>''n''</sub> is the Farey sequence of order ''n'', beginning with 1/''n'' and up to 1/1, then the claim that for all ε > 0
is equivalent to the Riemann hypothesis. Here <math>m = \sum_{i=1}^n\phi(i)</math> is the number of terms in the Farey sequence of order ''n''.


:<math>\sum_{i=1}^m|F_n(i) - \tfrac{i}{m}| = O\left(n^{\frac{1}{2}+\epsilon}\right)</math>
For an example from group theory, if ''g''(''n'') is ] given by the maximal order of elements of the ] ''S''<sub>''n''</sub> of degree ''n'', then {{harvtxt|Massias|Nicolas|Robin|1988}} showed that the Riemann hypothesis is equivalent to the bound


is equivalent to the Riemann hypothesis. Here
:<math>\log g(n) < \sqrt{\operatorname{Li}^{-1}(n)}</math> for all sufficiently large ''n''.

:<math>m = \sum_{i=1}^n\varphi(i)</math>

is the number of terms in the Farey sequence of order ''n''.

For an example from ], if ''g''(''n'') is ] given by the maximal order of elements of the ] ''S''<sub>''n''</sub> of degree ''n'', then {{harvtxt|Massias|Nicolas|Robin|1988}} showed that the Riemann hypothesis is equivalent to the bound

:<math>\log g(n) < \sqrt{\operatorname{Li}^{-1}(n)}</math>

for all sufficiently large ''n''.


===Lindelöf hypothesis and growth of the zeta function=== ===Lindelöf hypothesis and growth of the zeta function===
The Riemann hypothesis has various weaker consequences as well; one is the ''']''' on the rate of growth of the zeta function on the critical line, which says that, for any ''ε'' > 0, The Riemann hypothesis has various weaker consequences as well; one is the ] on the rate of growth of the zeta function on the critical line, which says that, for any ''ε'' > 0,


:<math>\zeta\left(\frac12 + it\right) = O(t^\varepsilon),</math> :<math>\zeta\left(\frac{1}{2} + it\right) = O(t^\varepsilon),</math>


as ''t'' tends to infinity. as <math>t \to \infty</math>.


The Riemann hypothesis also implies quite sharp bounds for the growth rate of the zeta function in other regions of the critical strip. For example, it implies that The Riemann hypothesis also implies quite sharp bounds for the growth rate of the zeta function in other regions of the critical strip. For example, it implies that

:<math> e^\gamma\le \limsup_{t\rightarrow +\infty}\frac{|\zeta(1+it)|}{\log\log t}\le 2e^\gamma</math> :<math> e^\gamma\le \limsup_{t\rightarrow +\infty}\frac{|\zeta(1+it)|}{\log\log t}\le 2e^\gamma</math>
:<math> \frac{6}{\pi^2}e^\gamma\le \limsup_{t\rightarrow +\infty}\frac{1/|\zeta(1+it)|}{\log\log t}\le \frac{12}{\pi^2}e^\gamma</math> :<math> \frac{6}{\pi^2}e^\gamma\le \limsup_{t\rightarrow +\infty}\frac{1/|\zeta(1+it)|}{\log\log t}\le \frac{12}{\pi^2}e^\gamma</math>

so the growth rate of ζ(1+''it'') and its inverse would be known up to a factor of 2 {{harv|Titchmarsh|1986}}.
so the growth rate of ''ζ''(1&nbsp;+&nbsp;''it'') and its inverse would be known up to a factor of 2.{{sfnp|Titchmarsh|1986}}


===Large prime gap conjecture=== ===Large prime gap conjecture===
The prime number theorem implies that on average, the ] between the prime ''p'' and its successor is log&nbsp;''p''. However, some gaps between primes may be much larger than the average. ] proved that, assuming the Riemann hypothesis, every gap is ''O''(''p''&nbsp;log&nbsp;''p''). This is a case when even the best bound that can currently be proved using the Riemann hypothesis is far weaker than what seems to be true: ] implies that every gap is ''O''((log&nbsp;''p'')<sup>2</sup>) which, while larger than the average gap, is far smaller than the bound implied by the Riemann hypothesis. Numerical evidence supports Cramér's conjecture {{harv|Nicely|1999}}. The prime number theorem implies that on average, the ] between the prime ''p'' and its successor is log&nbsp;''p''. However, some gaps between primes may be much larger than the average. ] proved that, assuming the Riemann hypothesis, every gap is ''O''({{radic|''p''}}&nbsp;log&nbsp;''p''). This is a case in which even the best bound that can be proved using the Riemann hypothesis is far weaker than what seems true: ] implies that every gap is ''O''((log&nbsp;''p'')<sup>2</sup>), which, while larger than the average gap, is far smaller than the bound implied by the Riemann hypothesis. Numerical evidence supports Cramér's conjecture.{{sfnp|Nicely|1999}}


===Criteria equivalent to the Riemann hypothesis=== ===Analytic criteria equivalent to the Riemann hypothesis===
Many statements equivalent to the Riemann hypothesis have been found, though so far none of them have led to Many statements equivalent to the Riemann hypothesis have been found, though so far none of them have led to much progress in proving (or disproving) it. Some typical examples are as follows. (Others involve the ] σ(''n'').)
much progress in solving it. Some typical examples are as follows. (Others involve the ] σ(''n'').)


The ] was given by {{harvtxt|Riesz|1916}}, to the effect that the bound The ] was given by {{harvtxt|Riesz|1916}}, to the effect that the bound


:<math>-\sum_{k=1}^\infty \frac{(-x)^k}{(k-1)!\,\zeta(2k)}= :<math>-\sum_{k=1}^\infty \frac{(-x)^k}{(k-1)! \zeta(2k)}= O\left(x^{\frac{1}{4}+\epsilon}\right)</math>
O\left(x^{1/4+\epsilon}\right)</math>


holds for all <math>\epsilon>0</math> if and only if the Riemann hypothesis holds. holds for all ε > 0 if and only if the Riemann hypothesis holds. See also the ].


{{harvtxt|Nyman|1950}} proved that the Riemann Hypothesis is true if and only if {{harvtxt|Nyman|1950}} proved that the Riemann hypothesis is true if and only if the space of functions of the form

the space of functions of the form
:<math>f(x) = \sum_{\nu=1}^nc_\nu\rho(\theta_\nu/x)</math> :<math>f(x) = \sum_{\nu=1}^nc_\nu\rho \left(\frac{\theta_\nu}{x} \right)</math>

where ρ(''z'') is the fractional part of ''z'', {{nowrap|0 ≤ θ<sub>ν</sub> ≤ 1}}, and
where ''ρ''(''z'') is the fractional part of ''z'', {{nowrap|0 ≤ ''θ''<sub>''ν''</sub> ≤ 1}}, and
:<math>\sum_{\nu=1}^nc_\nu\theta_\nu=0</math>,

is dense in the Hilbert space L<sup>2</sup>(0,1) of square-integrable functions on the unit interval.
:<math>\sum_{\nu=1}^nc_\nu\theta_\nu=0,</math>
{{harvtxt|Beurling|1955}} extended this by showing that the zeta function has no zeros with real part greater than 1/''p'' if and only if this function space is dense in L<sup>''p''</sup>(0,1)

is dense in the ] of square-integrable functions on the unit interval. {{harvtxt|Beurling|1955}} extended this by showing that the zeta function has no zeros with real part greater than 1/''p'' if and only if this function space is dense in ''L<sup>p</sup>''(0,1). This Nyman-Beurling criterion was strengthened by Baez-Duarte<ref name="baez">{{cite journal |last1=Baez-Duarte |first1=Luis |title=A general strong Nyman-Beurling criterion for the Riemann hypothesis |journal=Publications de l'Institut Mathématique |series=Nouvelle Série |date=2005 |volume=78 |issue=92 |pages=117–125|doi=10.2298/PIM0578117B |s2cid=17406178 |doi-access=free |arxiv=math/0505453 }}</ref> to the case where <math>\theta_\nu \in \{1/k\}_{k\geq 1}</math>.


{{harvtxt|Salem|1953}} showed that the Riemann hypothesis is true if and only if the integral equation {{harvtxt|Salem|1953}} showed that the Riemann hypothesis is true if and only if the integral equation

:<math>\int_{0}^\infty\frac{z^{-\sigma-1}\phi(z)\,dz}{{e^{x/z}}+1}=0 </math>
:<math>\int_0^\infty\frac{z^{-\sigma-1}\varphi(z)}{{e^{x/z}}+1}\,dz=0 </math>
has no non-trivial bounded solutions φ for 1/2<σ<1.

has no non-trivial bounded solutions <math>\varphi</math> for <math>1/2<\sigma <1</math>.


] is the statement that the positivity of a certain function is equivalent to the Riemann hypothesis. Related is ], a statement that the positivity of a certain sequence of numbers is equivalent to the Riemann hypothesis. ] is the statement that the positivity of a certain function is equivalent to the Riemann hypothesis. Related is ], a statement that the positivity of a certain sequence of numbers is equivalent to the Riemann hypothesis.
Line 163: Line 200:
:<math>0 < \Re(s) < \frac12.</math> :<math>0 < \Re(s) < \frac12.</math>


That ζ has only simple zeros on the critical line is equivalent (by definition) to its derivative having no zeros on the critical line. That <math>\zeta(s)</math> has only simple zeros on the critical line is equivalent to its derivative having no zeros on the critical line.

The ] provides two equivalences, due to ] and ] in 1924.

The ] denoted by '''Λ''' and named after ] and ], is defined
as the unique real number such that the ]

:<math>H(\lambda, z):=\int_{0}^{\infty} e^{\lambda u^{2}} \Phi(u) \cos (z u)\, d u</math>,

that is parametrised by a ] parameter ''λ'', has a ] variable ''z'' and is defined using a super-exponentially decaying function

:<math>\Phi(u) = \sum_{n=1}^{\infty} (2\pi^2n^4e^{9u} - 3 \pi n^2 e^{5u} ) e^{-\pi n^2 e^{4u}}</math>.

has only real zeros if and only if λ ≥ Λ.
Since the Riemann hypothesis is equivalent to the claim that all the zeroes of ''H''(0,&nbsp;''z'') are real, the Riemann hypothesis is equivalent to the conjecture that <math>\Lambda\leq 0</math>. Brad Rodgers and ] discovered the equivalence is actually <math>\Lambda = 0</math> by proving zero to be the lower bound of the constant.{{sfnp|Rodgers|Tao|2020}} Proving zero is also the upper bound would therefore prove the Riemann hypothesis. As of April 2020 the upper bound is <math>\Lambda\leq 0.2</math>.{{sfnp|Platt|Trudgian|2021}}


===Consequences of the generalized Riemann hypothesis=== ===Consequences of the generalized Riemann hypothesis===
Several applications use the generalized Riemann hypothesis for Dirichlet L-series or zeta functions of number fields rather than just the Riemann hypothesis. Many basic properties of the Riemann zeta function can easily be generalized to all Dirichlet L-series, so it is plausible that a method that proves the Riemann hypothesis for the Riemann zeta function would also work for the generalized Riemann hypothesis for Dirichlet L-functions. Several results first proved using the generalized Riemann hypothesis were later given unconditional proofs without using it, though these were usually much harder. Many of the consequences on the following list are taken from {{harvtxt|Conrad|2010}}. Several applications use the ] for ] or ] rather than just the Riemann hypothesis. Many basic properties of the Riemann zeta function can easily be generalized to all Dirichlet L-series, so it is plausible that a method that proves the Riemann hypothesis for the Riemann zeta function would also work for the generalized Riemann hypothesis for Dirichlet L-functions. Several results first proved using the generalized Riemann hypothesis were later given unconditional proofs without using it, though these were usually much harder. Many of the consequences on the following list are taken from {{harvtxt|Conrad|2010}}.
* In 1913, Gronwall showed that the generalized Riemann hypothesis implies that Gauss's ] is complete, though Baker, Stark and Heegner later gave unconditional proofs of this without using the generalized Riemann hypothesis. * In 1913, ] showed that the generalized Riemann hypothesis implies that Gauss's ] is complete, though Baker, Stark and Heegner later gave unconditional proofs of this without using the generalized Riemann hypothesis.
* In 1917, Hardy and Littlewood showed that the generalized Riemann hypothesis implies a conjecture of Chebyshev that * In 1917, Hardy and Littlewood showed that the generalized Riemann hypothesis implies a conjecture of Chebyshev that <math display="block">\lim_{x\to 1^-} \sum_{p>2}(-1)^{(p+1)/2} x^p=+\infty,</math> which says that primes 3 mod 4 are more common than primes 1 mod 4 in some sense. (For related results, see {{slink|Prime number theorem|Prime number race}}.)
* In 1923, Hardy and Littlewood showed that the generalized Riemann hypothesis implies a weak form of the ] for odd numbers: that every sufficiently large odd number is the sum of three primes, though in 1937 Vinogradov gave an unconditional proof. In 1997 ], Effinger, ], and Zinoviev showed that the generalized Riemann hypothesis implies that every odd number greater than 5 is the sum of three primes. In 2013 ] proved the ternary Goldbach conjecture without the GRH dependence, subject to some extensive calculations completed with the help of David J. Platt.
:<math>\lim_{x\rightarrow 1^-}\sum_{p>2}(-1)^{(p+1)/2}x^p=+\infty</math>
:which says that in some sense primes 3 mod 4 are more common than primes 1 mod 4.
* In 1923 Hardy and Littlewood showed that the generalized Riemann hypothesis implies a weak form of the ] for odd numbers: that every sufficiently large odd number is the sum of 3 primes, though in 1937 Vinogradov gave an unconditional proof. In 1997 Deshouillers, Effinger, te Riele, and Zinoviev showed that the generalized Riemann hypothesis implies that every odd number greater than 5 is the sum of 3 primes.
* In 1934, Chowla showed that the generalized Riemann hypothesis implies that the first prime in the arithmetic progression ''a'' mod ''m'' is at most ''Km''<sup>2</sup>log(''m'')<sup>2</sup> for some fixed constant ''K''. * In 1934, Chowla showed that the generalized Riemann hypothesis implies that the first prime in the arithmetic progression ''a'' mod ''m'' is at most ''Km''<sup>2</sup>log(''m'')<sup>2</sup> for some fixed constant ''K''.
* In 1967, Hooley showed that the generalized Riemann hypothesis implies ]. * In 1967, Hooley showed that the generalized Riemann hypothesis implies ].
* In 1973, Weinberger showed that the generalized Riemann hypothesis implies that Euler's list of ]s is complete. * In 1973, Weinberger showed that the generalized Riemann hypothesis implies that Euler's list of ]s is complete.
* {{harvtxt|Weinberger|1973}} showed that the generalized Riemann hypothesis for the zeta functions of all algebraic number fields implies that any number field with class number 1 is either ] or an imaginary quadratic number field of discriminant −19, −43, −67, or −163. * {{harvtxt|Weinberger|1973}} showed that the generalized Riemann hypothesis for the zeta functions of all algebraic number fields implies that any number field with class number 1 is either ] or an imaginary quadratic number field of ] −19, −43, −67, or −163.
* In 1976, G. Miller showed that the generalized Riemann hypothesis implies that one can test if a number is prime in polynomial times. In 2002, Manindra Agrawal, Neeraj Kayal and Nitin Saxena proved this result unconditionally using the ]. * In 1976, G. Miller showed that the generalized Riemann hypothesis implies that one can ] in polynomial time via the ]. In 2002, Manindra Agrawal, Neeraj Kayal and Nitin Saxena proved this result unconditionally using the ].
* {{harvtxt|Odlyzko|1990}} discussed how the generalized Riemann hypothesis can be used to give sharper estimates for discriminants and class numbers of number fields. * {{harvtxt|Odlyzko|1990}} discussed how the generalized Riemann hypothesis can be used to give sharper estimates for discriminants and class numbers of number fields.
* {{harvtxt|Ono|Soundararajan|1997}} showed that the generalized Riemann hypothesis implies that Ramanujan's integral quadratic form ''x''<sup>2</sup> +''y''<sup>2</sup> + 10''z''<sup>2</sup> represents all integers that it represents locally, with exactly 18 exceptions. * {{harvtxt|Ono|Soundararajan|1997}} showed that the generalized Riemann hypothesis implies that ] {{nowrap|''x''<sup>2</sup> + ''y''<sup>2</sup> + 10''z''<sup>2</sup>}} represents all integers that it represents locally, with exactly 18 exceptions.
* In 2021, Alexander (Alex) Dunn and ] proved ] on cubic ], under the assumption of the GRH.<ref>{{Cite web|url=https://www.caltech.edu/about/news/caltech-mathematicians-solve-19th-century-number-riddle|title=Caltech Mathematicians Solve 19th Century Number Riddle|date=October 31, 2022|website=California Institute of Technology}}</ref><ref name="Dunn Radziwiłł 2021 Patterson ">{{cite arXiv| last1=Dunn | first1=Alexander | last2=Radziwiłł | first2=Maksym |author-link2=Maksym Radziwill| title=Bias in cubic Gauss sums: Patterson's conjecture | date=2021 |eprint=2109.07463 |class=math.NT}}</ref>


===Excluded middle===
==Generalizations and analogues of the Riemann hypothesis==
Some consequences of the RH are also consequences of its negation, and are thus theorems. In their discussion of the ], {{harvtxt|Ireland|Rosen|1990|p=359}} say

<blockquote>The method of proof here is truly amazing. If the generalized Riemann hypothesis is true, then the theorem is true. If the generalized Riemann hypothesis is false, then the theorem is true. Thus, the theorem is true!!</blockquote>

Care should be taken to understand what is meant by saying the generalized Riemann hypothesis is false: one should specify exactly which class of Dirichlet series has a counterexample.

====Littlewood's theorem====
This concerns the sign of the error in the ].
It has been computed that {{pi}}(''x'') < li(''x'') for all ''x'' ≤ 10<sup>25</sup> (see this ]), and no value of ''x'' is known for which {{pi}}(''x'')&nbsp;>&nbsp;li(''x'').

In 1914 Littlewood proved that there are arbitrarily large values of ''x'' for which
:<math>\pi(x)>\operatorname{li}(x) +\frac13\frac{\sqrt x}{\log x}\log\log\log x,</math>
and that there are also arbitrarily large values of ''x'' for which
:<math>\pi(x)<\operatorname{li}(x) -\frac13\frac{\sqrt x}{\log x}\log\log\log x.</math>
Thus the difference {{pi}}(''x'') − li(''x'') changes sign infinitely many times. ] is an estimate of the value of ''x'' corresponding to the first sign change.

Littlewood's proof is divided into two cases: the RH is assumed false (about half a page of {{harvnb|Ingham|1932|loc=Chapt. V}}), and the RH is assumed true (about a dozen pages). {{harvs|txt|first=Stanisław|last=Knapowski|year=1962}} followed this up with a paper on the number of times <math> \Delta(n) </math> changes sign in the interval <math> \Delta(n) </math>.

====Gauss's class number conjecture====
This is the ] (first stated in article 303 of Gauss's '']'') that there are only finitely many imaginary quadratic fields with a given class number. One way to prove it would be to show that as the discriminant {{math|''D'' → −∞}} the class number {{math|''h''(''D'') → ∞}}.

The following sequence of theorems involving the Riemann hypothesis is described in {{Harvnb|Ireland|Rosen|1990|pp=358–361}}:
{{math theorem | name = Theorem (Hecke; 1918) | math_statement = Let {{math|''D'' < 0}} be the discriminant of an imaginary ] ] ''K''. Assume the generalized Riemann hypothesis for ] of all imaginary quadratic Dirichlet characters. Then there is an absolute constant ''C'' such that <math display="block">h(D) > C\frac{\sqrt{|D|}}{\log |D|}.</math>}}
{{math theorem | name = Theorem (Deuring; 1933) | math_statement = If the RH is false then {{math|''h''(''D'') > 1}} if {{math|{{abs|''D''}}}} is sufficiently large.}}
{{math theorem | name = Theorem (Mordell; 1934) | math_statement = If the RH is false then {{math|''h''(''D'') → ∞}} as {{math|''D'' → −∞}}.}}
{{math theorem | name = Theorem (Heilbronn; 1934) | math_statement = If the generalized RH is false for the ''L''-function of some imaginary quadratic Dirichlet character then {{math|''h''(''D'') → ∞}} as {{math|''D'' → −∞}}.}}

(In the work of Hecke and Heilbronn, the only ] that occur are those attached to imaginary quadratic characters, and it is only for those ''L''-functions that ''GRH is true'' or ''GRH is false'' is intended; a failure of GRH for the ''L''-function of a cubic Dirichlet character would, strictly speaking, mean GRH is false, but that was not the kind of failure of GRH that Heilbronn had in mind, so his assumption was more restricted than simply ''GRH is false''.)

In 1935, ] strengthened the result without using RH or GRH in any way.<ref name="Goldfeld 1985 pp. 23–37">{{cite journal | last=Goldfeld | first=Dorian | title=Gauss' class number problem for imaginary quadratic fields | journal=Bulletin of the American Mathematical Society | volume=13 | issue=1 | date=1985 | issn=0273-0979 | doi=10.1090/S0273-0979-1985-15352-2 | pages=23–37}}</ref><ref name="Siegel 1935 pp. 83–86">{{cite journal | last=Siegel | first=Carl | title=Über die Classenzahl quadratischer Zahlkörper | journal=Acta Arithmetica | volume=1 | issue=1 | date=1935 | issn=0065-1036 | pages=83–86 | doi=10.4064/aa-1-1-83-86 | url=https://eudml.org/doc/205054 | access-date=8 April 2024}}</ref>

====Growth of Euler's totient====
In 1983 ] proved that
<math display=block>\varphi(n) < e^{-\gamma}\frac {n} {\log \log n} </math>
for infinitely many ''n'', where ''φ''(''n'') is ] and ''γ'' is ]. Ribenboim remarks that: "The method of proof is interesting, in that the inequality is shown first under the assumption that the Riemann hypothesis is true, secondly under the contrary assumption."{{sfnp|Ribenboim|1996|p=320}}

==Generalizations and analogs==
===Dirichlet L-series and other number fields=== ===Dirichlet L-series and other number fields===
The Riemann hypothesis can be generalized by replacing the Riemann zeta function by the formally similar, but much more general, global ]s. In this broader setting, one expects the non-trivial zeros of the global ''L''-functions to have real part 1/2. It is these conjectures, rather than the classical Riemann hypothesis only for the single Riemann zeta function, which accounts for the true importance of the Riemann hypothesis in mathematics. The Riemann hypothesis can be generalized by replacing the Riemann zeta function by the formally similar, but much more general, global ]s. In this broader setting, one expects the non-trivial zeros of the global ''L''-functions to have real part 1/2. It is these conjectures, rather than the classical Riemann hypothesis only for the single Riemann zeta function, which account for the true importance of the Riemann hypothesis in mathematics.


The ] extends the Riemann hypothesis to all ]s. The ] extends the Riemann hypothesis to all ]s. In particular it implies the conjecture that ]s (zeros of ''L''-functions between 1/2 and 1) do not exist.
In particular it implies the conjecture that ]s (zeros of ''L'' functions between 1/2 and 1) do not exist.


The ] extends the Riemann hypothesis to all ]s of ]s. The extended Riemann hypothesis for abelian extension of the rationals is equivalent to the generalized Riemann hypothesis. The Riemann hypothesis can also be extended to the L-functions of ]s of number fields. The ] extends the Riemann hypothesis to all ]s of ]s. The extended Riemann hypothesis for abelian extension of the rationals is equivalent to the generalized Riemann hypothesis. The Riemann hypothesis can also be extended to the ''L''-functions of ]s of number fields.


The ] extends it to all automorphic zeta functions, such as ]s of ]s. The ] extends it to all ], such as ]s of ]s.


===Function fields and zeta functions of varieties over finite fields=== ===Function fields and zeta functions of varieties over finite fields===
{{harvtxt|Artin|1924}} introduced global zeta functions of (quadratic) ] and conjectured an analogue of the Riemann hypothesis for them, which has been proven by Hasse in the genus 1 case and by {{harvtxt|Weil|1948}} in general. For instance, the fact that the ], of the quadratic character of a ] of size ''q'' (with ''q'' odd), has absolute value {{harvtxt|Artin|1924}} introduced global zeta functions of (quadratic) ] and conjectured an analogue of the Riemann hypothesis for them, which has been proved by Hasse in the genus 1 case and by {{harvtxt|Weil|1948}} in general. For instance, the fact that the ], of the quadratic character of a ] of size ''q'' (with ''q'' odd), has absolute value <math>\sqrt{q}</math> is actually an instance of the Riemann hypothesis in the function field setting. This led {{harvtxt|Weil|1949}} to conjecture a similar statement for all ]; the resulting ] were proved by {{harvs|txt|first=Pierre|last=Deligne|authorlink=Pierre Deligne|year1=1974|year2=1980}}.

:<math>\sqrt{q}</math>


===Arithmetic zeta functions of arithmetic schemes and their L-factors===
is actually an instance of the Riemann hypothesis in the function field setting. This led {{harvtxt|Weil|1949}} to conjecture a similar statement for all ]; the resulting ] were proven by {{harvs|txt|first=Pierre|last=Deligne|authorlink=Pierre Deligne|year1=1974|year2=1980}}.
]s generalise the Riemann and Dedekind zeta functions as well as the zeta functions of varieties over finite fields to every arithmetic scheme or a scheme of finite type over integers. The arithmetic zeta function of a regular connected ] arithmetic scheme of Kronecker dimension ''n'' can be factorized into the product of appropriately defined L-factors and an auxiliary factor {{harvs|txt|first=Jean-Pierre|last=Serre|authorlink=J.-P. Serre|year1=1969–1970}}. Assuming a functional equation and meromorphic continuation, the generalized Riemann hypothesis for the L-factor states that its zeros inside the critical strip <math>\Re(s)\in (0,n)</math> lie on the central line. Correspondingly, the generalized Riemann hypothesis for the arithmetic zeta function of a regular connected equidimensional arithmetic scheme states that its zeros inside the critical strip lie on vertical lines <math>\Re(s)=1/2,3/2,\dots,n-1/2</math> and its poles inside the critical strip lie on vertical lines <math>\Re(s)=1, 2, \dots,n-1</math>. This is known for schemes in positive characteristic and follows from {{harvs|txt|first=Pierre|last=Deligne|authorlink=Pierre Deligne|year1=1974|year2=1980}}, but remains entirely unknown in characteristic zero.


===Selberg zeta functions=== ===Selberg zeta functions===
{{main|Selberg zeta function}}
{{harvtxt|Selberg|1956}} introduced the ] of a Riemann surface. These are similar to the Riemann zeta function: they have a functional equation, and an infinite product similar to the Euler product but taken over closed geodesics rather than primes. The ] is the analogue for these functions of the ] in prime number theory. Selberg proved that the Selberg zeta functions satisfy the analogue of the Riemann hypothesis, with the imaginary parts of their zeros related to the eigenvalues of the Laplacian operator of the Riemann surface.
{{harvtxt|Selberg|1956}} introduced the ] of a Riemann surface. These are similar to the Riemann zeta function: they have a functional equation, and an infinite product similar to the Euler product but taken over closed geodesics rather than primes. The ] is the analogue for these functions of the ] in prime number theory. Selberg proved that the Selberg zeta functions satisfy the analogue of the Riemann hypothesis, with the imaginary parts of their zeros related to the ]s of the Laplacian operator of the Riemann surface.


===Ihara zeta functions=== ===Ihara zeta functions===
The ] of a finite graph is an analogue of the Selberg zeta function introduced by Yasutaka Ihara. A regular finite graph is a ], a mathematical model of efficient communication networks, if and only if its Ihara zeta function satisfies the analogue of the Riemann hypothesis as was pointed out by ]. The ] of a finite graph is an analogue of the ], which was first introduced by ] in the context of discrete subgroups of the two-by-two p-adic special linear group. A regular finite graph is a ], a mathematical model of efficient communication networks, if and only if its Ihara zeta function satisfies the analogue of the Riemann hypothesis as was pointed out by ].


===Montgomery's pair correlation conjecture=== ===Montgomery's pair correlation conjecture===
{{harvtxt|Montgomery|1973}} suggested the ] that the correlation functions of the (suitably normalized) zeros of the zeta function should be the same as those of the eigenvalues of a ]. {{harvtxt|Odlyzko|1987}} showed that this is supported by large scale numerical calculations of these correlation functions. {{harvtxt|Montgomery|1973}} suggested the ] that the correlation functions of the (suitably normalized) zeros of the zeta function should be the same as those of the eigenvalues of a ]. {{harvtxt|Odlyzko|1987}} showed that this is supported by large-scale numerical calculations of these correlation functions.


Montgomery showed that (assuming the Riemann hypothesis) at least 2/3 of all zeros are simple, and a related conjecture is that all zeros of the zeta function are simple (or more generally have no non-trivial integer linear relations between their imaginary parts). ]s of algebraic number fields, which generalize the Riemann zeta function, often do have multiple complex zeros.{{citation needed|date=March 2011}} This is because the Dedekind zeta functions factorize as a product of powers of ]s, so zeros of Artin L-functions sometimes give rise to multiple zeros of Dedekind zeta functions. Other examples of zeta functions with multiple zeros are the L-functions of some ]s: these can have multiple zeros at the real point of their critical line; the ] predicts that the multiplicity of this zero is the rank of the elliptic curve. Montgomery showed that (assuming the Riemann hypothesis) at least 2/3 of all zeros are simple, and a related conjecture is that all zeros of the zeta function are simple (or more generally have no non-trivial integer linear relations between their imaginary parts). ]s of algebraic number fields, which generalize the Riemann zeta function, often do have multiple complex zeros.{{sfnp|Radziejewski|2007}} This is because the Dedekind zeta functions factorize as a product of powers of ]s, so zeros of Artin L-functions sometimes give rise to multiple zeros of Dedekind zeta functions. Other examples of zeta functions with multiple zeros are the L-functions of some ]s: these can have multiple zeros at the real point of their critical line; the ] predicts that the multiplicity of this zero is the rank of the elliptic curve.


===Other zeta functions=== ===Other zeta functions===
There are ] of zeta functions with analogues of the Riemann hypothesis, some of which have been proved. ]s of function fields have a Riemann hypothesis, proved by {{harvtxt|Sheats|1998}}. ] of ], proved by ] and ] for ]s, and Wiles for ], identifies the zeros of a ''p''-adic ''L''-function with the eigenvalues of an operator, so can be thought of as an analogue of the ] for ].{{sfnp|Wiles|2000}}
There are ] of zeta functions with analogues of the Riemann hypothesis,
some of which have been proved. ]s of function fields have a Riemann hypothesis, proved by {{harvtxt|Sheats|1998}}.
The main conjecture of ], proved by ] and ] for ]s, and Wiles for ], identifies the zeros of a ''p''-adic ''L''-function with the eigenvalues of an operator, so can be thought of as an analogue of the ] for ] {{harv|Wiles|2000}}.


==Attempted proofs==
==Attempts to prove the Riemann hypothesis==
Several mathematicians have addressed the Riemann hypothesis, but none of their attempts have yet been accepted as correct solutions. Several mathematicians have addressed the Riemann hypothesis, but none of their attempts has yet been accepted as a proof. {{harvtxt|Watkins|2021}} lists some incorrect solutions.
{{harvtxt|Watkins|2007}} lists some incorrect solutions, and more are .


===Operator theory=== ===Operator theory===
{{main|Hilbert–Pólya conjecture}} {{main|Hilbert–Pólya conjecture}}


Hilbert and Polya suggested that one way to derive the Riemann hypothesis would be to find a ], from the existence of which the statement on the real parts of the zeros of ζ(''s'') would follow when one applies the criterion on real ]s. Some support for this idea comes from several analogues of the Riemann zeta functions whose zeros correspond to eigenvalues of some operator: the zeros of a zeta function of a variety over a finite field correspond to eigenvalues of a ] on an ] group, the zeros of a ] are eigenvalues of a ] of a Riemann surface, and the zeros of a ] correspond to eigenvectors of a Galois action on ]s. Hilbert and Pólya suggested that one way to derive the Riemann hypothesis would be to find a ], from the existence of which the statement on the real parts of the zeros of ''ζ''(''s'') would follow when one applies the criterion on real ]s. Some support for this idea comes from several analogues of the Riemann zeta functions whose zeros correspond to eigenvalues of some operator: the zeros of a zeta function of a variety over a finite field correspond to eigenvalues of a ] on an ] group, the zeros of a ] are eigenvalues of a ] of a Riemann surface, and the zeros of a ] correspond to eigenvectors of a Galois action on ]s.


{{harvtxt|Odlyzko|1987}} showed that the distribution of the zeros of the Riemann zeta function shares some statistical properties with the eigenvalues of ] drawn from the ]. This gives some support to the Hilbert–Pólya conjecture. {{harvtxt|Odlyzko|1987}} showed that the distribution of the zeros of the Riemann zeta function shares some statistical properties with the eigenvalues of ] drawn from the ]. This gives some support to the ].


In 1999, ] and Jon Keating conjectured that there is some unknown quantization <math>\hat H</math> of the classical Hamiltonian <math>H=xp</math> so that In 1999, ] and ] conjectured that there is some unknown quantization <math>\hat H</math> of the classical Hamiltonian ''H'' = ''xp'' so that
<math display=block>\zeta (1/2+i\hat H) = 0 </math>
and even more strongly, that the Riemann zeros coincide with the spectrum of the operator <math>1/2 + i \hat H</math>. This is in contrast to ], which leads to the ] <math>\sigma_x \sigma_p \geq \frac{\hbar}{2}</math> and the ] as spectrum of the ]. The crucial point is that the Hamiltonian should be a self-adjoint operator so that the quantization would be a realization of the Hilbert–Pólya program. In a connection with this quantum mechanical problem Berry and Connes had proposed that the inverse of the potential of the Hamiltonian is connected to the ] of the function
<math display=block> N(s)= \frac{1}{\pi}\operatorname{Arg}\xi(1/2+i\sqrt s)</math>
then, in Hilbert-Polya approach
<math display=block> V^{-1}(x) = \sqrt{4\pi} \frac{d^{1/2}N(x)}{dx^{1/2}}.</math>
This yields a Hamiltonian whose eigenvalues are the square of the imaginary part of the Riemann zeros, and also that the ] of this ] is just the ]. In fact the Riemann Xi function would be proportional to the functional determinant (])
<math display=block>\det(H+1/4+s(s-1)) </math>
<math display=block>\frac{\xi(s)}{\xi(0)}=\frac{\det(H+s(s-1)+1/4)}{\det(H+1/4)}.</math>
However this operator is not useful in practice since it includes the inverse function (implicit function ) of the potential but not the potential itself.
The analogy with the Riemann hypothesis over ]s suggests that the Hilbert space containing eigenvectors corresponding to the zeros might be some sort of first ] of the ] Spec (''Z'') of the integers. {{harvtxt|Deninger|1998}} described some of the attempts to find such a cohomology theory.{{sfnp|Leichtnam|2005}}


{{harvtxt|Zagier|1981}} constructed a natural space of invariant functions on the upper half plane that has eigenvalues under the Laplacian operator that correspond to zeros of the Riemann zeta function—and remarked that in the unlikely event that one could show the existence of a suitable positive definite inner product on this space, the Riemann hypothesis would follow. {{harvtxt|Cartier|1982}} discussed a related example, where due to a bizarre bug a computer program listed zeros of the Riemann zeta function as eigenvalues of the same ].
:<math> \zeta (1/2+i\hat H) = 0 </math>

and even more strongly, that the Riemann zeros coincide with the spectrum of the operator <math>1/2 + i \hat H</math>. This is to be contrasted to ] which leads to the ] <math>=1/2</math> and the ] as spectrum of the ]. The crucial point is that the Hamiltonian should be a self-adjoint operator so that the quantization would be a realization of the Hilbert–Pólya program. In a connection with this quantum mechanical problem Berry and Connes had proposed that the inverse of the potential of the Hamiltonian is connected to the half-derivative of the function <math> N(s)= \frac{1}{\pi}\operatorname{Arg}\xi(1/2+i\sqrt s) </math> then, in Berry–Connes approach <math> V^{-1}(x) = \sqrt{4\pi} \frac{d^{1/2}N(x)}{dx^{1/2}} </math> {{harv|Connes|1999}}. This yields to a Hamiltonian whose eigenvalues are the square of the imaginary part of the Riemann zeros, also the functional determinant of this Hamiltonian operator is just the ]

The analogy with the Riemann hypothesis over finite fields suggests that the Hilbert space
containing eigenvectors corresponding to the zeros might be some sort of first cohomology group of the ] Spec('''Z''') of the integers. {{harvtxt|Deninger|1998}} described some of the attempts to find such a cohomology theory.

{{harvtxt|Zagier|1983}} constructed a natural space of invariant functions on the upper half plane which has eigenvalues under the Laplacian operator corresponding to zeros of the Riemann zeta function, and remarked that in the unlikely event that one could show the existence of a suitable positive definite inner product on this space the Riemann hypothesis would follow. {{harvtxt|Cartier|1982}} discussed a related example, where due to a bizarre bug a computer program listed zeros of the Riemann zeta function as eigenvalues of the same Laplacian operator.


{{harvtxt|Schumayer|Hutchinson|2011}} surveyed some of the attempts to construct a suitable physical model related to the Riemann zeta function. {{harvtxt|Schumayer|Hutchinson|2011}} surveyed some of the attempts to construct a suitable physical model related to the Riemann zeta function.


===Lee–Yang theorem=== === Lee–Yang theorem ===
The ] states that the zeros of certain partition functions in statistical mechanics all lie on The ] states that the zeros of certain ] in ] all lie on a "critical line" with their real part equal to 0, and this has led to some speculation about a relationship with the Riemann hypothesis.{{sfnp|Knauf|1999}}
a "critical line" with real part 0, and this has led to some speculation about a relationship with the Riemann hypothesis {{harv|Knauf|1999}}.


===Turán's result=== ===Turán's result===
{{harvs|authorlink=Pál Turán|first=Pál |last=Turán|year=1948|txt}} showed that if the functions {{harvs|authorlink=Pál Turán|first=Pál |last=Turán|year=1948|txt}} showed that if the functions
:<math>\sum_{n=1}^N n^{-s}</math> <math display=block>\sum_{n=1}^N n^{-s}</math>

have no zeros when the real part of ''s'' is greater than one then have no zeros when the real part of ''s'' is greater than one then
<math display=block>T(x) = \sum_{n\le x}\frac{\lambda(n)}{n}\ge 0\text{ for } x > 0,</math>

where λ(''n'') is the ] given by (−1)<sup>''r''</sup> if ''n'' has ''r'' prime factors. He showed that this in turn would imply that the Riemann hypothesis is true. But {{harvtxt|Haselgrove|1958}} proved that ''T''(''x'') is negative for infinitely many ''x'' (and also disproved the closely related ]), and {{harvtxt|Borwein|Ferguson|Mossinghoff|2008}} showed that the smallest such ''x'' is {{gaps|72|185|376|951|205}}. {{harvtxt|Spira|1968}} showed by numerical calculation that the finite ] above for ''N''=19 has a zero with real part greater than 1. Turán also showed that a somewhat weaker assumption, the nonexistence of zeros with real part greater than 1+''N''<sup>−1/2+ε</sup> for large ''N'' in the finite Dirichlet series above, would also imply the Riemann hypothesis, but {{harvtxt|Montgomery|1983}} showed that for all sufficiently large ''N'' these series have zeros with real part greater than {{nowrap|1 + (log log ''N'')/(4 log ''N'')}}. Therefore, Turán's result is ] and cannot help prove the Riemann hypothesis.
:<math>T(x) = \sum_{n\le x}\frac{\lambda(n)}{n}\ge 0\text{ for } x > 0,</math>

where λ(''n'') is the ] given by (−1)<sup>''r''</sup> if ''n'' has ''r'' prime factors.
He showed that this in turn would imply that the Riemann hypothesis is true. However {{harvtxt|Haselgrove|1958}} proved that ''T''(''x'') is negative for infinitely many ''x'' (and also disproved the closely related ]), and {{harvtxt|Borwein|Ferguson|Mossinghoff|2008}} showed that the smallest such ''x'' is {{gaps|72|185|376|951|205}}. {{harvtxt|Spira|1968}} showed by numerical calculation that the finite Dirichlet series above for ''N''=19 has a zero with real part greater than 1. Turán also showed that a somewhat weaker assumption, the nonexistence of zeros with real part greater than 1+''N''<sup>−1/2+ε</sup> for large ''N'' in the finite Dirichlet series above, would also imply the Riemann hypothesis, but {{harvtxt|Montgomery|1983}} showed that for all sufficiently large ''N'' these series have zeros with real part greater than {{nowrap|1 + (log log ''N'')/(4 log ''N'')}}. Therefore, Turán's result is ] and cannot be used to help prove the Riemann hypothesis.


===Noncommutative geometry=== ===Noncommutative geometry===
{{harvs|last=Connes|authorlink=Alain Connes|year1=1999|year2=2000|txt}} has described a relationship between the Riemann hypothesis and ], and shows that a suitable analogue of the ] for the action of the ] on the adèle class space would imply the Riemann hypothesis. Some of these ideas are elaborated in {{harvtxt|Lapidus|2008}}. {{harvs|last=Connes|authorlink=Alain Connes|year1=1999|year2=2000|txt}} has described a relationship between the Riemann hypothesis and ], and showed that a suitable analog of the ] for the action of the ] on the adèle class space would imply the Riemann hypothesis. Some of these ideas are elaborated in {{harvtxt|Lapidus|2008}}.


===Hilbert spaces of entire functions=== ===Hilbert spaces of entire functions===
{{harvs|txt||first =Louis|last=de Branges |year=1992}} showed that the Riemann hypothesis would follow from a positivity condition on a certain Hilbert space of entire functions. {{harvs|txt||first =Louis|last=de Branges |year=1992 |authorlink=Louis de Branges}} showed that the Riemann hypothesis would follow from a positivity condition on a certain ] of ]s.
However {{harvtxt|Conrey|Li|2000}} showed that the necessary positivity conditions are not satisfied. However {{harvtxt|Conrey|Li|2000}} showed that the necessary positivity conditions are not satisfied. Despite this obstacle, de Branges has continued to work on an attempted proof of the Riemann hypothesis along the same lines, but this has not been widely accepted by other mathematicians.{{sfnp|Sarnak|2005}}


===Quasicrystals=== ===Quasicrystals===
The Riemann hypothesis implies that the zeros of the zeta function form a ], meaning a distribution with discrete support whose Fourier transform also has discrete support. The Riemann hypothesis implies that the zeros of the zeta function form a ], a distribution with discrete support whose ] also has discrete support.
{{harvtxt|Dyson|2009}} suggested trying to prove the Riemann hypothesis by classifying, or at least studying, 1-dimensional quasicrystals. {{harvtxt|Dyson|2009}} suggested trying to prove the Riemann hypothesis by classifying, or at least studying, 1-dimensional quasicrystals.

===Arithmetic zeta functions of models of elliptic curves over number fields===
When one goes from geometric dimension one, e.g. an ], to geometric dimension two, e.g. a regular model of an ] over a number field, the two-dimensional part of the generalized Riemann hypothesis for the ] of the model deals with the poles of the zeta function. In dimension one the study of the zeta integral in ] does not lead to new important information on the Riemann hypothesis. Contrary to this, in dimension two work of ] on two-dimensional generalisation of Tate's thesis includes an integral representation of a zeta integral closely related to the zeta function. In this new situation, not possible in dimension one, the poles of the zeta function can be studied via the zeta integral and associated adele groups. Related conjecture of {{harvs|last=Fesenko|authorlink=Ivan Fesenko|year1=2010|txt}} on the positivity of the fourth derivative of a boundary function associated to the zeta integral essentially implies the pole part of the generalized Riemann hypothesis. {{harvs|last=Suzuki|year1=2011|txt}} proved that the latter, together with some technical assumptions, implies Fesenko's conjecture.


===Multiple zeta functions=== ===Multiple zeta functions===
Deligne's proof of the Riemann hypothesis over finite fields used the zeta functions of product varieties, whose zeros and poles correspond to sums of zeros and poles of the original zeta function, in order to bound the real parts of the zeros of the original zeta function. By analogy, Deligne's proof of the Riemann hypothesis over finite fields used the zeta functions of product varieties, whose zeros and poles correspond to sums of zeros and poles of the original zeta function, in order to bound the real parts of the zeros of the original zeta function. By analogy, {{harvtxt|Kurokawa|1992}} introduced multiple zeta functions whose zeros and poles correspond to sums of zeros and poles of the Riemann zeta function. To make the series converge he restricted to sums of zeros or poles all with non-negative imaginary part. So far, the known bounds on the zeros and poles of the multiple zeta functions are not strong enough to give useful estimates for the zeros of the Riemann zeta function.
{{harvtxt|Kurokawa|1992}} introduced multiple zeta functions whose zeros and poles correspond to sums of zeros and poles of the Riemann zeta function. To make the series converge he restricted to sums of zeros or poles all with non-negative imaginary part. So far, the known bounds on the zeros and poles of the multiple zeta functions are not strong enough to give useful estimates for the zeros of the Riemann zeta function.


==Location of the zeros== ==Location of the zeros==
===Number of zeros=== ===Number of zeros===
The functional equation combined with the ] implies that the number of zeros of the zeta function with imaginary part between 0 and ''T'' is given by The functional equation combined with the ] implies that the number of zeros of the zeta function with imaginary part between 0 and ''T'' is given by
:<math>N(T)=\frac{1}{\pi}\mathop{\mathrm{Arg}}(\xi(s)) = \frac{1}{\pi}\mathop{\mathrm{Arg}}(\Gamma(s/2)\pi^{-s/2}\zeta(s)s(s-1)/2)</math> :<math>N(T)=\frac{1}{\pi}\mathop{\mathrm{Arg}}(\xi(s)) = \frac{1}{\pi}\mathop{\mathrm{Arg}}(\Gamma(\tfrac{s}{2})\pi^{-\frac{s}{2}}\zeta(s)s(s-1)/2)</math>
for ''s''=1/2+i''T'', where the argument is defined by varying it continuously along the line with Im(''s'')=''T'', for ''s''=1/2+i''T'', where the argument is defined by varying it continuously along the line with Im(''s'')=''T'', starting with argument 0 at ∞+i''T''. This is the sum of a large but well understood term
:<math>\frac{1}{\pi}\mathop{\mathrm{Arg}}(\Gamma(\tfrac{s}{2})\pi^{-s/2}s(s-1)/2) = \frac{T}{2\pi}\log\frac{T}{2\pi}-\frac{T}{2\pi} +7/8+O(1/T) </math>
starting with argument 0 at ∞+i''T''.
This is the sum of a large but well understood term
:<math>\frac{1}{\pi}\mathop{\mathrm{Arg}}(\Gamma(s/2)\pi^{-s/2}s(s-1)/2) = \frac{T}{2\pi}\log\frac{T}{2\pi}-\frac{T}{2\pi} +7/8+O(1/T) </math>
and a small but rather mysterious term and a small but rather mysterious term
:<math>S(T) = \frac{1}{\pi}\mathop{\mathrm{Arg}}(\zeta(1/2+iT)) =O(\log(T)).</math> :<math>S(T) = \frac{1}{\pi}\mathop{\mathrm{Arg}}(\zeta(1/2+iT)) =O(\log T).</math>
So the density of zeros with imaginary part near ''T'' is about log(''T'')/, and the function ''S'' describes the small deviations from this. The function ''S''(''t'') jumps by 1 at each zero of the zeta function, and for {{nowrap|''t'' ≥ 8}} it decreases monotonically between zeros with derivative close to −log ''t''. So the density of zeros with imaginary part near ''T'' is about log(''T'')/(2{{pi}}), and the function ''S'' describes the small deviations from this. The function ''S''(''t'') jumps by 1 at each zero of the zeta function, and for {{nowrap|''t'' ≥ 8}} it decreases ] between zeros with derivative close to −log ''t''.


] (1996) proved that every interval <math>(T,T+H]</math> for <math>H \ge T^{27/82+\varepsilon}</math> contains at least {{harvtxt|Trudgian|2014}} proved that, if <math>T > e</math>, then
: <math> H(\ln T)^{1/3}e^{-c\sqrt{\ln\ln T}} </math> :<math>|N(T) - \frac{T}{2\pi} \log{\frac{T}{2\pi e}}| \leq 0.112 \log T + 0.278 \log\log T + 3.385 + \frac{0.2}{T}</math>.

points where the function <math>S(t)</math> changes sign.
] (1996) proved that every interval (''T'', ''T''+''H''] for <math>H \ge T^{\frac{27}{82}+\varepsilon}</math> contains at least
: <math> H(\log T)^{\frac{1}{3}}e^{-c\sqrt{\log\log T}} </math>
points where the function ''S''(''t'') changes sign.


{{harvtxt|Selberg|1946}} showed that the average moments of even powers of ''S'' are given by {{harvtxt|Selberg|1946}} showed that the average moments of even powers of ''S'' are given by

:<math>\int_0^T|S(t)|^{2k}dt = \frac{(2k)!}{k!(2\pi)^{2k}}T(\log \log T)^k + O(T(\log \log T)^{k-1/2}).</math> :<math>\int_0^T|S(t)|^{2k}dt = \frac{(2k)!}{k!(2\pi)^{2k}}T(\log \log T)^k + O(T(\log \log T)^{k-1/2}).</math>
This suggests that ''S''(''T'')/(log log ''T'')<sup>1/2</sup> resembles
a ] with mean 0 and variance 2π<sup>2</sup> ({{harvtxt|Ghosh|1983}} proved this fact).
In particular |''S''(''T'')| is usually somewhere around (log log ''T'')<sup>1/2</sup>, but occasionally much larger. The exact order of growth of ''S''(''T'') is not known. There has been no unconditional improvement to Riemann's original bound ''S''(''T'')=O(log ''T''), though the Riemann hypothesis implies the slightly smaller bound ''S''(''T'')=O(log ''T''/log log ''T'') {{harv|Titchmarsh|1985}}. The true order of magnitude may be somewhat less than this, as
random functions with the same distribution as ''S''(''T'') tend to have
growth of order about log(''T'')<sup>1/2</sup>. In the other direction it cannot be too small: {{harvtxt|Selberg|1946}} showed that {{nowrap|''S''(''T'') ≠ o((log ''T'')<sup>1/3</sup>/(log log ''T'')<sup>7/3</sup>)}}, and assuming the Riemann hypothesis Montgomery showed that
{{nowrap|''S''(''T'') ≠ o((log ''T'')<sup>1/2</sup>/(log log ''T'')<sup>1/2</sup>)}}.


This suggests that ''S''(''T'')/(log log ''T'')<sup>1/2</sup> resembles a ] with mean 0 and variance 2{{pi}}<sup>2</sup> ({{harvtxt|Ghosh|1983}} proved this fact).
Numerical calculations confirm that ''S'' grows very slowly: |''S''(''T'')|&nbsp;&lt;&nbsp;1 for {{nowrap|''T'' < 280}}, |''S''(''T'')|&nbsp;&lt;&nbsp;2 for ''T''&nbsp;&lt;&nbsp;{{gaps|6|800|000}}, and the largest value of |''S''(''T'')| found so far is not much larger than 3 {{harv|Odlyzko|2002}}.
In particular |''S''(''T'')| is usually somewhere around (log log ''T'')<sup>1/2</sup>, but occasionally much larger. The exact order of growth of ''S''(''T'') is not known. There has been no unconditional improvement to Riemann's original bound ''S''(''T'')=O(log ''T''), though the Riemann hypothesis implies the slightly smaller bound ''S''(''T'')=O(log ''T''/log log ''T'').{{sfnp|Titchmarsh|1986}} The true order of magnitude may be somewhat less than this, as random functions with the same distribution as ''S''(''T'') tend to have growth of order about log(''T'')<sup>1/2</sup>. In the other direction it cannot be too small: {{harvtxt|Selberg|1946}} showed that {{nowrap|''S''(''T'') ≠ o((log ''T'')<sup>1/3</sup>/(log log ''T'')<sup>7/3</sup>)}}, and assuming the Riemann hypothesis Montgomery showed that {{nowrap|''S''(''T'') ≠ o((log ''T'')<sup>1/2</sup>/(log log ''T'')<sup>1/2</sup>)}}.


Numerical calculations confirm that ''S'' grows very slowly: |''S''(''T'')|&nbsp;&lt;&nbsp;1 for {{nowrap|''T'' < 280}}, |''S''(''T'')|&nbsp;&lt;&nbsp;2 for ''T''&nbsp;&lt;&nbsp;{{gaps|6|800|000}}, and the largest value of |''S''(''T'')| found so far is not much larger than 3.{{sfnp|Odlyzko|2002}}
Riemann's estimate ''S''(''T'')&nbsp;=&nbsp;O(log ''T'') implies that the gaps between zeros are bounded, and Littlewood improved this slightly, showing that the gaps between their imaginary parts tends to 0.

Riemann's estimate ''S''(''T'')&nbsp;=&nbsp;O(log ''T'') implies that the gaps between zeros are bounded, and Littlewood improved this slightly, showing that the gaps between their imaginary parts tend to 0.


===Theorem of Hadamard and de la Vallée-Poussin=== ===Theorem of Hadamard and de la Vallée-Poussin===
{{harvtxt|Hadamard|1896}} and {{harvtxt|de la Vallée-Poussin|1896}} independently proved that no zeros could lie on the line Re(''s'') = 1. Together with the functional equation and the fact that there are no zeros with real part greater than 1, this showed that all non-trivial zeros must lie in the interior of the critical strip {{nowrap|0 < Re(''s'') < 1}}. This was a key step in their first proofs of the ]. {{harvtxt|Hadamard|1896}} and {{harvtxt|de la Vallée-Poussin|1896}} independently proved that no zeros could lie on the line Re(''s'') = 1. Together with the functional equation and the fact that there are no zeros with real part greater than 1, this showed that all non-trivial zeros must lie in the interior of the critical strip {{nowrap|0 < Re(''s'') < 1}}. This was a key step in their first proofs of the ].


Both the original proofs that the zeta function has no zeros with real part 1 are similar, and depend on showing that Both the original proofs that the zeta function has no zeros with real part 1 are similar, and depend on showing that if ''ζ''(1&nbsp;+&nbsp;''it'') vanishes, then ''ζ''(1&nbsp;+&nbsp;2''it'') is singular, which is not possible. One way of doing this is by using the inequality
:<math>|\zeta(\sigma)^3\zeta(\sigma+it)^4\zeta(\sigma+2it)|\ge 1</math>
if ζ(1+''it'') vanishes, then ζ(1+2''it'') is singular, which is not possible. One way of doing this is by using the
for σ > 1, ''t'' real, and looking at the limit as σ → 1. This inequality follows by taking the real part of the log of the Euler product to see that
inequality
:<math>|\zeta(\sigma)^3\zeta(\sigma+it)^4\zeta(\sigma+2it)|\ge 1</math> for σ>1, ''t'' real, :<math>|\zeta(\sigma+it)| = \exp\Re\sum_{p^n}\frac{p^{-n(\sigma+it)}}{n}=\exp\sum_{p^n}\frac{p^{-n\sigma}\cos(t\log p^n)}{n},</math>
where the sum is over all prime powers ''p''<sup>''n''</sup>, so that
and looking at the limit as σ tends to 1.
This inequality follows by taking the real part of the log of the Euler product to see that
:<math>|\zeta(\sigma+it)| = \exp\Re\sum_{p^n}\frac{p^{-n(\sigma+it)}}{n}=\exp\sum_{p^n}\frac{p^{-n\sigma}\cos(t\log p^n)}{n}</math>
(where the sum is over all prime powers ''p''<sup>''n''</sup>)
so that
:<math>|\zeta(\sigma)^3\zeta(\sigma+it)^4\zeta(\sigma+2it)| = \exp\sum_{p^n}p^{-n\sigma}\frac{3+4\cos(t\log p^n)+\cos(2t\log p^n)}{n}</math> :<math>|\zeta(\sigma)^3\zeta(\sigma+it)^4\zeta(\sigma+2it)| = \exp\sum_{p^n}p^{-n\sigma}\frac{3+4\cos(t\log p^n)+\cos(2t\log p^n)}{n}</math>
which is at least 1 because all the terms in the sum are positive, due to the inequality which is at least 1 because all the terms in the sum are positive, due to the inequality
Line 314: Line 392:


===Zero-free regions=== ===Zero-free regions===
] proved that if σ+''it'' is a zero of the Riemann zeta function, then 1-σ ≥ C/log(''t'') for some positive constant ''C''. In other words zeros cannot be too close to the line σ=1: there is a zero-free region close to this line. This zero-free region has been enlarged by several authors. The most extensive computer search by Platt and Trudgian{{sfnp|Platt|Trudgian|2021}} for counter examples of the Riemann hypothesis has verified it for <math>|t| \leq 3.0001753328 \cdot 10^{12} </math>. Beyond that zero-free regions are known as inequalities concerning {{nowrap|σ + ''i{{hsp}}t''}}, which can be zeroes. The oldest version is from ], who proved there is a region without zeroes that satisfies {{nowrap|1 σ ≥ <big>{{sfrac|''C''|log(''t'')}}</big>}} for some positive constant ''C''. In other words, zeros cannot be too close to the line {{nowrap|σ {{=}} 1:}} there is a zero-free region close to this line. This has been enlarged by several authors using methods such as ].
{{harvtxt|Ford|2002}} gave a version with explicit numerical constants: {{nowrap|ζ(σ + i''t'') ≠ 0}} whenever |''t''| ≥ 3 and


The most recent paper<ref>{{Cite arXiv |last1=Mossinghoff |first1=Michael J. |last2=Trudgian |first2=Timothy S. |last3=Yang |first3=Andrew |date=2022-12-13 |title=Explicit zero-free regions for the Riemann zeta-function |class=math.NT |eprint=2212.06867 }}</ref> by Mossinghoff, Trudgian and Yang is from December 2022 and provides four zero-free regions that improved the previous results of Kevin Ford from 2002, Mossinghoff and Trudgian themselves from 2015 and Pace Nielsen's slight improvement of Ford from October 2022:
:<math>\sigma\ge 1-\frac{1}{57.54(\log{|t|})^{2/3}(\log{\log{|t|}})^{1/3}}.\!</math>

: <math>\sigma\ge 1 - \frac{1}{5.558691 \log|t|}</math> whenever <math>|t| \geq 2 </math>,
: <math>\sigma\ge 1-\frac{1}{55.241(\log{|t|})^{2/3}(\log{\log{|t|}})^{1/3}}</math> whenever <math>|t| \geq 3 </math> (largest known region in the bound <math>3.0001753328 \cdot 10^{12} \leq |t| \leq \exp(64.1) \approx 6.89 \cdot 10^{27} </math>),
: <math>\sigma\ge 1 - \frac{0.04962 - \frac{0.0196}{1.15 + \log 3 + \frac{1}{6} \log t + \log\log t}}{0.685 + \log 3 + \frac{1}{6} \log t + 1.155 \cdot \log\log t}</math> whenever <math>|t| \geq 1.88 \cdot 10^{14} </math> (largest known region in the bound <math>\exp(64.1) \leq |t| \leq \exp(1000) \approx 1.97 \cdot 10^{434} </math>) and
: <math>\sigma\ge 1-\frac{0.05035}{\frac{27}{164}(\log{|t|})+7.096}+\frac{0.0349}{(\frac{27}{164}(\log{|t|})+7.096)^2}</math> whenever <math>|t| \geq \exp(1000) </math> (largest known region in its own bound)

The paper also presents an improvement to the second zero-free region, whose bounds are unknown on account of <math>|t| </math> being merely assumed to be "sufficiently large" to fulfill the requirements of the paper's proof. This region is

<math>\sigma\ge 1-\frac{1}{48.1588(\log{|t|})^{2/3}(\log{\log{|t|}})^{1/3}}</math>.


==Zeros on the critical line== ==Zeros on the critical line==
{{harvtxt|Hardy|1914}} and {{harvtxt|Hardy|Littlewood|1921}} showed there are infinitely many zeros on the critical line, by considering moments of certain functions related to the zeta function. {{harvtxt|Selberg|1942}} proved that at least a (small) positive proportion of zeros lie on the line. {{harvtxt|Levinson|1974}} improved this to one-third of the zeros by relating the zeros of the zeta function to those of its derivative, and {{harvtxt|Conrey|1989}} improved this further to two-fifths. {{harvtxt|Hardy|1914}} and {{harvtxt|Hardy|Littlewood|1921}} showed there are infinitely many zeros on the critical line, by considering moments of certain functions related to the zeta function. {{harvtxt|Selberg|1942}} proved that at least a (small) positive proportion of zeros lie on the line. {{harvtxt|Levinson|1974}} improved this to one-third of the zeros by relating the zeros of the zeta function to those of its derivative, and {{harvtxt|Conrey|1989}} improved this further to two-fifths. In 2020, this estimate was extended to five-twelfths by Pratt, Robles, ] and Zeindler<ref>{{cite journal | first1 = Kyle | last1 = Pratt | first2 = Nicolas | last2 = Robles | first3 = Alexandru | last3 = Zaharescu | first4 = Dirk | last4 = Zeindler | title = More than five-twelfths of the zeros of ''ζ'' are on the critical line | journal = Res Math Sci | volume = 7 | year = 2020 | arxiv = 1802.10521 | doi = 10.1007/s40687-019-0199-8| s2cid = 202542332 }}</ref> by considering extended mollifiers that can accommodate higher order derivatives of the zeta function and their associated Kloosterman sums.


Most zeros lie close to the critical line. More precisely, {{harvtxt|Bohr|Landau|1914}} showed that for any positive ε, all but an infinitely small proportion of zeros lie within a distance ε of the critical line. {{harvtxt|Ivić|1985}} gives several more precise versions of this result, called '''zero density estimates''', which bound the number of zeros in regions with imaginary part at most ''T'' and real part at least 1/2+ε. Most zeros lie close to the critical line. More precisely, {{harvtxt|Bohr|Landau|1914}} showed that for any positive ''ε'', the number of zeroes with real part at least 1/2+''ε'' and imaginary part at between ''&minus;T'' and ''T'' is <math>O(T)</math>. Combined with the facts that zeroes on the critical strip are symmetric about the critical line and that the total number of zeroes in the critical strip is <math>\Theta(T\log T)</math>, ] non-trivial zeroes are within a distance ''ε'' of the critical line. {{harvtxt|Ivić|1985}} gives several more precise versions of this result, called ''zero density estimates'', which bound the number of zeros in regions with imaginary part at most ''T'' and real part at least 1/2+''ε''.


=== Hardy–Littlewood conjectures === ===Hardy–Littlewood conjectures===
In 1914 ] proved that <math>\zeta\bigl(\tfrac{1}{2}+it\bigr)</math> has infinitely many real zeros. In 1914 ] proved that <math>\zeta\left(\tfrac{1}{2}+it\right)</math> has infinitely many real zeros.


The next two conjectures of ] and ] on the distance between real zeros of <math>\zeta\left(\tfrac{1}{2}+it\right)</math> and on the density of zeros of <math>\zeta\left(\tfrac{1}{2}+it\right)</math> on the interval <math>(T,T+H]</math> for sufficiently large <math>T > 0</math>, and <math>H = T^{a + \varepsilon}</math> and with as small as possible value of <math>a > 0</math>, where <math>\varepsilon > 0</math> is an arbitrarily small number, open two new directions in the investigation of the Riemann zeta function:
Let <math>N(T)</math> be the total number of real zeros, <math>N_0(T)</math> be the total number of zeros of odd order of the function <math>\zeta\bigl(\tfrac{1}{2}+it\bigr)</math>, lying on the interval <math>(0,T]</math>.


The next two conjectures of ] and ] on the distance between real zeros of <math>\zeta\bigl(\tfrac{1}{2}+it\bigr)</math> and on the density of zeros of <math>\zeta\bigl(\tfrac{1}{2}+it\bigr)</math> on intervals <math>(T,T+H]</math> for sufficiently great <math>T > 0</math>, <math>H = T^{a + \varepsilon}</math> and with as less as possible value of <math>a > 0</math>, where <math>\varepsilon > 0</math> is an arbitrarily small number, open two new directions in the investigation of the Riemann zeta function: # For any <math>\varepsilon > 0</math> there exists a lower bound <math>T_0 = T_0(\varepsilon) > 0</math> such that for <math>T \geq T_0</math> and <math>H=T^{\tfrac{1}{4}+\varepsilon}</math> the interval <math>(T,T+H]</math> contains a zero of odd order of the function <math>\zeta\bigl(\tfrac{1}{2}+it\bigr)</math>.


'''1.''' for any <math>\varepsilon > 0</math> there exists <math>T_0 = T_0(\varepsilon) > 0</math> such that for <math>T \geq T_0</math> and <math>H=T^{0.25+\varepsilon}</math> the interval <math>(T,T+H]</math> contains a zero of odd order of the function <math>\zeta\bigl(\tfrac{1}{2}+it\bigr)</math>. Let <math>N(T)</math> be the total number of real zeros, and <math>N_0(T)</math> be the total number of zeros of odd order of the function <math>~\zeta\left(\tfrac{1}{2}+it\right)~</math> lying on the interval <math>(0,T]~</math>.


'''2.''' for any <math>\varepsilon > 0</math> there exist <math>T_0 = T_0(\varepsilon) > 0</math> and <math>c = c(\varepsilon) > 0</math>, such that for <math>T \geq T_0</math> and <math>H=T^{0.5+\varepsilon}</math> the inequality <math>N_0(T+H)-N_0(T) \geq cH</math> is true. #<li value="2"> For any <math>\varepsilon > 0</math> there exists <math>T_0 = T_0(\varepsilon) > 0</math> and some <math>c = c(\varepsilon) > 0</math>, such that for <math>T \geq T_0</math> and <math>H=T^{\tfrac{1}{2}+\varepsilon}</math> the inequality <math>N_0(T+H)-N_0(T) \geq c H</math> is true.</li>


=== Selberg conjecture === ===Selberg's zeta function conjecture===
{{main|Selberg's zeta function conjecture}}
{{harvs|first=Atle|last=Selberg|authorlink=Atle Selberg||year=1942|txt}} investigated the problem of Hardy–Littlewood '''2''' and proved that for any <math>\varepsilon > 0</math> there exists such <math>T_0 = T_0(\varepsilon) > 0</math> and <math>c = c(\varepsilon) > 0</math>, such that for <math>T \geq T_0</math> and <math>H=T^{0.5+\varepsilon}</math> the inequality <math>N(T+H)-N(T) \geq cH\log T</math> is true. Selberg conjectured that this could be tightened to <math>H=T^{0.5}</math>. {{harvs|first=A. A.|last=Karatsuba|year=1984a|year2=1984b|year3=1985|txt|authorlink=Anatolii Alexeevitch Karatsuba}} proved that for a fixed <math>\varepsilon</math> satisfying the condition
<math>0<\varepsilon < 0.001</math>, a sufficiently large <math>T</math> and <math>H = T^{a+\varepsilon}</math>, <math>a = \tfrac{27}{82} = \tfrac{1}{3} -\tfrac{1}{246}</math>, the interval <math>(T,T+H)</math> contains at least <math>cH\ln T</math> real zeros of the ] <math>\zeta\Bigl(\tfrac{1}{2}+it\Bigr)</math> and therefore confirmed the Selberg conjecture. The estimates of Selberg and Karatsuba can not be improved in respect of the order of growth as <math>T\to +\infty</math>. {{harvs|first=Atle|last=Selberg|authorlink=Atle Selberg||year=1942|txt}} investigated the problem of Hardy–Littlewood ''2'' and proved that for any ''ε'' > 0 there exists such <math>T_0 = T_0(\varepsilon) > 0</math> and ''c'' = ''c''(''ε'') > 0, such that for <math>T \geq T_0</math> and <math>H=T^{0.5+\varepsilon}</math> the inequality <math>N(T+H)-N(T) \geq cH\log T</math> is true. Selberg conjectured that this could be tightened to <math>H=T^{0.5}</math>. {{harvs|first=A. A. |last=Karatsuba |year=1984a |year2=1984b |year3=1985 |txt |authorlink=Anatolii Alexeevitch Karatsuba}} proved that for a fixed ''ε'' satisfying the condition 0 < ''ε'' < 0.001, a sufficiently large ''T'' and <math>H = T^{a+\varepsilon}</math>, <math>a = \tfrac{27}{82} = \tfrac{1}{3} -\tfrac{1}{246}</math>, the interval (''T'', ''T''+''H'') contains at least ''cH'' log(''T'') real zeros of the ] <math>\zeta\left(\tfrac{1}{2}+it\right)</math> and therefore confirmed the Selberg conjecture. The estimates of Selberg and Karatsuba can not be improved in respect of the order of growth as ''T'' → ∞.


{{harvtxt|Karatsuba|1992}} proved that an analog of the Selberg conjecture holds for almost all intervals <math>(T,T+H]</math>, <math>H = T^{\varepsilon}</math>, where <math>\varepsilon</math> is an arbitrarily small fixed positive number. The Karatsuba method permits to investigate zeros of the Riemann zeta-function on "supershort" intervals of the critical line, that is, on the intervals <math>(T,T+H]</math>, the length <math>H</math> of which grows slower than any, even arbitrarily small degree <math>T</math>. In particular, he proved that for any given numbers <math>\varepsilon</math>, <math>\varepsilon_{1}</math> satisfying the conditions <math>0<\varepsilon, \varepsilon_{1}<1</math> almost all intervals <math>(T,T+H]</math> for <math>H\ge\exp{\{(\ln T)^{\varepsilon}\}}</math> contain at least <math>H(\ln T)^{1-\varepsilon_{1}}</math> zeros of the function <math>\zeta\bigl(\tfrac{1}{2}+it\bigr)</math>. This estimate is quite close to the one that follows from the Riemann hypothesis. {{harvtxt|Karatsuba|1992}} proved that an analog of the Selberg conjecture holds for almost all intervals (''T'', ''T''+''H''], <math>H = T^\varepsilon</math>, where ''ε'' is an arbitrarily small fixed positive number. The Karatsuba method permits to investigate zeros of the Riemann zeta function on "supershort" intervals of the critical line, that is, on the intervals (''T'', ''T''+''H''], the length ''H'' of which grows slower than any, even arbitrarily small degree ''T''. In particular, he proved that for any given numbers ''ε'', <math>\varepsilon_1</math> satisfying the conditions <math>0<\varepsilon, \varepsilon_1<1</math> almost all intervals (''T'', ''T''+''H''] for <math>H\ge\exp{\{(\log T)^\varepsilon\}}</math> contain at least <math>H(\log T)^{1-\varepsilon_1}</math> zeros of the function <math>\zeta\left(\tfrac{1}{2}+it\right)</math>. This estimate is quite close to the one that follows from the Riemann hypothesis.


===Numerical calculations=== ===Numerical calculations===
]
The function The function


:<math>\pi^{-s/2}\Gamma(s/2)\zeta(s)\ </math> :<math>\pi^{-\frac{s}{2}}\Gamma(\tfrac{s}{2})\zeta(s)</math>


has the same zeros as the zeta function in the critical strip, and is real on the critical line because of the functional equation, so one can prove the existence of zeros exactly on the real line between two points by checking numerically that the function has opposite signs at these points. Usually one writes has the same zeros as the zeta function in the critical strip, and is real on the critical line because of the functional equation, so one can prove the existence of zeros exactly on the real line between two points by checking numerically that the function has opposite signs at these points. Usually one writes


:<math>\zeta(1/2 +it) = Z(t)e^{-i\pi\theta(t)}\ </math> :<math>\zeta(\tfrac{1}{2} +it) = Z(t)e^{-i\theta(t)}</math>

where Hardy's ] and the ] ''θ'' are uniquely defined by this and the condition that they are smooth real functions with ''θ''(0)&nbsp;=&nbsp;0.
By finding many intervals where the function ''Z'' changes sign one can show that there are many zeros on the critical line. To verify the Riemann hypothesis up to a given ] ''T'' of the zeros, one also has to check that there are no further zeros off the line in this region. This can be done by calculating the total number of zeros in the region using ] and checking that it is the same as the number of zeros found on the line. This allows one to verify the Riemann hypothesis computationally up to any desired value of ''T'' (provided all the zeros of the zeta function in this region are simple and on the critical line).


These calculations can also be used to estimate <math>\pi(x)</math> for finite ranges of <math>x</math>. For example, using the latest result from 2020 (zeros up to height <math>3\times10^{12}</math>), it has been shown that
where Hardy's function ] and the ] θ are uniquely defined by this and the condition that they are smooth real functions with θ(0)=0.
:<math>|\pi(x) - \operatorname{li}(x)| < \frac{1}{8\pi} \sqrt{x} \log(x), \qquad \text{for } 2657 \le x \le 1.101\times10^{26}.</math>
By finding many intervals where the function ''Z'' changes sign one can show that there are many zeros on the critical line.
In general, this inequality holds if
To verify the Riemann hypothesis up to a given imaginary part ''T'' of the zeros, one also has to check that there are no further zeros off the line in this region. This can be done by calculating the total number of zeros in the region and checking that it is the same as the number of zeros found on the line. This allows one to verify the Riemann hypothesis computationally up to any desired value of ''T'' (provided all the zeros of the zeta function in this region are simple and on the critical line).
:<math>x \ge 2657</math> and <math>\frac{9.06}{\log{\log{x}}}\sqrt{\frac{x}{\log{x}}} \le T,</math>
where <math>T</math> is the largest known value such that the Riemann hypothesis is true for all zeros <math>\rho</math> with <math>\Im{\left (\rho \right )}\in \left (0,T \right ]</math>.<ref>{{Cite journal|title=Improving bounds on prime counting functions by partial verification of the Riemann hypothesis|first=David R.|last=Johnston|journal=The Ramanujan Journal|volume=59|pages=1307–1321|date=29 July 2022|issue=4 |doi=10.1007/s11139-022-00616-x |s2cid=237420836 |url=https://link.springer.com/article/10.1007/s11139-022-00616-x|arxiv=2109.02249}}</ref>


Some calculations of zeros of the zeta function are listed below. So far all zeros that have been checked are on the critical line and are simple. (A multiple zero would cause problems for the zero finding algorithms, which depend on finding sign changes between zeros.) For tables of the zeros, see {{harvtxt|Haselgrove|Miller|1960}} or {{harvnb|Odlyzko}}. Some calculations of zeros of the zeta function are listed below, where the "height" of a zero is the magnitude of its imaginary part, and the height of the ''n''th zero is denoted by ''γ<sub>n</sub>''. So far all zeros that have been checked are on the critical line and are simple. (A multiple zero would cause problems for the zero finding algorithms, which depend on finding sign changes between zeros.) For tables of the zeros, see {{harvtxt|Haselgrove|Miller|1960}} or {{harvnb|Odlyzko}}.
{| class="wikitable" {| class="wikitable"
|- |-
Line 368: Line 458:
|1903 |1903
|15 |15
|J. P. {{harvtxt|Gram|1903}} used ] and discovered Gram's law. He showed that all 10 zeros with imaginary part at most 50 range lie on the critical line with real part 1/2 by computing the sum of the inverse 10th powers of the roots he found. |J. P. {{harvtxt|Gram|1903}} used ] and discovered ]. He showed that all 10 zeros with imaginary part at most 50 range lie on the critical line with real part 1/2 by computing the sum of the inverse 10th powers of the roots he found.
|- |-
|1914 |1914
|79 (γ<sub>''n''</sub> ≤ 200) |79 (''γ<sub>n</sub>'' ≤ 200)
|R. J. {{harvtxt|Backlund|1914}} introduced a better method of checking all the zeros up to that point are on the line, by studying the argument ''S''(''T'') of the zeta function. |R. J. {{harvtxt|Backlund|1914}} introduced a better method of checking all the zeros up to that point are on the line, by studying the argument ''S''(''T'') of the zeta function.
|- |-
|1925 |1925
|138 (γ<sub>''n''</sub> ≤ 300) |138 (''γ<sub>n</sub>'' ≤ 300)
|J. I. {{harvtxt|Hutchinson|1925}} found the first failure of Gram's law, at the Gram point ''g''<sub>126</sub>. |J. I. {{harvtxt|Hutchinson|1925}} found the first failure of Gram's law, at the Gram point ''g''<sub>126</sub>.
|- |-
|1935 |1935
|195 |195
|E. C. {{harvtxt|Titchmarsh|1935}} used the recently rediscovered ], which is much faster than Euler–Maclaurin summation.It takes about O(''T''<sup>3/2+ε</sup>) steps to check zeros with imaginary part less than ''T'', while the Euler–Maclaurin method takes about O(''T''<sup>2+ε</sup>) steps. |E. C. {{harvtxt|Titchmarsh|1935}} used the recently rediscovered ], which is much faster than Euler–Maclaurin summation. It takes about O(''T''<sup>3/2&nbsp;+&nbsp;''ε''</sup>) steps to check zeros with imaginary part less than ''T'', while the Euler–Maclaurin method takes about O(''T''<sup>2&nbsp;+&nbsp;''ε''</sup>) steps.
|- |-
|1936 |1936
Line 431: Line 521:
|- |-
|1987 |1987
|A few of large (~10<sup>12</sup>) height |A few of large (≈10<sup>12</sup>) height
|{{harvs|txt|first=A. M. |last=Odlyzko|year1=1987}} computed smaller numbers of zeros of much larger height, around 10<sup>12</sup>, to high precision to check Montgomery's pair correlation conjecture. |{{harvs|txt|first=A. M. |last=Odlyzko|year1=1987}} computed smaller numbers of zeros of much larger height, around 10<sup>12</sup>, to high precision to check ].
|- |-
|1992 |1992
|A few of large (~10<sup>20</sup>) height |A few of large (≈{{10^|20}}) height
|{{harvs|txt|first=A. M. |last=Odlyzko|year1=1992}} computed a 175 million zeroes of heights around 10<sup>20</sup> and a few more of heights around 2{{e|20}}, and gave an extensive discussion of the results. |{{harvs|txt|first=A. M. |last=Odlyzko|year1=1992}} computed a 175 million zeros of heights around {{10^|20}} and a few more of heights around 2{{e|20}}, and gave an extensive discussion of the results.
|- |-
|1998 |1998
|10000 of large (~10<sup>21</sup>) height |10000 of large (≈{{10^|21}}) height
|{{harvs|txt|first=A. M. |last=Odlyzko|year1=1998}} computed some zeros of height about 10<sup>21</sup> |{{harvs|txt|first=A. M. |last=Odlyzko|year1=1998}} computed some zeros of height about {{10^|21}}
|- |-
|2001 |2001
|{{gaps|10|000|000|000}} |{{10^|10}}
|J. van de Lune (unpublished) |J. van de Lune (unpublished)
|- |-
|2004 |2004
|≈9{{e|11}}<ref>{{mathworld|title=Riemann Zeta Function Zeros |urlname=RiemannZetaFunctionZeros|mode=cs2}}: "ZetaGrid is a distributed computing project attempting to calculate as many zeros as possible. It had reached 1029.9 billion zeros as of Feb. 18, 2005."</ref>
|{{gaps|900|000|000|000}}
|S. Wedeniwski (] distributed computing) |S. Wedeniwski (] distributed computing)
|- |-
|2004 |2004
|{{gaps|10|000|000|000|000}} and a few of large (up to ~10<sup>24</sup>) heights |{{10^|13}} and a few of large (up to ≈{{10^|24}}) heights
|X. {{harvtxt|Gourdon|2004}} and Patrick Demichel used the ]. They also checked two billion zeros around heights 10<sup>13</sup>, 10<sup>14</sup>, ... , 10<sup>24</sup>. |Xavier {{harvtxt|Gourdon|2004}} and Patrick Demichel used the ]. They also checked two billion zeros around heights ''γ<sub>n</sub>'' = {{10^|13}}, {{10^|14}}, ..., {{10^|24}}.
|-
|2020
|1.2363{{e|13}} (''γ<sub>n</sub>''&nbsp;≤ 3{{e|12}})
|{{harvtxt|Platt|Trudgian|2021}}.
They also verified the work of {{harvtxt|Gourdon|2004}} and others.
|} |}


===Gram points=== ===Gram points===
A ] is a value of ''t'' such that ζ(1/2&nbsp;+&nbsp;''it'') = ''Z''(''t'')e<sup>&nbsp;−&nbsp;''i''θ(''t'')</sup> is a non-zero real; these are easy to find because they are the points where the Euler factor at infinity π<sup>−''s''/2</sup>Γ(''s''/2) is real at ''s''&nbsp;=&nbsp;1/2&nbsp;+&nbsp;''it'', or equivalently θ(''t'') is a multiple ''n''π of π. A ] is a point on the critical line 1/2&nbsp;+&nbsp;''it'' where the zeta function is real and non-zero. Using the expression for the zeta function on the critical line, ''ζ''(1/2&nbsp;+&nbsp;''it'') = ''Z''(''t'')e<sup>&nbsp;−&nbsp;''''(''t'')</sup>, where Hardy's function, ], is real for real ''t'', and ''θ'' is the ], we see that zeta is real when sin(''θ''(''t'')) = 0. This implies that ''θ''(''t'') is an integer multiple of {{pi}}, which allows for the location of Gram points to be calculated fairly easily by inverting the formula for ''θ''. They are usually numbered as ''g<sub>n</sub>'' for ''n'' = 0, 1, ..., where ''g<sub>n</sub>'' is the unique solution of ''θ''(''t'') = ''n''{{pi}}.

They are usually numbered as ''g''<sub>''n''</sub> for ''n'' = −1, 0, 1, ..., where ''g''<sub>''n''</sub> is the unique solution of θ(''t'') = ''n''π with ''t''&nbsp;≥&nbsp;8 (θ is increasing beyond this point; there is a second point with θ(''t'') = −π near 3.4, and θ(0) = 0).
Gram observed that there was often exactly one zero of the zeta function between any two Gram points; Hutchinson called this observation '''Gram's law'''. There are several other closely related statements that are also sometimes called Gram's law: for example, (−1)<sup>''n''</sup>''Z''(''g''<sub>''n''</sub>) is usually positive, or ''Z''(''t'') usually has opposite sign at consecutive Gram points. The imaginary parts γ<sub>''n''</sub> of the first few zeros (in blue) and the first few Gram points ''g''<sub>''n''</sub> are given in the following table Gram observed that there was often exactly one zero of the zeta function between any two Gram points; Hutchinson called this observation ''']'''. There are several other closely related statements that are also sometimes called Gram's law: for example, (−1)<sup>''n''</sup>''Z''(''g<sub>n</sub>'') is usually positive, or ''Z''(''t'') usually has opposite sign at consecutive Gram points. The imaginary parts ''γ<sub>n</sub>'' of the first few zeros (in blue) and the first few Gram points ''g<sub>n</sub>'' are given in the following table
{| class="wikitable" {| class="wikitable"
|- |-
Line 464: Line 559:
| |
|''g''<sub>−1</sub> |''g''<sub>−1</sub>
|style="background: #eef"|γ<sub>1</sub> |style="background: #eef"|''γ''<sub>1</sub>
|''g''<sub>0</sub> |''g''<sub>0</sub>
|style="background: #eef"|γ<sub>2</sub> |style="background: #eef"|''γ''<sub>2</sub>
|''g''<sub>1</sub> |''g''<sub>1</sub>
|style="background: #eef"|γ<sub>3</sub> |style="background: #eef"|''γ''<sub>3</sub>
|''g''<sub>2</sub> |''g''<sub>2</sub>
|style="background: #eef"|γ<sub>4</sub> |style="background: #eef"|''γ''<sub>4</sub>
|''g''<sub>3</sub> |''g''<sub>3</sub>
|style="background: #eef"|γ<sub>5</sub> |style="background: #eef"|''γ''<sub>5</sub>
|''g''<sub>4</sub> |''g''<sub>4</sub>
|style="background: #eef"|γ<sub>6</sub> |style="background: #eef"|''γ''<sub>6</sub>
|''g''<sub>5</sub> |''g''<sub>5</sub>
|- |-
|0 |0
|3.4 |3.436
|9.667 |9.667
|style="background: #eef"|14.135 |style="background: #eef"|14.135
Line 494: Line 589:
|} |}


] zeros and the first 10 ], each labeled by ''n''. Fifty red points have been plotted between each ''r<sub>n</sub>'', and the zeros are projected onto concentric magenta rings scaled to show the relative distance between their values of t.
] The first failure of Gram's law occurs at the 127'th zero and the Gram point ''g''<sub>126</sub>, which are in the "wrong" order.
Gram's law states that the curve usually crosses the real axis once between zeros.]] The first failure of Gram's law occurs at the 127th zero and the Gram point ''g''<sub>126</sub>, which are in the "wrong" order.


{| class="wikitable" {| class="wikitable"
|- |-
|''g''<sub>124</sub> |''g''<sub>124</sub>
|style="background: #eef"|γ<sub>126</sub> |style="background: #eef"|''γ''<sub>126</sub>
|''g''<sub>125</sub> |''g''<sub>125</sub>
|''g''<sub>126</sub> |''g''<sub>126</sub>
!style="background: #eef"|γ<sub>127</sub> !style="background: #eef"|''γ''<sub>127</sub>
|style="background: #eef"|γ<sub>128</sub> |style="background: #eef"|''γ''<sub>128</sub>
|''g''<sub>127</sub> |''g''<sub>127</sub>
|style="background: #eef"|γ<sub>129</sub> |style="background: #eef"|''γ''<sub>129</sub>
|''g''<sub>128</sub> |''g''<sub>128</sub>
|- |-
Line 519: Line 615:
|} |}


A Gram point ''t'' is called good if the zeta function is positive at 1/2 + ''it''. The indices of the "bad" Gram points where ''Z'' has the "wrong" sign are 126, 134, 195, 211,... {{OEIS|id=A114856}}. A '''Gram block''' is an interval bounded by two good Gram points such that all the Gram points between them are bad. A refinement of Gram's law called Rosser's rule due to {{harvtxt|Rosser|Yohe|Schoenfeld|1969}} says that Gram blocks often have the expected number of zeros in them (the same as the number of Gram intervals), even though some of the individual Gram intervals in the block may not have exactly one zero in them. For example, the interval bounded by ''g''<sub>125</sub> and ''g''<sub>127</sub> is a Gram block containing a unique bad Gram point ''g''<sub>126</sub>, and contains the expected number 2 of zeros although neither of its two Gram intervals contains a unique zero. Rosser et al. checked that there were no exceptions to Rosser's rule in the first 3 million zeros, although there are infinitely many exceptions to Rosser's rule over the entire zeta function. A Gram point ''t'' is called good if the zeta function is positive at 1/2 + ''it''. The indices of the "bad" Gram points where ''Z'' has the "wrong" sign are 126, 134, 195, 211, ... {{OEIS|id=A114856}}. A ''Gram block'' is an interval bounded by two good Gram points such that all the Gram points between them are bad. A refinement of Gram's law called Rosser's rule due to {{harvtxt|Rosser|Yohe|Schoenfeld|1969}} says that Gram blocks often have the expected number of zeros in them (the same as the number of Gram intervals), even though some of the individual Gram intervals in the block may not have exactly one zero in them. For example, the interval bounded by ''g''<sub>125</sub> and ''g''<sub>127</sub> is a Gram block containing a unique bad Gram point ''g''<sub>126</sub>, and contains the expected number 2 of zeros although neither of its two Gram intervals contains a unique zero. Rosser et al. checked that there were no exceptions to Rosser's rule in the first 3 million zeros, although there are infinitely many exceptions to Rosser's rule over the entire zeta function.


Gram's rule and Rosser's rule both say that in some sense zeros do not stray too far from their expected positions. The distance of a zero from its expected position is controlled by the function ''S'' defined above, which grows extremely slowly: its average value is of the order of (log log ''T'')<sup>1/2</sup>, which only reaches 2 for T around 10<sup>24</sup>. This means that both rules hold most of the time for small ''T'' but eventually break down often. Gram's rule and Rosser's rule both say that in some sense zeros do not stray too far from their expected positions. The distance of a zero from its expected position is controlled by the function ''S'' defined above, which grows extremely slowly: its average value is of the order of (log log ''T'')<sup>1/2</sup>, which only reaches 2 for T around 10<sup>24</sup>. This means that both rules hold most of the time for small ''T'' but eventually break down often. Indeed, {{harvtxt|Trudgian|2011}} showed that both Gram's law and Rosser's rule fail in a positive proportion of cases. To be specific, it is expected that in about 66% one zero is enclosed by two successive Gram points, but in 17% no zero and in 17% two zeros are in such a Gram-interval on the long run {{harvtxt|Hanga|2020}}.


==Arguments for and against the Riemann hypothesis== ==Arguments for and against the Riemann hypothesis==
Mathematical papers about the Riemann hypothesis tend to be cautiously noncommittal about its truth. Of authors who express an opinion, most of them, such as {{harvtxt|Riemann|1859}} or {{harvtxt|Bombieri|2000}}, imply that they expect (or at least hope) that it is true. The few authors who express serious doubt about it include {{harvtxt|Ivić|2008}} who lists some reasons for being skeptical, and {{harvtxt|Littlewood|1962}} who flatly states that he believes it to be false, and that there is no evidence whatever for it and no imaginable reason for it to be true. The consensus of the survey articles ({{harvnb|Bombieri|2000}}, {{harvnb|Conrey|2003}}, and {{harvnb|Sarnak|2008}}) is that the evidence for it is strong but not overwhelming, so that while it is probably true there is some reasonable doubt about it. Mathematical papers about the Riemann hypothesis tend to be cautiously noncommittal about its truth. Of authors who express an opinion, most of them, such as {{harvtxt|Riemann|1859}} and {{harvtxt|Bombieri|2000}}, imply that they expect (or at least hope) that it is true. The few authors who express serious doubt about it include {{harvtxt|Ivić|2008}}, who lists some reasons for skepticism, and {{harvtxt|Littlewood|1962}}, who flatly states that he believes it false, that there is no evidence for it and no imaginable reason it would be true. The consensus of the survey articles ({{harvnb|Bombieri|2000}}, {{harvnb|Conrey|2003}}, and {{harvnb|Sarnak|2005}}) is that the evidence for it is strong but not overwhelming, so that while it is probably true there is reasonable doubt.


Some of the arguments for (or against) the Riemann hypothesis are listed by {{harvtxt|Sarnak|2008}}, {{harvtxt|Conrey|2003}}, and {{harvtxt|Ivić|2008}}, and include the following reasons. Some of the arguments for and against the Riemann hypothesis are listed by {{harvtxt|Sarnak|2005}}, {{harvtxt|Conrey|2003}}, and {{harvtxt|Ivić|2008}}, and include the following:
* Several analogues of the Riemann hypothesis have already been proved. The proof of the Riemann hypothesis for varieties over finite fields by {{harvtxt|Deligne|1974}} is possibly the single strongest theoretical reason in favor of the Riemann hypothesis. This provides some evidence for the more general conjecture that all zeta functions associated with automorphic forms satisfy a Riemann hypothesis, which includes the classical Riemann hypothesis as a special case. Similarly ]s satisfy the analogue of the Riemann hypothesis, and are in some ways similar to the Riemann zeta function, having a functional equation and an infinite product expansion analogous to the Euler product expansion. However there are also some major differences; for example they are not given by Dirichlet series. The Riemann hypothesis for the ] was proved by {{harvtxt|Sheats|1998}}. In contrast to these positive examples, however, some ]s do not satisfy the Riemann hypothesis, even though they have an infinite number of zeros on the critical line {{harv|Titchmarsh|1986}}. These functions are quite similar to the Riemann zeta function, and have a Dirichlet series expansion and a functional equation, but the ones known to fail the Riemann hypothesis do not have an Euler product and are not directly related to ]s. * Several analogues of the Riemann hypothesis have already been proved. The proof of the Riemann hypothesis for varieties over finite fields by {{harvtxt|Deligne|1974}} is possibly the single strongest theoretical reason in favor of the Riemann hypothesis. This provides some evidence for the more general conjecture that all zeta functions associated with ] forms satisfy a Riemann hypothesis, which includes the classical Riemann hypothesis as a special case. Similarly ]s satisfy the analogue of the Riemann hypothesis, and are in some ways similar to the Riemann zeta function, having a functional equation and an infinite product expansion analogous to the Euler product expansion. But there are also some major differences; for example, they are not given by Dirichlet series. The Riemann hypothesis for the ] was proved by {{harvtxt|Sheats|1998}}. In contrast to these positive examples, some ]s do not satisfy the Riemann hypothesis even though they have an infinite number of zeros on the critical line.{{sfnp|Titchmarsh|1986}} These functions are quite similar to the Riemann zeta function, and have a Dirichlet series expansion and a ], but the ones known to fail the Riemann hypothesis do not have an ] and are not directly related to ]s.
* The numerical verification that many zeros lie on the line seems at first sight to be strong evidence for it. However analytic number theory has had many conjectures supported by large amounts of numerical evidence that turn out to be false. See ] for a notorious example, where the first exception to a plausible conjecture related to the Riemann hypothesis probably occurs around 10<sup>316</sup>; a counterexample to the Riemann hypothesis with imaginary part this size would be far beyond anything that can currently be computed. The problem is that the behavior is often influenced by very slowly increasing functions such as log log ''T'', that tend to infinity, but do so so slowly that this cannot be detected by computation. Such functions occur in the theory of the zeta function controlling the behavior of its zeros; for example the function ''S''(''T'') above has average size around (log log ''T'')<sup>1/2</sup> . As ''S''(''T'') jumps by at least 2 at any counterexample to the Riemann hypothesis, one might expect any counterexamples to the Riemann hypothesis to start appearing only when ''S''(''T'') becomes large. It is never much more than 3 as far as it has been calculated, but is known to be unbounded, suggesting that calculations may not have yet reached the region of typical behavior of the zeta function. * At first, the numerical verification that many zeros lie on the line seems strong evidence for it. But analytic number theory has had many conjectures supported by substantial numerical evidence that turned out to be false. See ] for a notorious example, where the first exception to a plausible conjecture related to the Riemann hypothesis probably occurs around 10<sup>316</sup>; a counterexample to the Riemann hypothesis with imaginary part this size would be far beyond anything that can currently be computed using a direct approach. The problem is that the behavior is often influenced by very slowly increasing functions such as log log ''T'', that tend to infinity, but do so so slowly that this cannot be detected by computation. Such functions occur in the theory of the zeta function controlling the behavior of its zeros; for example the function ''S''(''T'') above has average size around (log log ''T'')<sup>1/2</sup>. As ''S''(''T'') jumps by at least 2 at any counterexample to the Riemann hypothesis, one might expect any counterexamples to the Riemann hypothesis to start appearing only when ''S''(''T'') becomes large. It is never much more than 3 as far as it has been calculated, but is known to be unbounded, suggesting that calculations may not have yet reached the region of typical behavior of the zeta function.
* ]'s probabilistic argument for the Riemann hypothesis{{sfnp|Edwards|1974}} is based on the observation that if μ(''x'') is a random sequence of "1"s and "−1"s then, for every {{nowrap|ε > 0}}, the ]s <math display=block>M(x) = \sum_{n \le x} \mu(n)</math> (the values of which are positions in a ]) satisfy the bound <math display=block>M(x) = O(x^{1/2+\varepsilon})</math> with ]. The Riemann hypothesis is equivalent to this bound for the ]&nbsp;μ and the ] ''M'' derived in the same way from it. In other words, the Riemann hypothesis is in some sense equivalent to saying that μ(''x'') behaves like a random sequence of coin tosses. When μ(''x'') is nonzero its sign gives the ] of the number of prime factors of ''x'', so informally the Riemann hypothesis says that the parity of the number of prime factors of an integer behaves randomly. Such probabilistic arguments in number theory often give the right answer, but tend to be very hard to make rigorous, and occasionally give the wrong answer for some results, such as ].
* ]'s probabilistic argument for the Riemann hypothesis {{harv|Edwards|1974}} is based on the observation that if μ(''x'') is a random sequence of "1"s and "−1"s then, for every {{nowrap|ε > 0}}, the ]s
* The calculations in {{harvtxt|Odlyzko|1987}} show that the zeros of the zeta function behave very much like the eigenvalues of a random ], suggesting that they are the eigenvalues of some self-adjoint operator, which would imply the Riemann hypothesis. All attempts to find such an operator have failed.
::<math>M(x) = \sum_{n \le x} \mu(n)</math>
* There are several theorems, such as ] for sufficiently large odd numbers, that were first proved using the generalized Riemann hypothesis, and later shown to be true unconditionally. This could be considered as weak evidence for the generalized Riemann hypothesis, as several of its "predictions" are true.
:(the values of which are positions in a ]) satisfy the bound
* ],{{sfnp|Lehmer|1956}} where two zeros are sometimes very close, is sometimes given as a reason to disbelieve the Riemann hypothesis. But one would expect this to happen occasionally by chance even if the Riemann hypothesis is true, and Odlyzko's calculations suggest that nearby pairs of zeros occur just as often as predicted by ].
::<math>M(x) = O(x^{1/2+\varepsilon}) \,</math>
* ] suggests that the most compelling reason for the Riemann hypothesis for most mathematicians is the hope that primes are distributed as regularly as possible.<ref>p. 75: "One should probably add to this list the 'Platonic' reason that one expects the natural numbers to be the most perfect idea conceivable, and that this is only compatible with the primes being distributed in the most regular fashion possible..."</ref>
:with ]. The Riemann hypothesis is equivalent to this bound for the ]&nbsp;μ and the ] ''M'' derived in the same way from it. In other words, the Riemann hypothesis is in some sense equivalent to saying that μ(''x'') behaves like a random sequence of coin tosses. When μ(''x'') is non-zero its sign gives the parity of the number of prime factors of ''x'', so informally the Riemann hypothesis says that the parity of the number of prime factors of an integer behaves randomly. Such probabilistic arguments in number theory often give the right answer, but tend to be very hard to make rigorous, and occasionally give the wrong answer for some results, such as ].

* The calculations in {{harvtxt|Odlyzko|1987}} show that the zeros of the zeta function behave very much like the eigenvalues of a random Hermitian matrix, suggesting that they are the eigenvalues of some self-adjoint operator, which would imply the Riemann hypothesis. However all attempts to find such an operator have failed.
==Notes==
* There are several theorems, such as ] for sufficiently large odd numbers, that were first proved using the generalized Riemann hypothesis, and later shown to be true unconditionally. This could be considered as weak evidence for the generalized Riemann hypothesis, as several of its "predictions" turned out to be true.
{{Reflist|30em}}
* Lehmer's phenomenon {{harv|Lehmer|1956}} where two zeros are sometimes very close is sometimes given as a reason to disbelieve in the Riemann hypothesis. However one would expect this to happen occasionally just by chance even if the Riemann hypothesis were true, and Odlyzko's calculations suggest that nearby pairs of zeros occur just as often as predicted by Montgomery's conjecture.
* {{harvtxt|Patterson|1988}} suggests that the most compelling reason for the Riemann hypothesis for most mathematicians is the hope that primes are distributed as regularly as possible.


==References== ==References==
{{refbegin|2}} {{refbegin|30em}}
* {{Citation | last1=Artin | first1=Emil | author1-link=Emil Artin | title=Quadratische Körper im Gebiete der höheren Kongruenzen. II. Analytischer Teil | doi=10.1007/BF01181075 | year=1924 | journal=] | pages=207–246 | volume=19 | issue=1}} * {{Citation | last1=Artin | first1=Emil | author1-link=Emil Artin | title=Quadratische Körper im Gebiete der höheren Kongruenzen. II. Analytischer Teil | doi=10.1007/BF01181075 | year=1924 | journal=] | pages=207–246 | volume=19 | issue=1| s2cid=117936362 }}
* {{citation|last=Backlund|first=R. J.|title=Sur les Zéros de la Fonction ''ζ''(''s'') de Riemann|journal=C. R. Acad. Sci. Paris|volume=158|pages=1979–1981|year=1914|url=http://gallica.bnf.fr/ark:/12148/bpt6k3111d/f1983.image}}
* {{Citation | author1-link=Arne Beurling | last1=Beurling | first1=Arne | title=A closure problem related to the Riemann zeta-function | mr=0070655 | year=1955 | journal=] | volume=41 | pages=312–314 | doi=10.1073/pnas.41.5.312 | issue=5}}
* {{Citation | author1-link=Arne Beurling | last1=Beurling | first1=Arne | title=A closure problem related to the Riemann zeta-function | mr=0070655 | year=1955 | journal=] | volume=41 | pages=312–314 | doi=10.1073/pnas.41.5.312 | pmid=16589670 | issue=5| pmc=528084 | bibcode=1955PNAS...41..312B | doi-access=free }}
* {{Citation | last1=Bohr | first1=H. | author1-link=Harald Bohr | last2=Landau | first2=E. | author2-link=Edmund Landau | title=Ein Satz über Dirichletsche Reihen mit Anwendung auf die ζ-Funktion und die ''L''-Funktionen | doi=10.1007/BF03014823 | journal=Rendiconti del Circolo Matematico di Palermo | volume=37 | issue = 1 | year=1914 | pages=269–272}}
* {{citation|first1=Anders|last1=Björner|journal=Advances in Applied Mathematics|volume=46|issue=1–4|year=2011|pages=71–85|title=A cell complex in number theory|doi=10.1016/j.aam.2010.09.007 |arxiv=1101.5704}}
* {{citation|last=Bombieri|year=2000|first= Enrico|authorlink=Enrico Bombieri|url=http://www.claymath.org/millennium/Riemann_Hypothesis/riemann.pdf|format=PDF|title=The Riemann Hypothesis - official problem description|publisher=]|accessdate=2008-10-25}} Reprinted in {{harv|Borwein|Choi|Rooney|Weirathmueller|2008}}.
* {{Citation | last1=Bohr | first1=H. | author1-link=Harald Bohr | last2=Landau | first2=E. | author2-link=Edmund Landau | title=Ein Satz über Dirichletsche Reihen mit Anwendung auf die ''ζ''-Funktion und die ''L''-Funktionen | doi=10.1007/BF03014823 | journal=] | volume=37 | issue = 1 | year=1914 | pages=269–272| s2cid=121145912 }}
* {{citation|isbn=978-0387721255|title=The Riemann Hypothesis: A Resource for the {{sic|Af|ficionado|hide=y}} and Virtuoso Alike |series=CMS Books in Mathematics|publisher=Springer|place=New York|year=2008
* {{citation|last=Bombieri|year=2000|first=Enrico|author-link=Enrico Bombieri|url=http://www.claymath.org/sites/default/files/official_problem_description.pdf|title=The Riemann Hypothesis – official problem description|publisher=]|access-date=2008-10-25|archive-date=2015-12-22|archive-url=https://web.archive.org/web/20151222090027/http://www.claymath.org/sites/default/files/official_problem_description.pdf|url-status=dead}} Reprinted in {{harv|Borwein|Choi|Rooney|Weirathmueller|2008}}.
* {{citation|isbn=978-0-387-72125-5|title=The Riemann Hypothesis: A Resource for the {{sic|Af|ficionado|hide=y}} and Virtuoso Alike |series=CMS Books in Mathematics|publisher=Springer|place=New York|year=2008
|editor1-first=Peter|editor1-last= Borwein|editor1-link=Peter Borwein|editor2-first=Stephen |editor2-last=Choi |editor3-first=Brendan|editor3-last= Rooney |editor4-first= Andrea|editor4-last= Weirathmueller|doi=10.1007/978-0-387-72126-2}} |editor1-first=Peter|editor1-last= Borwein|editor1-link=Peter Borwein|editor2-first=Stephen |editor2-last=Choi |editor3-first=Brendan|editor3-last= Rooney |editor4-first= Andrea|editor4-last= Weirathmueller|doi=10.1007/978-0-387-72126-2}}
* {{Citation | last1=Borwein | first1=Peter | last2=Ferguson | first2=Ron | last3=Mossinghoff | first3=Michael J. | title=Sign changes in sums of the Liouville function | doi=10.1090/S0025-5718-08-02036-X | mr=2398787 | year=2008 | journal=] | volume=77 | issue=263 | pages=1681–1694}} * {{Citation | last1=Borwein | first1=Peter |author1-link=Peter Borwein| last2=Ferguson | first2=Ron | last3=Mossinghoff | first3=Michael J. | title=Sign changes in sums of the Liouville function | doi=10.1090/S0025-5718-08-02036-X | mr=2398787 | year=2008 | journal=] | volume=77 | issue=263 | pages=1681–1694| bibcode=2008MaCom..77.1681B | doi-access=free }}
* {{Citation | authorlink=Louis de Branges | last1=de Branges | first1=Louis | title=The convergence of Euler products | doi=10.1016/0022-1236(92)90103-P | mr=1165869 | year=1992 | journal=Journal of Functional Analysis | volume=107 | issue=1 | pages=122–210}} * {{Citation | author-link=Louis de Branges | last1=de Branges | first1=Louis | title=The convergence of Euler products | doi=10.1016/0022-1236(92)90103-P | mr=1165869 | year=1992 | journal=Journal of Functional Analysis | volume=107 | issue=1 | pages=122–210| doi-access= }}
* {{citation| first=Kevin|last=Broughan
* {{Citation | authorlink=Pierre Cartier (mathematician) | last1=Cartier | first1=P. | title=Seminar on Number Theory, Paris 1980-81 (Paris, 1980/1981) | publisher=Birkhäuser Boston | location=Boston, MA | series=Progr. Math. | mr=693308 | year=1982 | volume=22 | chapter=Comment l'hypothèse de Riemann ne fut pas prouvée | pages=35–48}}
|title=Equivalents of the Riemann Hypothesis
* {{Citation | last1=Connes | first1=Alain | author1-link=Alain Connes | title=Trace formula in noncommutative geometry and the zeros of the Riemann zeta function | doi=10.1007/s000290050042 | arxiv=math/9811068 |mr=1694895 | year=1999 | journal=Selecta Mathematica. New Series | volume=5 | issue=1 | pages=29–106}}
|year=2017
|publisher=Cambridge University Press
|isbn=978-1108290784}}
* {{citation|first=David M.|last=Burton|title=Elementary Number Theory|url=https://books.google.com/books?id=XMQjuoTqqRMC|year=2006|publisher=Tata McGraw-Hill Publishing Company Limited|isbn=978-0-07-061607-3}}
* {{Citation | author-link=Pierre Cartier (mathematician) | last1=Cartier | first1=P. | title=Seminar on Number Theory, Paris 1980–81 (Paris, 1980/1981) | publisher=Birkhäuser Boston | location=Boston, MA | series=Progr. Math. | mr=693308 | year=1982 | volume=22 | chapter=Comment l'hypothèse de Riemann ne fut pas prouvée | pages=35–48}}
* {{Citation | last1=Connes | first1=Alain | author1-link=Alain Connes | title=Trace formula in noncommutative geometry and the zeros of the Riemann zeta function | doi=10.1007/s000290050042 | arxiv=math/9811068 |mr=1694895 | year=1999 | journal=Selecta Mathematica |series=New Series | volume=5 | issue=1 | pages=29–106| s2cid=55820659 }}
* {{Citation | last1=Connes | first1=Alain | author1-link=Alain Connes | title=Mathematics: frontiers and perspectives | publisher=] | location=Providence, R.I. | mr=1754766 | year=2000 | chapter=Noncommutative geometry and the Riemann zeta function | pages=35–54}} * {{Citation | last1=Connes | first1=Alain | author1-link=Alain Connes | title=Mathematics: frontiers and perspectives | publisher=] | location=Providence, R.I. | mr=1754766 | year=2000 | chapter=Noncommutative geometry and the Riemann zeta function | pages=35–54}}
*{{citation | last=Connes| first=Alain | author-link1=Alain Connes | contribution=An Essay on the Riemann Hypothesis| year=2016 | pages=225–257 | doi=10.1007/978-3-319-32162-2_5 | editor1-last=Nash | editor1-first=J. F. | editor1-link= John Forbes Nash Jr. |editor2-first=Michael|editor2-last=Rassias | title=Open Problems in Mathematics | publisher=Springer | location = New York | arxiv=1509.05576 | isbn=978-3-319-32160-8 }}
* {{citation| last=Conrey|first= J. B.|authorlink=Brian Conrey|title=More than two fifths of the zeros of the Riemann zeta function are on the critical line|journal= J. Reine angew. Math.|volume= 399 |year=1989|pages= 1–16
|url=http://www.digizeitschriften.de/resolveppn/GDZPPN002206781| mr=1004130}} * {{citation|last= Conrey|first= J. B.|author-link= Brian Conrey|title= More than two fifths of the zeros of the Riemann zeta function are on the critical line|journal= J. Reine Angew. Math.|volume= 1989|year= 1989|issue= 399|pages= 1–26|url= http://www.digizeitschriften.de/resolveppn/GDZPPN002206781|mr= 1004130|doi= 10.1515/crll.1989.399.1|s2cid= 115910600}}
* {{citation|authorlink=Brian Conrey|last=Conrey|first= J. Brian|title=The Riemann Hypothesis|journal=Notices of the American Mathematical Society|year= 2003|pages=341–353|url= http://www.ams.org/notices/200303/fea-conrey-web.pdf|format=PDF}} Reprinted in {{harv|Borwein|Choi|Rooney|Weirathmueller|2008}}. * {{citation|author-link=Brian Conrey|last=Conrey|first=J. Brian|title=The Riemann Hypothesis|journal=Notices of the American Mathematical Society|year=2003|pages=341–353|url=https://www.ams.org/notices/200303/fea-conrey-web.pdf}} Reprinted in {{harv|Borwein|Choi|Rooney|Weirathmueller|2008}}.
* {{Citation | last1=Conrey | first1=J. B. |author1-link=Brian Conrey| last2=Li | first2=Xian-Jin |author2-link=Xian-Jin Li| title=A note on some positivity conditions related to zeta and L-functions | doi=10.1155/S1073792800000489 | arxiv=math/9812166 |mr=1792282 | year=2000 | journal=International Mathematics Research Notices | issue=18 | pages=929–940 | volume=2000}} * {{Citation | last1=Conrey | first1=J. B. |author1-link=Brian Conrey| last2=Li | first2=Xian-Jin |author2-link=Xian-Jin Li| title=A note on some positivity conditions related to zeta and L-functions | doi=10.1155/S1073792800000489 | arxiv=math/9812166 |mr=1792282 | year=2000 | journal=International Mathematics Research Notices | issue=18 | pages=929–940 | volume=2000| s2cid=14678312 | doi-access=free }}
* {{Citation | last1=Deligne | first1=Pierre | author1-link=Pierre Deligne | title=La conjecture de Weil. I | url=http://www.numdam.org/item?id=PMIHES_1974__43__273_0 | mr=0340258 | year=1974 | journal=] | volume=43 | pages=273–307 | doi=10.1007/BF02684373}} * {{Citation | last1=Deligne | first1=Pierre | author1-link=Pierre Deligne | title=La conjecture de Weil. I | url=http://www.numdam.org/item?id=PMIHES_1974__43__273_0 | mr=0340258 | year=1974 | journal=] | volume=43 | pages=273–307 | doi=10.1007/BF02684373 | s2cid=123139343 }}
* {{Citation | last1=Deligne | first1=Pierre | author1-link=Pierre Deligne | title=La conjecture de Weil : II | url=http://www.numdam.org/item?id=PMIHES_1980__52__137_0 | year=1980 | journal=Publications Mathématiques de l'IHÉS | volume=52 | pages=137–252 | doi=10.1007/BF02684780}} * {{Citation | last1=Deligne | first1=Pierre | author1-link=Pierre Deligne | title=La conjecture de Weil : II | url=http://www.numdam.org/item?id=PMIHES_1980__52__137_0 | year=1980 | journal=Publications Mathématiques de l'IHÉS | volume=52 | pages=137–252 | doi=10.1007/BF02684780 | s2cid=189769469 }}
* {{Citation | last1=Deninger | first1=Christopher | title=Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998) | url=http://www.mathematik.uni-bielefeld.de/documenta/xvol-icm/00/Deninger.MAN.html | mr=1648030 | year=1998 | journal=Documenta Mathematica | chapter=Some analogies between number theory and dynamical systems on foliated spaces | pages=163–186}} * {{Citation | last1=Deninger | first1=Christopher | author-link=Christopher Deninger | title=Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998) | chapter-url=http://www.mathematik.uni-bielefeld.de/documenta/xvol-icm/00/Deninger.MAN.html | mr=1648030 | year=1998 | series=Documenta Mathematica | chapter=Some analogies between number theory and dynamical systems on foliated spaces | pages=163–186 }}
* {{Citation| last=Dudek|first=Adrian W.|date=2014-08-21|title=On the Riemann hypothesis and the difference between primes|journal=International Journal of Number Theory|volume=11|issue=3|pages=771–778|doi=10.1142/S1793042115500426|issn=1793-0421|arxiv=1402.6417|bibcode=2014arXiv1402.6417D|s2cid=119321107}}
* {{Citation | last1=Derbyshire | first1=John | author1-link=John Derbyshire | title=] | publisher=Joseph Henry Press, Washington, DC | isbn=978-0-309-08549-6 | mr=1968857 | year=2003}}
* {{Citation | last1=Dyson | first1=Freeman | title=Birds and frogs | url=http://www.ams.org/notices/200902/rtx090200212p.pdf | mr=2483565 | year=2009 | journal=] | volume=56 | issue=2 | pages=212–223}} * {{Citation | last1=Dyson | first1=Freeman | author1-link=Freeman Dyson | title=Birds and frogs | url=https://www.ams.org/notices/200902/rtx090200212p.pdf | mr=2483565 | year=2009 | journal=] | volume=56 | issue=2 | pages=212–223 }}
* {{Citation | last1=Edwards | first1=H. M. | authorlink = Harold Edwards (mathematician) | title=Riemann's Zeta Function | publisher=] | location=New York | isbn=978-0-486-41740-0 | mr=0466039 | year=1974}} * {{Citation | last1=Edwards | first1=H. M. | author-link = Harold Edwards (mathematician) | title=Riemann's Zeta Function | publisher=] | location=New York | isbn=978-0-486-41740-0 | mr=0466039 | year=1974}}
* {{Citation | last1=Ford | first1=Kevin | title=Vinogradov's integral and bounds for the Riemann zeta function | doi=10.1112/S0024611502013655 | mr=1936814 | year=2002 | journal=Proceedings of the London Mathematical Society. Third Series | volume=85 | issue=3 | pages=565–633}} * {{Citation | last1=Fesenko | first1=Ivan | author1-link=Ivan Fesenko| title=Analysis on arithmetic schemes. II | year=2010 | journal=Journal of K-theory| volume=5 | issue=3 | pages=437–557 | doi=10.1017/is010004028jkt103}}
* {{Citation | last1=Ford | first1=Kevin | title=Vinogradov's integral and bounds for the Riemann zeta function | doi=10.1112/S0024611502013655 | mr=1936814 | year=2002 | journal=Proceedings of the London Mathematical Society |series=Third Series | volume=85 | issue=3 | pages=565–633| arxiv=1910.08209 | s2cid=121144007 }}
* {{citation|author2-link=E. Landau | first=J. |last=Franel|first2=E. |last2=Landau|title=Les suites de Farey et le problème des nombres premiers|journal=Göttinger Nachr. |pages=198–206|year=1924}}
* {{citation|author2-link=E. Landau | first1=J. |last1=Franel|author1-link=Jérôme Franel|first2=E. |last2=Landau|title=Les suites de Farey et le problème des nombres premiers" (Franel, 198–201); "Bemerkungen zu der vorstehenden Abhandlung von Herrn Franel (Landau, 202–206) |journal=Göttinger Nachrichten |pages=198–206|year=1924}}
* {{citation|first=Amit|last= Ghosh|title= On the Riemann zeta function—mean value theorems and the distribution of &#124;S(T)&#124;| journal= J. Number Theory |volume=17 | pages=93–102|year=1983|doi=10.1016/0022-314X(83)90010-0 }}
* {{citation|first=Amit|last= Ghosh|title= On the Riemann zeta function—mean value theorems and the distribution of {{pipe}}S(T){{pipe}}| journal= J. Number Theory |volume=17 | pages=93–102|year=1983|doi=10.1016/0022-314X(83)90010-0 |doi-access=}}
* {{citation|url=http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e13-1e24.pdf|format=PDF|last=Gourdon|first=Xavier|title=The 10<sup>13</sup> first zeros of the Riemann Zeta function, and zeros computation at very large height|year=2004}}
* {{citation|url=http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e13-1e24.pdf|last=Gourdon|first=Xavier|title=The 10<sup>13</sup> first zeros of the Riemann Zeta function, and zeros computation at very large height|year=2004}}
* {{citation|first=J. P.|last= Gram|authorlink=Jørgen Pedersen Gram|title= Note sur les zéros de la fonction ζ(s) de Riemann|journal= Acta Mathematica|volume=27|pages=289–304|year=1903|doi=10.1007/BF02421310}}
* {{citation|first=Jacques |last=Hadamard|authorlink=Jacques Hadamard|title=Sur la distribution des zéros de la fonction ζ(s) et ses conséquences arithmétiques|journal= Bulletin Société Mathématique de France |volume=14|year=1896|pages= 199–220|url=http://www.numdam.org/item?id=BSMF_1896__24__199_1}} Reprinted in {{harv|Borwein|Choi|Rooney|Weirathmueller|2008}}. * {{citation|first=J. P.|last=Gram|author-link=Jørgen Pedersen Gram|title=Note sur les zéros de la fonction ''ζ''(''s'') de Riemann|journal=Acta Mathematica|volume=27|pages=289–304|year=1903|doi=10.1007/BF02421310|s2cid=115327214|url=https://zenodo.org/record/1930945|doi-access=free}}
* {{citation|last=Hardy|first= G. H.|authorlink=G. H. Hardy|title= Sur les Zéros de la Fonction ζ(s) de Riemann|journal=C. R. Acad. Sci. Paris |volume=158|pages= 1012–1014 |year=1914|url=http://gallica.bnf.fr/ark:/12148/bpt6k3111d.image.f1014.langEN|jfm=45.0716.04}} Reprinted in {{harv|Borwein|Choi|Rooney|Weirathmueller|2008}}. * {{citation|first=Jacques |last=Hadamard|author-link=Jacques Hadamard|title=Sur la distribution des zéros de la fonction ''ζ''(''s'') et ses conséquences arithmétiques|journal= Bulletin de la Société Mathématique de France |volume=14|year=1896|pages= 199–220|doi=10.24033/bsmf.545|doi-access=free}} Reprinted in {{harv|Borwein|Choi|Rooney|Weirathmueller|2008}}.
* {{citation|last=Hanga|first=Catalin|year=2020|url=https://etheses.whiterose.ac.uk/27858/|title=Random matrix models for Gram's law|publisher=University of York|type=phd}}
* {{citation|last=Hardy|first= G. H.|author1-link=G. H. Hardy|last2= Littlewood|first2= J. E.|author2-link=John Edensor Littlewood|title= The zeros of Riemann's zeta-function on the critical line|journal= Math. Z.|volume= 10|pages= 283–317 |year=1921|doi=10.1007/BF01211614|issue=3–4}}
* {{Citation | last1=Haselgrove | first1=C. B. | title=A disproof of a conjecture of Pólya | mr=0104638 | year=1958 | journal=Mathematika | volume=5 | pages=141–145 | doi=10.1112/S0025579300001480 | issue=2}} Reprinted in {{harv|Borwein|Choi|Rooney|Weirathmueller|2008}}. * {{citation|last=Hardy|first=G. H.|author-link=G. H. Hardy|title=Sur les Zéros de la Fonction ''ζ''(''s'') de Riemann|journal=C. R. Acad. Sci. Paris|volume=158|pages=1012–1014|year=1914|url=http://gallica.bnf.fr/ark:/12148/bpt6k3111d.image.f1014.langEN|jfm=45.0716.04}} Reprinted in {{harv|Borwein|Choi|Rooney|Weirathmueller|2008}}.
* {{Citation | last1=Haselgrove | first1=C. B. |author1-link=C. Brian Haselgrove| last2=Miller | first2=J. C. P. |author2-link=J. C. P. Miller| title=Tables of the Riemann zeta function | publisher=] | series=Royal Society Mathematical Tables, Vol. 6 | mr=0117905 | year=1960|isbn=978-0-521-06152-0}} * {{citation|last1= Hardy|first1= G. H.|author1-link= G. H. Hardy|last2= Littlewood|first2= J. E.|author2-link= John Edensor Littlewood|title= The zeros of Riemann's zeta-function on the critical line|journal= Math. Z.|volume= 10|pages= 283–317|year= 1921|doi= 10.1007/BF01211614|issue= 3–4|s2cid= 126338046|url= https://zenodo.org/record/1447415}}
* {{Citation | last1=Hutchinson | first1=J. I. |authorlink=John Irwin Hutchinson| title=On the Roots of the Riemann Zeta-Function | jstor=1989163 | year=1925 | journal=] | volume=27 | pages=49–60 | doi=10.2307/1989163 | issue=1}} * {{Citation | last1=Haselgrove | first1=C. B. | title=A disproof of a conjecture of Pólya | mr=0104638 | year=1958 | journal=] | volume=5 | pages=141–145 | doi=10.1112/S0025579300001480 | issue=2 | issn=0025-5793 | zbl=0085.27102 }} Reprinted in {{harv|Borwein|Choi|Rooney|Weirathmueller|2008}}.
* {{Citation | last1=Ingham | first1=A.E. | authorlink=Albert Ingham|title=The Distribution of Prime Numbers | publisher=Cambridge University Press | series = Cambridge Tracts in Mathematics and Mathematical Physics | volume=30 | year=1932}}. Reprinted 1990, ISBN 978-0-521-39789-6, {{MathSciNet|1074573}} * {{Citation | last1=Haselgrove | first1=C. B. |author1-link=C. Brian Haselgrove| last2=Miller | first2=J. C. P. |author2-link=J. C. P. Miller| title=Tables of the Riemann zeta function | publisher=] | series=Royal Society Mathematical Tables, Vol. 6 | mr=0117905 | year=1960|isbn=978-0-521-06152-0}}
* {{Citation | last1=Ivić | first1=A. | title=The Riemann Zeta Function | publisher=] | location=New York | isbn=978-0-471-80634-9 | mr=0792089 | year=1985}} (Reprinted by Dover 2003) * {{Citation | last1=Hutchinson | first1=J. I. |author-link=John Irwin Hutchinson| title=On the Roots of the Riemann Zeta-Function | jstor=1989163 | year=1925 | journal=] | volume=27 | pages=49–60 | doi=10.2307/1989163 | issue=1| doi-access=free }}
* {{Citation | last1=Ingham | first1=A.E. | author-link=Albert Ingham|title=The Distribution of Prime Numbers | publisher=Cambridge University Press | series = Cambridge Tracts in Mathematics and Mathematical Physics | volume=30 | year=1932}}. Reprinted 1990, {{isbn|978-0-521-39789-6}}, {{MathSciNet|1074573}}
* {{citation|last=Ivić|first=Aleksandar|chapter=On some reasons for doubting the Riemann hypothesis|isbn=978-0387721255|pages=131–160|editor1-last= Borwein|title=The Riemann Hypothesis: A Resource for the {{sic|Af|ficionado|hide=y}} and Virtuoso Alike |series=CMS Books in Mathematics|publisher=Springer|place=New York|year=2008
* {{citation
| last1 = Ireland | first1 = Kenneth
| last2 = Rosen | first2 = Michael | author2-link = Michael Rosen (mathematician)
| title = A Classical Introduction to Modern Number Theory (Second edition)
| publisher = ]
| location = New York
| year = 1990
| isbn = 0-387-97329-X}}
* {{Citation | last1=Ivić | first1=A. | author-link1=Aleksandar Ivić | title=The Riemann Zeta Function | publisher=] | location=New York | isbn=978-0-471-80634-9 | mr=0792089 | year=1985}} (Reprinted by Dover 2003)
* {{citation|last=Ivić|first=Aleksandar|chapter=On some reasons for doubting the Riemann hypothesis|isbn=978-0-387-72125-5|pages=131–160|editor1-last= Borwein|title=The Riemann Hypothesis: A Resource for the {{sic|Af|ficionado|hide=y}} and Virtuoso Alike |series=CMS Books in Mathematics|publisher=Springer|place=New York|year=2008
|editor1-first=Peter |editor2-first=Stephen |editor2-last=Choi |editor3-first=Brendan|editor3-last= Rooney |editor4-first= Andrea|editor4-last= Weirathmueller|arxiv=math.NT/0311162}} |editor1-first=Peter |editor2-first=Stephen |editor2-last=Choi |editor3-first=Brendan|editor3-last= Rooney |editor4-first= Andrea|editor4-last= Weirathmueller|arxiv=math.NT/0311162}}
*{{citation| first=A. A.| last=Karatsuba|authorlink=Anatolii Alexeevitch Karatsuba| title=Zeros of the function ζ(s) on short intervals of the critical line| pages=569–584| journal= Izv. Akad. Nauk SSSR, Ser. Mat.| volume=48|issue=3| year=1984a|mr=0747251|language=Russian}} *{{citation| first=A. A.| last=Karatsuba|author-link=Anatolii Alexeevitch Karatsuba| title=Zeros of the function ''ζ''(''s'') on short intervals of the critical line| pages=569–584| journal= Izv. Akad. Nauk SSSR, Ser. Mat.| volume=48|issue=3| year=1984a|mr=0747251|language=ru}}
*{{citation| first=A. A.| last=Karatsuba|authorlink=Anatolii Alexeevitch Karatsuba|title= Distribution of zeros of the function ζ(1/2+it)| pages=1214–1224 | journal= Izv. Akad. Nauk SSSR, Ser. Mat.| volume=48|issue=6|year=1984b|mr=0772113|language=Russian}} *{{citation| first=A. A.| last=Karatsuba|author-link=Anatolii Alexeevitch Karatsuba|title= Distribution of zeros of the function ''ζ''(1/2&nbsp;+&nbsp;''it'')| pages=1214–1224 | journal= Izv. Akad. Nauk SSSR, Ser. Mat.| volume=48|issue=6|year=1984b|mr=0772113|language=ru}}
*{{citation| first=A. A.| last=Karatsuba|authorlink=Anatolii Alexeevitch Karatsuba| title= Zeros of the Riemann zeta-function on the critical line| pages=167–178| journal= Trudy Mat. Inst. Steklov.| issue=167| year=1985|mr=0804073|language=Russian}} *{{citation| first=A. A.| last=Karatsuba|author-link=Anatolii Alexeevitch Karatsuba| title= Zeros of the Riemann zeta-function on the critical line| pages=167–178| journal= Trudy Mat. Inst. Steklov.| issue=167| year=1985|mr=0804073|language=ru}}
*{{citation| first=A. A.| last=Karatsuba|authorlink=Anatolii Alexeevitch Karatsuba| title= On the number of zeros of the Riemann zeta-function lying in almost all short intervals of the critical line | pages=372–397| journal= Izv. Ross. Akad. Nauk, Ser. Mat.| volume=56|issue=2| year=1992|language=Russian|mr=1180378}} *{{citation| first=A. A.| last=Karatsuba|author-link=Anatolii Alexeevitch Karatsuba| title= On the number of zeros of the Riemann zeta-function lying in almost all short intervals of the critical line | pages=372–397| journal= Izv. Ross. Akad. Nauk, Ser. Mat.| volume=56|issue=2| year=1992|language=ru|mr=1180378| doi=10.1070/IM1993v040n02ABEH002168|bibcode=1993IzMat..40..353K}}
* {{Citation | last1=Karatsuba | first1=A. A. |author1-link=Anatolii Alexeevitch Karatsuba| last2=Voronin | first2=S. M. | title=The Riemann zeta-function | publisher=Walter de Gruyter & Co. | location=Berlin | series=de Gruyter Expositions in Mathematics | isbn=978-3-11-013170-3 | mr=1183467 | year=1992 | volume=5}} * {{Citation | last1=Karatsuba | first1=A. A. |author1-link=Anatolii Alexeevitch Karatsuba| last2=Voronin | first2=S. M. | title=The Riemann zeta-function | publisher=Walter de Gruyter & Co. | location=Berlin | series=de Gruyter Expositions in Mathematics | isbn=978-3-11-013170-3 | mr=1183467 | year=1992 | volume=5 | doi=10.1515/9783110886146}}
* {{Citation | last1=Keating | first1=Jonathan P. | last2=Snaith | first2=N. C.|author2-link=Nina Snaith | title=Random matrix theory and ζ(1/2+it) | doi=10.1007/s002200000261 | mr=1794265 | year=2000 | journal=Communications in Mathematical Physics | volume=214 | issue=1 | pages=57–89}} * {{Citation | last1=Keating | first1=Jonathan P. | last2=Snaith | first2=N. C.|author2-link=Nina Snaith | title=Random matrix theory and ''ζ''(1/2&nbsp;+&nbsp;''it'') | doi=10.1007/s002200000261 | mr=1794265 | year=2000 | journal=Communications in Mathematical Physics | volume=214 | issue=1 | pages=57–89| bibcode=2000CMaPh.214...57K | s2cid=11095649 }}
*{{citation
* {{Citation | last1=Knauf | first1=Andreas | title=Number theory, dynamical systems and statistical mechanics | mr=1714352 | year=1999 | journal=Reviews in Mathematical Physics. A Journal for Both Review and Original Research Papers in the Field of Mathematical Physics | volume=11 | issue=8 | pages=1027–1060|doi=10.1142/S0129055X99000325}}
| last = Knapowski | first = S. | author-link = Stanisław Knapowski
* {{citation|first=Helge|last=von Koch|authorlink=Helge von Koch|doi=10.1007/BF02403071|title=Sur la distribution des nombres premiers|journal=Acta Mathematica|volume=24|year=1901|pages= 159–182}}
| doi = 10.4064/aa-7-2-107-119
| journal = Acta Arithmetica
| mr = 133308
| pages = 107–119
| title = On sign-changes of the difference <math>\pi(x)-\operatorname{li} x</math>
| volume = 7
| year = 1962| doi-access = free
}}
* {{Citation | last1=Knauf | first1=Andreas | title=Number theory, dynamical systems and statistical mechanics | mr=1714352 | year=1999 | journal=Reviews in Mathematical Physics | volume=11 | issue=8 | pages=1027–1060|doi=10.1142/S0129055X99000325| bibcode=1999RvMaP..11.1027K }}
* {{citation|first=Niels Helge|last=von Koch|author-link=Helge von Koch|doi=10.1007/BF02403071|title=Sur la distribution des nombres premiers|journal=Acta Mathematica|volume=24|year=1901|pages= 159–182|s2cid=119914826|url=https://zenodo.org/record/2347595|doi-access=free}}
* {{Citation | last1=Kurokawa | first1=Nobushige | title=Zeta functions in geometry (Tokyo, 1990) | publisher=Kinokuniya | location=Tokyo | series=Adv. Stud. Pure Math. | mr=1210791 | year=1992 | volume=21 | chapter=Multiple zeta functions: an example | pages=219–226}} * {{Citation | last1=Kurokawa | first1=Nobushige | title=Zeta functions in geometry (Tokyo, 1990) | publisher=Kinokuniya | location=Tokyo | series=Adv. Stud. Pure Math. | mr=1210791 | year=1992 | volume=21 | chapter=Multiple zeta functions: an example | pages=219–226}}
* {{Citation | last1=Lapidus | first1=Michel L. | title=In search of the Riemann zeros | publisher=American Mathematical Society | location=Providence, R.I. | isbn=978-0-8218-4222-5 | mr=2375028 | year=2008}} * {{Citation | last1=Lapidus | first1=Michel L. | title=In search of the Riemann zeros | publisher=American Mathematical Society | location=Providence, R.I. | isbn=978-0-8218-4222-5 | mr=2375028 | year=2008 | doi=10.1090/mbk/051}}
* {{eom|id=Z/z099260|first=A. F. |last=Lavrik|title=Zeta-function}} * {{eom|id=Z/z099260|first=A. F. |last=Lavrik|title=Zeta-function}}
* {{Citation | last1=Lehmer | first1=D. H. | author1-link=D. H. Lehmer | title=Extended computation of the Riemann zeta-function | mr=0086083 | year=1956 | journal=Mathematika. A Journal of Pure and Applied Mathematics | volume=3 | pages=102–108 | doi=10.1112/S0025579300001753 | issue=2}} * {{Citation | last1=Lehmer | first1=D. H. | author1-link=D. H. Lehmer | title=Extended computation of the Riemann zeta-function | mr=0086083 | year=1956 | journal=Mathematika | volume=3 | pages=102–108 | doi=10.1112/S0025579300001753 | issue=2}}
*{{citation
* {{citation|mr=0564081|last=Levinson|first=N.|authorlink=Norman Levinson|title= More than one-third of the zeros of Riemann's zeta function are on σ = 1/2|journal= Adv. In Math. |volume=13 |year=1974|pages= 383–436
| last = Leichtnam | first = Eric | author-link = Eric Leichtnam
|doi=10.1016/0001-8708(74)90074-7|issue=4}}
| contribution = An invitation to Deninger's work on arithmetic zeta functions
* {{citation|last= Littlewood|first=J. E. |authorlink=John Edensor Littlewood|title=The scientist speculates: an anthology of partly baked idea|chapter=The Riemann hypothesis|year=1962|publisher=Basic books|place=New York}}
| location = Providence, RI
* {{Citation | last1=van de Lune | first1=J. | last2=te Riele | first2=H. J. J. |author2-link=Herman te Riele | last3=Winter | first3=D. T. | title=On the zeros of the Riemann zeta function in the critical strip. IV | jstor=2008005 | mr=829637 | year=1986 | journal=Mathematics of Computation | volume=46 | issue=174 | pages=667–681 | doi=10.2307/2008005}}
| mr = 2180209
* {{Citation | last1=Massias | first1=J.-P. | last2=Nicolas | first2=Jean-Louis | last3=Robin | first3=G. | title=Évaluation asymptotique de l'ordre maximum d'un élément du groupe symétrique | url=http://matwbn.icm.edu.pl/tresc.php?wyd=6&tom=50&jez= | mr=960551 | year=1988 | journal=Polska Akademia Nauk. Instytut Matematyczny. Acta Arithmetica | volume=50 | issue=3 | pages=221–242}}
| pages = 201–236
* {{Citation | last1=Montgomery | first1=Hugh L. |authorlink=Hugh Montgomery (mathematician)| title=Analytic number theory |series=Proc. Sympos. Pure Math.|volume= XXIV | publisher=American Mathematical Society | location=Providence, R.I. | mr=0337821 | year=1973 | chapter=The pair correlation of zeros of the zeta function | pages=181–193}} Reprinted in {{harv|Borwein|Choi|Rooney|Weirathmueller|2008}}.
| publisher = Amer. Math. Soc.
* {{Citation | last1=Montgomery | first1=Hugh L. |authorlink=Hugh Montgomery (mathematician)| editor1-last=Erdős | editor1-first=Paul |editor1-link=Paul Erdős |title=Studies in pure mathematics. To the memory of Paul Turán | publisher=Birkhäuser | location=Basel, Boston, Berlin | isbn=978-3-7643-1288-6 | mr=820245 | year=1983 | chapter=Zeros of approximations to the zeta function | pages=497–506}}
| series = Contemp. Math.
* {{citation | last = Nicely | first = Thomas R. | doi = 10.1090/S0025-5718-99-01065-0 | mr = 1627813 | issue = 227 | journal = Mathematics of Computation | pages = 1311–1315 | title = New maximal prime gaps and first occurrences | url = http://www.trnicely.net/gaps/gaps.html | volume = 68 | year = 1999}}.
| title = Geometry, spectral theory, groups, and dynamics
| volume = 387
| year = 2005
| doi=10.1090/conm/387/07243| isbn = 978-0-8218-3710-8 }}.
* {{citation|mr=0564081|last=Levinson|first=N.|author-link=Norman Levinson|title= More than one-third of the zeros of Riemann's zeta function are on σ = 1/2|journal= ] |volume=13 |year=1974|pages= 383–436
|doi=10.1016/0001-8708(74)90074-7|issue=4|doi-access=free}}
* {{citation|last= Littlewood|first=J. E. |author-link=John Edensor Littlewood|title=The scientist speculates: an anthology of partly baked idea|chapter=The Riemann hypothesis|year=1962|publisher=Basic books|place=New York}}
* {{Citation | last1=van de Lune | first1=J. | last2=te Riele | first2=H. J. J. |author2-link=Herman te Riele | last3=Winter | first3=D. T. | title=On the zeros of the Riemann zeta function in the critical strip. IV | jstor=2008005 | mr=829637 | year=1986 | journal=Mathematics of Computation | volume=46 | issue=174 | pages=667–681 | doi=10.2307/2008005| doi-access=free }}
* {{Citation | last1=Massias | first1=J.-P. | last2=Nicolas | first2=Jean-Louis |author2-link=Jean-Louis Nicolas| last3=Robin | first3=G. | title=Évaluation asymptotique de l'ordre maximum d'un élément du groupe symétrique | url=http://matwbn.icm.edu.pl/tresc.php?wyd=6&tom=50&jez= | mr=960551 | year=1988 | journal=Acta Arithmetica | volume=50 | issue=3 | pages=221–242 | doi=10.4064/aa-50-3-221-242| doi-access=free }}
*{{citation|last1=Mazur|first1=Barry|last2=Stein|first2=William|year=2015|title=Prime Numbers and the Riemann Hypothesis|url=http://wstein.org/rh/}}
* {{Citation | last1=Montgomery | first1=Hugh L. |author-link=Hugh Montgomery (mathematician)| title=Analytic number theory |series=Proc. Sympos. Pure Math.|volume= XXIV | publisher=American Mathematical Society | location=Providence, R.I. | mr=0337821 | year=1973 | chapter=The pair correlation of zeros of the zeta function | pages=181–193}} Reprinted in {{harv|Borwein|Choi|Rooney|Weirathmueller|2008}}.
* {{Citation | last1=Montgomery | first1=Hugh L. |author-link=Hugh Montgomery (mathematician)| editor1-last=Erdős | editor1-first=Paul |editor1-link=Paul Erdős |title=Studies in pure mathematics. To the memory of Paul Turán | publisher=Birkhäuser | location=Basel, Boston, Berlin | isbn=978-3-7643-1288-6 | mr=820245 | year=1983 | chapter=Zeros of approximations to the zeta function | pages=497–506}}
* {{Citation | last1 = Montgomery | first1 = Hugh L. | author-link1 = Hugh Montgomery (mathematician)
| last2 = Vaughan | first2 = Robert C. |title = Multiplicative Number Theory I. Classical Theory | publisher = Cambridge University Press | series = Cambridge studies in advanced mathematics | volume = 97 | year = 2007}}.{{isbn|978-0-521-84903-6}}
* {{citation | last = Nicely | first = Thomas R. | doi = 10.1090/S0025-5718-99-01065-0 | mr = 1627813 | issue = 227 | journal = Mathematics of Computation | pages = 1311–1315 | title = New maximal prime gaps and first occurrences | url = http://www.trnicely.net/gaps/gaps.html | volume = 68 | year = 1999| bibcode = 1999MaCom..68.1311N | doi-access = free }}.
* {{Citation | last1=Nyman | first1=Bertil | title=On the One-Dimensional Translation Group and Semi-Group in Certain Function Spaces | publisher=University of Uppsala | location=University of Uppsala | series=PhD Thesis | mr=0036444 | year=1950}} * {{Citation | last1=Nyman | first1=Bertil | title=On the One-Dimensional Translation Group and Semi-Group in Certain Function Spaces | publisher=University of Uppsala | location=University of Uppsala | series=PhD Thesis | mr=0036444 | year=1950}}
* {{Citation | last1=Odlyzko | first1=A. M. | author1-link=Andrew Odlyzko| last2=te Riele | first2=H. J. J. | author2-link=Herman te Riele|title=Disproof of the Mertens conjecture | url=http://gdz.sub.uni-goettingen.de/no_cache/dms/load/img/?IDDOC=262633 | mr=783538 | year=1985 | journal=] | volume=357 | pages=138–160}} * {{Citation | last1=Odlyzko | first1=A. M. | author1-link=Andrew Odlyzko | last2=te Riele | first2=H. J. J. | author2-link=Herman te Riele | title=Disproof of the Mertens conjecture | url=http://gdz.sub.uni-goettingen.de/no_cache/dms/load/img/?IDDOC=262633 | archive-url=https://archive.today/20120711011237/http://gdz.sub.uni-goettingen.de/no_cache/dms/load/img/?IDDOC=262633 | url-status=dead | archive-date=2012-07-11 | mr=783538 | year=1985 | journal=] | volume=1985 | issue=357 | pages=138–160 | doi=10.1515/crll.1985.357.138 | s2cid=13016831 }}
* {{Citation | last1=Odlyzko | first1=A. M. |authorlink=Andrew Odlyzko| title=On the distribution of spacings between zeros of the zeta function | jstor=2007890 | mr=866115 | year=1987 | journal=Mathematics of Computation | volume=48 | issue=177 | pages=273–308 | doi=10.2307/2007890}} * {{Citation | last1=Odlyzko | first1=A. M. |author-link=Andrew Odlyzko| title=On the distribution of spacings between zeros of the zeta function | jstor=2007890 | mr=866115 | year=1987 | journal=Mathematics of Computation | volume=48 | issue=177 | pages=273–308 | doi=10.2307/2007890| doi-access=free }}
* {{Citation | last1=Odlyzko | first1=A. M. | title=Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results | url=http://www.numdam.org/item?id=JTNB_1990__2_1_119_0 | mr=1061762 | year=1990 | journal=Séminaire de Théorie des Nombres de Bordeaux. Série 2 | volume=2 | issue=1 | pages=119–141}} * {{Citation | last1=Odlyzko | first1=A. M. |author-link= Andrew Odlyzko| title=Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results | url=http://www.numdam.org/item?id=JTNB_1990__2_1_119_0 | mr=1061762 | year=1990 | journal=Séminaire de Théorie des Nombres de Bordeaux|series= Série 2 | volume=2 | issue=1 | pages=119–141 | doi=10.5802/jtnb.22| doi-access=free }}
* {{citation|first=A. M.|last= Odlyzko|title=The 10<sup>20</sup>-th zero of the Riemann zeta function and 175 million of its neighbors|year= 1992|url=http://www.dtc.umn.edu/~odlyzko/unpublished/zeta.10to20.1992.pdf}} This unpublished book describes the implementation of the algorithm and discusses the results in detail. * {{citation|first=A. M.|last= Odlyzko|author-link= Andrew Odlyzko |title=The 10<sup>20</sup>-th zero of the Riemann zeta function and 175 million of its neighbors|year= 1992|url=http://www.dtc.umn.edu/~odlyzko/unpublished/zeta.10to20.1992.pdf}} This unpublished book describes the implementation of the algorithm and discusses the results in detail.
* {{citation|first=A. M.|last= Odlyzko|title=The 10<sup>21</sup>st zero of the Riemann zeta function|year=1998|url=http://www.dtc.umn.edu/~odlyzko/unpublished/zeta.10to21.pdf}} * {{citation|first=A. M.|last= Odlyzko|author-link= Andrew Odlyzko |title=The 10<sup>21</sup>st zero of the Riemann zeta function|year=1998|url=http://www.dtc.umn.edu/~odlyzko/unpublished/zeta.10to21.pdf}}
* {{citation|first=Ken |last=Ono |authorlink=Ken Ono |first2=K. |last2=Soundararajan |authorlink2=Kannan Soundararajan |year=1997 |title=Ramanujan's ternary quadratic form |journal=Inventiones Mathematicae |volume=130 |issue=3 |pages=415–454 |doi=10.1007/s002220050191 }} * {{citation|first1=Ken |last1=Ono |author-link=Ken Ono |first2=K. |last2=Soundararajan |author-link2=Kannan Soundararajan |year=1997 |title=Ramanujan's ternary quadratic form |journal=] |volume=130 |issue=3 |pages=415–454 |doi=10.1007/s002220050191 |bibcode=1997InMat.130..415O |s2cid=122314044 }}
* {{Citation | last1=Patterson | first1=S. J. | title=An introduction to the theory of the Riemann zeta-function | publisher=Cambridge University Press | series=Cambridge Studies in Advanced Mathematics | isbn=978-0-521-33535-5 | mr=933558 | year=1988 | volume=14}} * {{Citation | last1=Patterson | first1=S. J. | author1-link = S. J. Patterson | title=An introduction to the theory of the Riemann zeta-function | publisher=Cambridge University Press | series=Cambridge Studies in Advanced Mathematics | isbn=978-0-521-33535-5 | mr=933558 | year=1988 | volume=14 | doi=10.1017/CBO9780511623707}}
* {{citation
* {{citation|first=Bernhard|last=Riemann|authorlink=Bernhard Riemann|url=http://www.maths.tcd.ie/pub/HistMath/People/Riemann/Zeta/|title={{sic|hide=y|Ueber}} die Anzahl der Primzahlen unter einer gegebenen {{sic|hide=y|Grösse}}|year=1859|journal=Monatsberichte der Berliner Akademie}}. In ''Gesammelte Werke'', Teubner, Leipzig (1892), Reprinted by Dover, New York (1953). (with English translation). Reprinted in {{harv|Borwein|Choi|Rooney|Weirathmueller|2008}} and {{harv|Edwards|1874}}
| last1 = Platt | first1 = Dave
* {{Citation | author1-link=Hans Riesel | last1=Riesel | first1=Hans | last2=Göhl | first2=Gunnar | title=Some calculations related to Riemann's prime number formula | doi=10.2307/2004630 | mr=0277489 | year=1970 | journal=Mathematics of Computation | volume=24 | pages=969–983 | jstor=2004630 | issue=112}}
| last2 = Trudgian | first2 = Timothy
* {{citation|first=M.|last=Riesz|authorlink=Marcel Riesz|title=Sur l'hypothèse de Riemann|journal=Acta Mathematica|volume=40|year=1916|pages=185–190|doi=10.1007/BF02418544}}
| date = January 2021
* {{Citation | last1=Robin | first1=G. | title=Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann | mr=774171 | year=1984 | journal=Journal de Mathématiques Pures et Appliquées. Neuvième Série | volume=63 | issue=2 | pages=187–213}}
| volume=53 |issue=3 |pages=792–797
* {{Citation | last1=Rockmore | first1=Dan | title=Stalking the Riemann hypothesis | publisher=Pantheon Books | isbn=978-0-375-42136-5 | mr=2269393 | year=2005}}
| doi = 10.1112/blms.12460
| arxiv = 2004.09765
| journal = Bulletin of the London Mathematical Society
| publisher = Wiley
| title = The Riemann hypothesis is true up to 3·10<sup>12</sup>| s2cid = 234355998
}}
*{{citation
| last = Radziejewski | first = Maciej
| doi = 10.1090/S0002-9947-06-04078-5
| issue = 5
| journal = Transactions of the American Mathematical Society
| mr = 2276625
| pages = 2383–2394
| quote = There are infinitely many nonisomorphic algebraic number fields whose Dedekind zeta functions have infinitely many nontrivial multiple zeros.
| title = Independence of Hecke zeta functions of finite order over normal fields
| volume = 359
| year = 2007| doi-access = free
}}
* {{citation
| last1 = Ribenboim | first1 = Paulo | author-link = Paulo Ribenboim
| title = The New Book of Prime Number Records
| publisher = ]
| location = New York
| year = 1996
| isbn = 0-387-94457-5}}
* {{citation|first=Bernhard|last=Riemann|author-link=Bernhard Riemann|url=http://www.maths.tcd.ie/pub/HistMath/People/Riemann/Zeta/|title={{sic|hide=y|Ueber}} die Anzahl der Primzahlen unter einer gegebenen {{sic|hide=y|Grösse}}|year=1859|journal=Monatsberichte der Berliner Akademie}}. In ''Gesammelte Werke'', Teubner, Leipzig (1892), Reprinted by Dover, New York (1953). (with English translation). Reprinted in {{harv|Borwein|Choi|Rooney|Weirathmueller|2008}} and {{harv|Edwards|1974}}
* {{Citation | author1-link=Hans Riesel | last1=Riesel | first1=Hans | last2=Göhl | first2=Gunnar | title=Some calculations related to Riemann's prime number formula | doi=10.2307/2004630 | mr=0277489 | year=1970 | journal=Mathematics of Computation | volume=24 | pages=969–983 | jstor=2004630 | issue=112 | url=https://www.ams.org/journals/mcom/1970-24-112/S0025-5718-1970-0277489-3/S0025-5718-1970-0277489-3.pdf}}
* {{citation|first=M.|last=Riesz|author-link=Marcel Riesz|title=Sur l'hypothèse de Riemann|journal=Acta Mathematica|volume=40|year=1916|pages=185–190|doi=10.1007/BF02418544|doi-access=free}}
* {{Citation | last1=Robin | first1=G. | title=Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann | mr=774171 | year=1984 | journal=]|series= Neuvième Série | volume=63 | issue=2 | pages=187–213}}
* {{citation
| last1 = Rodgers | first1 = Brad
| last2 = Tao | first2 = Terence
| doi = 10.1017/fmp.2020.6
| journal = Forum of Mathematics
| mr = 4089393
| page = e6, 62
| title = The de Bruijn–Newman constant is non-negative
| volume = 8
| year = 2020| doi-access = free
| arxiv = 1801.05914
}}; see also , January 19, 2018
* {{Citation | last1=Rosser | first1=J. Barkley |author1-link=J. Barkley Rosser| last2=Yohe | first2=J. M. | last3=Schoenfeld | first3=Lowell |author3-link=Lowell Schoenfeld| title=Information Processing 68 (Proc. IFIP Congress, Edinburgh, 1968), Vol. 1: Mathematics, Software | publisher=North-Holland | location=Amsterdam | mr=0258245 | year=1969 | chapter=Rigorous computation and the zeros of the Riemann zeta-function. (With discussion) | pages=70–76}} * {{Citation | last1=Rosser | first1=J. Barkley |author1-link=J. Barkley Rosser| last2=Yohe | first2=J. M. | last3=Schoenfeld | first3=Lowell |author3-link=Lowell Schoenfeld| title=Information Processing 68 (Proc. IFIP Congress, Edinburgh, 1968), Vol. 1: Mathematics, Software | publisher=North-Holland | location=Amsterdam | mr=0258245 | year=1969 | chapter=Rigorous computation and the zeros of the Riemann zeta-function. (With discussion) | pages=70–76}}
* {{citation
* {{Citation | last1=Sabbagh | first1=Karl | author1-link=Karl Sabbagh |title=The Riemann hypothesis | publisher=Farrar, Straus and Giroux, New York | isbn=978-0-374-25007-2 | mr=1979664 | year=2003}}
| last1 = Rudin | first1 = Walter | author-link = Walter Rudin
* {{Citation | last1=Salem | first1=Raphaël | title=Sur une proposition équivalente à l'hypothèse de Riemann | mr=0053148 | year=1953 | journal=] | volume=236 | pages=1127–1128}}
| title = Functional Analysis
* {{citation|url=http://www.claymath.org/millennium/Riemann_Hypothesis/Sarnak_RH.pdf |format=PDF|first=Peter |last=Sarnak|authorlink=Peter Sarnak|chapter=Problems of the Millennium: The Riemann Hypothesis |pages=107–115
| edition = 1st
|isbn=978-0387721255|editor1-last= Borwein|title=The Riemann Hypothesis: A Resource for the {{sic|Af|ficionado|hide=y}} and Virtuoso Alike |series=CMS Books in Mathematics|publisher=Springer|place=New York|year=2008
| date = January 1973
|editor1-first=Peter |editor2-first=Stephen |editor2-last=Choi |editor3-first=Brendan|editor3-last= Rooney |editor4-first= Andrea|editor4-last= Weirathmueller }}
| publisher = ]
* {{Citation | last1=du Sautoy | first1=Marcus |authorlink=Marcus du Sautoy| title=The music of the primes | publisher=HarperCollins Publishers | isbn=978-0-06-621070-4 | mr=2060134 | year=2003}}
| location = New York
* {{Citation | last1=Schoenfeld | first1=Lowell |authorlink=Lowell Schoenfeld| title=Sharper bounds for the Chebyshev functions θ(x) and ψ(x). II | doi=10.2307/2005976 | mr=0457374 | year=1976 | journal=Mathematics of Computation | volume=30 | issue=134 | pages=337–360 | jstor=2005976}}
| isbn = 0-070-54225-2}}
*{{citation|title=Physics of the Riemann Hypothesis|first=Daniel|last= Schumayer|first2= David A. W. |last2=Hutchinson|year=2011|arxiv=1101.3116}}
* {{Citation | last1=Salem | first1=Raphaël |author-link=Raphaël Salem| title=Sur une proposition équivalente à l'hypothèse de Riemann | mr=0053148 | year=1953 | journal=] | volume=236 | pages=1127–1128}}
* {{Citation|last=Sarnak|first=Peter|author-link=Peter Sarnak|url=http://www.claymath.org/sites/default/files/sarnak_rh_0.pdf |title=Problems of the Millennium: The Riemann Hypothesis (2004) |publisher=]|year=2005|access-date=2015-07-28}} Reprinted in {{harv|Borwein|Choi|Rooney|Weirathmueller|2008}}.
* {{Citation | last1=Schoenfeld | first1=Lowell | author-link=Lowell Schoenfeld | title=Sharper bounds for the Chebyshev functions ''θ''(''x'') and ''ψ''(''x''). II | doi=10.2307/2005976 | mr=0457374 | year=1976 | journal=Mathematics of Computation | volume=30 | issue=134 | pages=337–360 | jstor=2005976 | doi-access=free }}
*{{citation|title=Physics of the Riemann Hypothesis|journal=Reviews of Modern Physics|volume=83|issue=2|pages=307–330|first1=Daniel|last1= Schumayer|first2= David A. W. |last2=Hutchinson|year=2011|arxiv=1101.3116|doi=10.1103/RevModPhys.83.307|bibcode=2011RvMP...83..307S|s2cid=119290777}}
* {{citation|mr=0010712 * {{citation|mr=0010712
|last=Selberg|first= Atle|authorlink=Atle Selberg |last=Selberg|first= Atle|author-link=Atle Selberg
|title=On the zeros of Riemann's zeta-function |title=On the zeros of Riemann's zeta-function
|journal=Skr. Norske Vid. Akad. Oslo I. |year=1942|volume= 10|pages= 59 pp}} |journal=SKR. Norske Vid. Akad. Oslo I. |year=1942|volume= 10|pages= 59 pp}}
* {{Citation | last1=Selberg | first1=Atle | title=Contributions to the theory of the Riemann zeta-function | mr=0020594 | year=1946 | journal=Arch. Math. Naturvid. | volume=48 | issue=5 | pages=89–155}} * {{Citation | last1=Selberg | first1=Atle|author-link=Atle Selberg | title=Contributions to the theory of the Riemann zeta-function | mr=0020594 | year=1946 | journal=Arch. Math. Naturvid. | volume=48 | issue=5 | pages=89–155}}
* {{Citation | last1=Selberg | first1=Atle |authorlink=Atle Selberg| title=Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series | mr=0088511 | year=1956 | journal=J. Indian Math. Soc. (N.S.) | volume=20 | pages=47–87}} * {{Citation | last1=Selberg | first1=Atle |author-link=Atle Selberg| title=Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series | mr=0088511 | year=1956 | journal=J. Indian Math. Soc. |series=New Series | volume=20 | pages=47–87}}
* {{Citation | last1=Sheats | first1=Jeffrey T. | title=The Riemann hypothesis for the Goss zeta function for '''F'''<sub>q</sub> | doi=10.1006/jnth.1998.2232 | mr=1630979 | year=1998 | journal=] | volume=71 | issue=1 | pages=121–157}} * {{Citation | last1=Serre | first1=Jean-Pierre |author-link=Peter Sarnak| title=Facteurs locaux des fonctions zeta des varietés algébriques (définitions et conjectures) | journal=Séminaire Delange-Pisot-Poitou|year= 1969–1970 | volume=19 | url = https://eudml.org/doc/110758 }}
* {{Citation | last1=Sheats | first1=Jeffrey T. | title=The Riemann hypothesis for the Goss zeta function for '''F'''<sub>q</sub> | doi=10.1006/jnth.1998.2232 | mr=1630979 | year=1998 | journal=] | volume=71 | issue=1 | pages=121–157| arxiv=math/9801158 | s2cid=119703557 }}
* {{citation|last=Siegel|first= C. L.|authorlink=Carl Ludwig Siegel |title=Über Riemanns Nachlaß zur analytischen Zahlentheorie|journal= Quellen Studien zur Geschichte der Math. Astron. und Phys. Abt. B: Studien 2|pages= 45–80|year= 1932}} Reprinted in Gesammelte Abhandlungen, Vol. 1. Berlin: Springer-Verlag, 1966.
* {{citation|last=Siegel|first= C. L.|author-link=Carl Ludwig Siegel |title=Über Riemanns Nachlaß zur analytischen Zahlentheorie|journal= Quellen Studien zur Geschichte der Math. Astron. Und Phys. Abt. B: Studien 2|pages= 45–80|year= 1932}} Reprinted in Gesammelte Abhandlungen, Vol. 1. Berlin: Springer-Verlag, 1966. Translation availabke at {{citation |title=On Riemanns Nachlass for Analytic Number Theory |orig-date=1932 |first=Siegel |last=Carl |translator1-first=Eric |translator1-last=Barkan |translator2-first=David |translator2-last=Sklar |date=11 October 2018 |arxiv=1810.05198}}
* {{Citation|last=Speiser|first=Andreas|author-link=Andreas Speiser|title=Geometrisches zur Riemannschen Zetafunktion|year=1934|journal=Mathematische Annalen|volume=110|pages=514–521|doi=10.1007/BF01448042|jfm=60.0272.04}}
* {{Citation|last=Speiser|first=Andreas|author-link=Andreas Speiser|title=Geometrisches zur Riemannschen Zetafunktion|year=1934|journal=]|volume=110|pages=514–521|doi=10.1007/BF01448042|jfm=60.0272.04|s2cid=119413347|url=http://gdz.sub.uni-goettingen.de/index.php?id=11&PPN=PPN235181684_0110&DMDID=DMDLOG_0032&L=1|url-status=dead|archive-url=https://web.archive.org/web/20150627115412/http://gdz.sub.uni-goettingen.de/index.php?id=11&PPN=PPN235181684_0110&DMDID=DMDLOG_0032&L=1|archive-date=2015-06-27}}
* {{citation|last=Stein|first=William|author1-link=William A. Stein|last2=Mazur|first2=Barry|author2-link=Barry Mazur|year=2007|url=http://modular.math.washington.edu/edu/2007/simuw07/notes/rh.pdf|format=PDF|title=What is Riemann’s Hypothesis?}}
* {{citation
* {{Citation | last1=Titchmarsh | first1=Edward Charles | author1-link=Edward Charles Titchmarsh | title=The Zeros of the Riemann Zeta-Function | jstor=96545 | publisher=The Royal Society | year=1935 | journal=Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences | volume=151 | issue=873 | pages=234–255 | doi=10.1098/rspa.1935.0146}}
| last = Spira | first = Robert
* {{Citation | last1=Titchmarsh | first1=Edward Charles | author1-link=Edward Charles Titchmarsh | title=The Zeros of the Riemann Zeta-Function | jstor=96692 | publisher=The Royal Society | year=1936 | journal=Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences | volume=157 | issue=891 | pages=261–263 | doi=10.1098/rspa.1936.0192}}
| journal = ]
| mr = 0228456
| pages = 163–173
| title = Zeros of sections of the zeta function. II
| volume = 22
| issue = 101
| year = 1968
| doi=10.2307/2004774| jstor = 2004774
| doi-access = free
}}
* {{citation|last1=Stein|first1=William|author1-link=William A. Stein|last2=Mazur|first2=Barry|author2-link=Barry Mazur|year=2007|url=http://modular.math.washington.edu/edu/2007/simuw07/notes/rh.pdf|title=What is Riemann's Hypothesis?|url-status=dead|archive-url=https://web.archive.org/web/20090327181331/http://modular.math.washington.edu/edu/2007/simuw07/notes/rh.pdf|archive-date=2009-03-27}}
* {{Citation | last1=Suzuki | first1=Masatoshi | title=Positivity of certain functions associated with analysis on elliptic surfaces | year=2011 | journal=Journal of Number Theory | volume=131 | issue=10 | pages=1770–1796 | doi=10.1016/j.jnt.2011.03.007| doi-access=free }}
* {{Citation | last1=Titchmarsh | first1=Edward Charles | author1-link=Edward Charles Titchmarsh | title=The Zeros of the Riemann Zeta-Function | jstor=96545 | publisher=The Royal Society | year=1935 | journal=Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences | volume=151 | issue=873 | pages=234–255 | doi=10.1098/rspa.1935.0146| bibcode=1935RSPSA.151..234T | s2cid=263711590 | doi-access= }}
* {{Citation | last1=Titchmarsh | first1=Edward Charles | author1-link=Edward Charles Titchmarsh | title=The Zeros of the Riemann Zeta-Function | jstor=96692 | publisher=The Royal Society | year=1936 | journal=Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences | volume=157 | issue=891 | pages=261–263 | doi=10.1098/rspa.1936.0192| bibcode=1936RSPSA.157..261T | doi-access=free | arxiv=1004.4143 }}
* {{Citation | last1=Titchmarsh | first1=Edward Charles | author1-link=Edward Charles Titchmarsh | title=The theory of the Riemann zeta-function | publisher=The Clarendon Press Oxford University Press | edition=2nd | isbn=978-0-19-853369-6 | mr=882550 | year=1986}} * {{Citation | last1=Titchmarsh | first1=Edward Charles | author1-link=Edward Charles Titchmarsh | title=The theory of the Riemann zeta-function | publisher=The Clarendon Press Oxford University Press | edition=2nd | isbn=978-0-19-853369-6 | mr=882550 | year=1986}}
* {{Citation | last1=Turán | first1=Paul | authorlink=Pál Turán|title=On some approximative Dirichlet-polynomials in the theory of the zeta-function of Riemann | mr=0027305 | year=1948 | journal=Danske Vid. Selsk. Mat.-Fys. Medd. | volume=24 | issue=17 | pages=36}} Reprinted in {{harv|Borwein|Choi|Rooney|Weirathmueller|2008}}. * {{citation | last = Trudgian | first = Timothy S. | title = An improved upper bound for the argument of the Riemann zeta function on the critical line II | journal = J. Number Theory | date = 2014 | volume = 134 | pages = 280–292 | doi = 10.1016/j.jnt.2013.07.017 | arxiv = 1208.5846 }}
* {{Citation | last1=Turing | first1=Alan M. | author1-link=A. M. Turing | title=Some calculations of the Riemann zeta-function | doi=10.1112/plms/s3-3.1.99 | mr=0055785 | year=1953 | journal=Proceedings of the London Mathematical Society. Third Series | volume=3 | pages=99–117}} * {{Citation | last1=Trudgian | first1=Timothy | title=On the success and failure of Gram's Law and the Rosser Rule | year = 2011 | journal = Acta Arithmetica | volume =125 | issue=3 | pages = 225–256 | doi=10.4064/aa148-3-2| doi-access=free }}
* {{Citation | last1=Turán | first1=Paul | author-link=Pál Turán|title=On some approximative Dirichlet-polynomials in the theory of the zeta-function of Riemann | mr=0027305 | year=1948 | journal=Danske Vid. Selsk. Mat.-Fys. Medd. | volume=24 | issue=17 | page=36}} Reprinted in {{harv|Borwein|Choi|Rooney|Weirathmueller|2008}}.
* {{citation|first=Ch.J.|last=de la Vallée-Poussin|authorlink=Charles Jean de la Vallée-Poussin|title=Recherches analytiques sur la théorie des nombers premiers|journal= Ann. Soc. Sci. Bruxelles |volume= 20 |year=1896 |pages= 183–256}}
* {{Citation | last1=Turing | first1=Alan M. | author1-link=A. M. Turing | title=Some calculations of the Riemann zeta-function | doi=10.1112/plms/s3-3.1.99 | mr=0055785 | year=1953 | journal=Proceedings of the London Mathematical Society |series=Third Series | volume=3 | pages=99–117}}
* {{citation|first=Ch.J.|last=de la Vallée-Poussin|authorlink=Charles Jean de la Vallée-Poussin|title=Sur la fonction ζ(s) de Riemann et la nombre des nombres premiers inférieurs à une limite donnée|journal=Mem. Couronnes Acad. Sci. Belg. |volume= 59 |issue= 1 |year=1899–1900}} Reprinted in {{harv|Borwein|Choi|Rooney|Weirathmueller|2008}}.
* {{citation|first=Ch.J.|last=de la Vallée-Poussin|author-link=Charles Jean de la Vallée-Poussin|title=Recherches analytiques sur la théorie des nombres premiers|journal= Ann. Soc. Sci. Bruxelles |volume= 20 |year=1896 |pages= 183–256}}
* {{citation|first=Ch.J.|last=de la Vallée-Poussin|author-link=Charles Jean de la Vallée-Poussin|title=Sur la fonction ''ζ''(''s'') de Riemann et la nombre des nombres premiers inférieurs à une limite donnée|journal=Mem. Couronnes Acad. Sci. Belg. |volume= 59 |issue= 1 |year=1899–1900}} Reprinted in {{harv|Borwein|Choi|Rooney|Weirathmueller|2008}}.
* {{Citation | last1=Weil | first1=André | author1-link=André Weil | title=Sur les courbes algébriques et les variétés qui s'en déduisent | publisher=Hermann et Cie., Paris | series=Actualités Sci. Ind., no. 1041 = Publ. Inst. Math. Univ. Strasbourg 7 (1945) | mr=0027151 | year=1948}} * {{Citation | last1=Weil | first1=André | author1-link=André Weil | title=Sur les courbes algébriques et les variétés qui s'en déduisent | publisher=Hermann et Cie., Paris | series=Actualités Sci. Ind., no. 1041 = Publ. Inst. Math. Univ. Strasbourg 7 (1945) | mr=0027151 | year=1948}}
* {{Citation | last1=Weil | first1=André | author1-link=André Weil | title=Numbers of solutions of equations in finite fields | doi=10.1090/S0002-9904-1949-09219-4 | mr=0029393 | year=1949 | journal=] | volume=55 | pages=497–508 | issue=5}} Reprinted in Oeuvres Scientifiques/Collected Papers by Andre Weil ISBN 0-387-90330-5 * {{Citation | last1=Weil | first1=André | author1-link=André Weil | title=Numbers of solutions of equations in finite fields | doi=10.1090/S0002-9904-1949-09219-4 | mr=0029393 | year=1949 | journal=] | volume=55 | pages=497–508 | issue=5| doi-access=free }} Reprinted in Oeuvres Scientifiques/Collected Papers by Andre Weil {{isbn|0-387-90330-5}}
* {{Citation | last1=Weinberger | first1=Peter J. | title=Analytic number theory ( St. Louis Univ., 1972) | publisher=Amer. Math. Soc. | location=Providence, R.I. | series=Proc. Sympos. Pure Math. | mr=0337902 | year=1973 | volume=24 | chapter=On Euclidean rings of algebraic integers | pages=321–332}} * {{Citation | last1=Weinberger | first1=Peter J. | title=Analytic number theory ( St. Louis Univ., 1972) | publisher=Amer. Math. Soc. | location=Providence, R.I. | series=Proc. Sympos. Pure Math. | mr=0337902 | year=1973 | volume=24 | chapter=On Euclidean rings of algebraic integers | pages=321–332}}
* {{Citation | last1=Wiles | first1=Andrew | author1-link=Andrew Wiles | title=Mathematics: frontiers and perspectives | publisher=American Mathematical Society | location=Providence, R.I. | isbn=978-0-8218-2697-3 | mr=1754786 | year=2000 | chapter=Twenty years of number theory | pages=329–342}} * {{Citation | last1=Wiles | first1=Andrew | author1-link=Andrew Wiles | title=Mathematics: frontiers and perspectives | publisher=American Mathematical Society | location=Providence, R.I. | isbn=978-0-8218-2697-3 | mr=1754786 | year=2000 | chapter=Twenty years of number theory | pages=329–342}}
* {{Citation | last1=Zagier | first1=Don | authorlink = Don Zagier | url=http://modular.math.washington.edu/edu/2007/simuw07/misc/zagier-the_first_50_million_prime_numbers.pdf |format=PDF| publisher=Springer| location=| mr=643810 | year=1977 | volume=0 | title=The first 50 million prime numbers | pages=7–19|journal=Math. Intelligencer | doi=10.1007/BF03039306}} * {{Citation | last1=Zagier | first1=Don | author-link=Don Zagier | url=http://modular.math.washington.edu/edu/2007/simuw07/misc/zagier-the_first_50_million_prime_numbers.pdf | publisher=Springer | mr=643810 | year=1977 | title=The first 50 million prime numbers | pages=7–19 | journal=Math. Intelligencer | volume=1 | doi=10.1007/BF03039306 | s2cid=189886510 | url-status=dead | archive-url=https://web.archive.org/web/20090327181245/http://modular.math.washington.edu/edu/2007/simuw07/misc/zagier-the_first_50_million_prime_numbers.pdf | archive-date=2009-03-27 }}
* {{Citation | last1=Zagier | first1=Don | authorlink = Don Zagier | title=Automorphic forms, representation theory and arithmetic (Bombay, 1979) | publisher=Tata Inst. Fundamental Res., Bombay | series=Tata Inst. Fund. Res. Studies in Math. | mr=633666 | year=1981 | volume=10 | chapter=Eisenstein series and the Riemann zeta function | pages=275–301}} * {{Citation | last1=Zagier | first1=Don | author-link = Don Zagier | title=Automorphic forms, representation theory and arithmetic (Bombay, 1979) | publisher=Tata Inst. Fundamental Res., Bombay | series=Tata Inst. Fund. Res. Studies in Math. | mr=633666 | year=1981 | volume=10 | chapter=Eisenstein series and the Riemann zeta function | pages=275–301}}
{{refend}} {{refend}}

===Popular expositions===
* {{Citation | last1=Sabbagh | first1=Karl | author1-link=Karl Sabbagh | title=The greatest unsolved problem in mathematics | publisher=Farrar, Straus and Giroux, New York | isbn=978-0-374-25007-2 | mr=1979664 | year=2003a | url=https://archive.org/details/riemannhypothesi00sabb }}
* {{Citation | last1=Sabbagh | first1=Karl | author1-link=Karl Sabbagh |title=Dr. Riemann's zeros | publisher=Atlantic Books, London | isbn=978-1-843-54101-1 | year=2003b | url=https://books.google.com/books?id=JesSAQAAMAAJ}}
* {{Citation | last1=du Sautoy | first1=Marcus | author-link=Marcus du Sautoy | title=The music of the primes | publisher=HarperCollins Publishers | isbn=978-0-06-621070-4 | mr=2060134 | year=2003 | url=https://archive.org/details/musicofprimessea00dusa }}
* {{Citation | last1=Rockmore | first1=Dan | title=Stalking the Riemann hypothesis | publisher=Pantheon Books | isbn=978-0-375-42136-5 | mr=2269393 | year=2005 | url=https://archive.org/details/stalkingriemannh00danr }}
* {{Citation | last1=Derbyshire | first1=John | author1-link=John Derbyshire | title=Prime Obsession | publisher=Joseph Henry Press, Washington, DC | isbn=978-0-309-08549-6 | mr=1968857 | year=2003| title-link=Prime Obsession }}
* {{Citation | last1=Watkins | first1=Matthew | title=Mystery of the Prime Numbers | publisher=Liberalis Books | isbn=978-1782797814 | mr=0000000 | year=2015| title-link=Mystery of the Prime Numbers }}
* ] (2014), ], Mar 11, 2014 (video)
* {{cite book |last=Nahin |first=Paul J. |authorlink=Paul J. Nahin |title=In Pursuit of Zeta-3: The World's Most Mysterious Unsolved Math Problem |publisher= Princeton University Press |date=2021 |isbn=978-0691206073}}

Note: Derbyshire 2003, Rockmore 2005, Sabbagh 2003a, Sabbagh 2003b, Sautoy 2003, and Watkins 2015 are non-technical. Edwards 1974, Patterson 1988, Borwein/Choi/Rooney/Weirathmueller 2008, Mazur/Stein 2015, Broughan 2017, and Nahin 2021 give mathematical introductions. Titchmarsh 1986, Ivić 1985, and Karatsuba/Voronin 1992 are advanced ]s.


==External links== ==External links==
*{{Commons category-inline}}
* ],
{{Sister project links| wikt=no | commons=no | b=no | n=no | q=Riemann hypothesis | s=no | v=no | voy=no | species=no | d=no}}
* {{citation|first=Tom|last=Apostol|authorlink=Tom M. Apostol|url=http://www.math.wisc.edu/~robbin/funnysongs.html#Zeta|title=Where are the zeros of zeta of s?}} Poem about the Riemann hypothesis, by ].
{{Portal|Mathematics}}
* {{citation|title=The Riemann Hypothesis |first=Peter|last=Borwein|authorlink=Peter Borwein|url=http://oldweb.cecm.sfu.ca/~pborwein/COURSE/MATH08/LECTURE.pdf|format=PDF}} (Slides for a lecture)
* ],
* {{Citation | last1=Conrad | first1=K. | title=Consequences of the Riemann hypothesis | url=http://mathoverflow.net/questions/17232 | year=2010}}
* , 103 800 788 359 zeroes
* {{citation|url=http://aimath.org/pl/rhequivalences|first= J. Brian|last= Conrey|first2= David W |last2=Farmer|title=Equivalences to the Riemann hypothesis}}
* {{citation|first= Xavier|last= Gourdon |first2= Pascal |last2=Sebah |url=http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeroscompute.html |title=Computation of zeros of the Zeta function|year=2004}} (Reviews the GUE hypothesis, provides an extensive bibliography as well). * {{citation|first=Tom|last=Apostol|author-link=Tom M. Apostol|url=http://www.math.wisc.edu/~robbin/funnysongs.html#Zeta|title=Where are the zeros of zeta of s?}} Poem about the Riemann hypothesis, by ].
* {{citation|title=The Riemann Hypothesis|first=Peter|last=Borwein|author-link=Peter Borwein|url=http://oldweb.cecm.sfu.ca/~pborwein/COURSE/MATH08/LECTURE.pdf|url-status=dead|archive-url=https://web.archive.org/web/20090327181245/http://oldweb.cecm.sfu.ca/~pborwein/COURSE/MATH08/LECTURE.pdf|archive-date=2009-03-27}} (Slides for a lecture)
* {{citation|last=Odlyzko|first=Andrew|authorlink=Andrew Odlyzko|url=http://www.dtc.umn.edu/~odlyzko/|title=Home page}} including and
* {{Citation | last1=Conrad | first1=K. | title=Consequences of the Riemann hypothesis | url=https://mathoverflow.net/q/17232 | year=2010}}
* {{citation|last=Odlyzko|first=Andrew|authorlink=Andrew Odlyzko|title=Zeros of the Riemann zeta function: Conjectures and computations|year=2002|url=http://www.dtc.umn.edu/~odlyzko/talks/riemann-conjectures.pdf|format=PDF}} Slides of a talk
* {{citation|url=http://aimath.org/pl/rhequivalences|first1=J. Brian|last1=Conrey|first2=David W|last2=Farmer|title=Equivalences to the Riemann hypothesis|url-status=dead|archive-url=https://web.archive.org/web/20100316235054/http://aimath.org/pl/rhequivalences|archive-date=2010-03-16}}
* {{citation|authorlink=Ed Pegg, Jr.|first= Ed |last=Pegg|url=http://www.maa.org/editorial/mathgames/mathgames_10_18_04.html |title=Ten Trillion Zeta Zeros|year=2004|publisher=Math Games website}}. A discussion of Xavier Gourdon's calculation of the first ten trillion non-trivial zeros
* {{citation|first1= Xavier|last1= Gourdon |first2= Pascal |last2=Sebah |url=http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeroscompute.html |title=Computation of zeros of the Zeta function|year=2004}} (Reviews the GUE hypothesis, provides an extensive bibliography as well).
* {{citation|first=Glen|last= Pugh|url=http://web.viu.ca/pughg/RiemannZeta/RiemannZetaLong.html |title=Java applet for plotting Z(t)}}
* {{citation|last=Odlyzko|first=Andrew|author-link=Andrew Odlyzko|url=http://www.dtc.umn.edu/~odlyzko/|title=Home page}} including and
* {{citation|first=Michael |last=Rubinstein |url=http://pmmac03.math.uwaterloo.ca/~mrubinst/l_function_public/L.html |title=algorithm for generating the zeros}}.
* {{citation|last=Odlyzko|first=Andrew|author-link=Andrew Odlyzko|title=Zeros of the Riemann zeta function: Conjectures and computations|year=2002|url=http://www.dtc.umn.edu/~odlyzko/talks/riemann-conjectures.pdf}} Slides of a talk
* {{citation|first= Marcus |last=du Sautoy|authorlink=Marcus du Sautoy|url=http://www.seedmagazine.com/news/2006/03/prime_numbers_get_hitched.php|title= Prime Numbers Get Hitched|publisher=|year=2006}}
* {{citation|author-link=Ed Pegg, Jr.|first=Ed|last=Pegg|url=http://www.maa.org/editorial/mathgames/mathgames_10_18_04.html|title=Ten Trillion Zeta Zeros|year=2004|publisher=Math Games website|access-date=2004-10-20|archive-date=2004-11-02|archive-url=https://web.archive.org/web/20041102173644/http://www.maa.org/editorial/mathgames/mathgames_10_18_04.html|url-status=dead}}. A discussion of Xavier Gourdon's calculation of the first ten trillion non-trivial zeros
* {{citation|last=Stein|first=William A.|authorlink=William A. Stein|url=http://modular.math.washington.edu/edu/2007/simuw07/index.html|title=What is Riemann's hypothesis}}
* {{citation |first=Michael |last=Rubinstein |url=http://pmmac03.math.uwaterloo.ca/~mrubinst/l_function_public/L.html |title=algorithm for generating the zeros |url-status=dead |archive-url=https://web.archive.org/web/20070427221654/http://pmmac03.math.uwaterloo.ca/~mrubinst/l_function_public/L.html |archive-date=2007-04-27 }}.
* {{citation|last=de Vries|first=Andreas|url=http://math-it.org/Mathematik/Riemann/RiemannApplet.html|title=The Graph of the Riemann Zeta function ζ(s)|year=2004}}, a simple animated Java applet.
* {{citation|first=Marcus|last=du Sautoy|author-link=Marcus du Sautoy |url=http://www.seedmagazine.com/news/2006/03/prime_numbers_get_hitched.php|title=Prime Numbers Get Hitched|publisher=Seed Magazine |year=2006|access-date=2006-03-27|archive-url=https://web.archive.org/web/20170922145127/http://seedmagazine.com/content/article/prime_numbers_get_hitched/|archive-date=2017-09-22|url-status=usurped}}
* {{citation | first=Matthew R. |last=Watkins|url=http://secamlocal.ex.ac.uk/~mwatkins/zeta/RHproofs.htm | title=Proposed proofs of the Riemann Hypothesis | date=2007-07-18}}
* {{citation | first=Matthew R. | last=Watkins | url=https://empslocal.ex.ac.uk/people/staff/mrwatkin//zeta/RHproofs.htm | archive-url=https://web.archive.org/web/20221209020336/https://empslocal.ex.ac.uk/people/staff/mrwatkin//zeta/RHproofs.htm | url-status=live | archive-date=December 9, 2022 | title=Proposed (dis)proofs of the Riemann Hypothesis | date=2021-02-27 }} <!-- date in the containing directory is 10 March 2021 -->
* '''' (2002) A distributed computing project that attempted to disprove Riemann's hypothesis; closed in November 2005
* '''' (2002) A distributed computing project that attempted to disprove Riemann's hypothesis; closed in November 2005


{{L-functions-footer}} {{L-functions-footer}}
{{Bernhard Riemann}}


{{Authority control}}
]

]
]
]
] ]
] ]
]
]
] ]
] ]
]

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

Latest revision as of 13:28, 8 December 2024

Conjecture on zeros of the zeta function For the musical term, see Riemannian theory. Unsolved problem in mathematics: Do all non-trivial zeroes of the Riemann zeta function have a real part of one half? (more unsolved problems in mathematics)
This plot of Riemann's zeta (ζ) function (here with argument z) shows trivial zeros where ζ(z) = 0, a pole where ζ(z) = {\displaystyle \infty } , the critical line of nontrivial zeros with Re(z) = 1/2 and slopes of absolute values.

In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part ⁠1/2⁠. Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by Bernhard Riemann (1859), after whom it is named.

The Riemann hypothesis and some of its generalizations, along with Goldbach's conjecture and the twin prime conjecture, make up Hilbert's eighth problem in David Hilbert's list of twenty-three unsolved problems; it is also one of the Millennium Prize Problems of the Clay Mathematics Institute, which offers US$1 million for a solution to any of them. The name is also used for some closely related analogues, such as the Riemann hypothesis for curves over finite fields.

The Riemann zeta function ζ(s) is a function whose argument s may be any complex number other than 1, and whose values are also complex. It has zeros at the negative even integers; that is, ζ(s) = 0 when s is one of −2, −4, −6, .... These are called its trivial zeros. The zeta function is also zero for other values of s, which are called nontrivial zeros. The Riemann hypothesis is concerned with the locations of these nontrivial zeros, and states that:

The real part of every nontrivial zero of the Riemann zeta function is ⁠1/2⁠.

Millennium Prize Problems

Thus, if the hypothesis is correct, all the nontrivial zeros lie on the critical line consisting of the complex numbers ⁠1/2⁠ + i t, where t is a real number and i is the imaginary unit.

Riemann zeta function

The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series

ζ ( s ) = n = 1 1 n s = 1 1 s + 1 2 s + 1 3 s + {\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}={\frac {1}{1^{s}}}+{\frac {1}{2^{s}}}+{\frac {1}{3^{s}}}+\cdots }

Leonhard Euler considered this series in the 1730s for real values of s, in conjunction with his solution to the Basel problem. He also proved that it equals the Euler product

ζ ( s ) = p  prime 1 1 p s = 1 1 2 s 1 1 3 s 1 1 5 s 1 1 7 s {\displaystyle \zeta (s)=\prod _{p{\text{ prime}}}{\frac {1}{1-p^{-s}}}={\frac {1}{1-2^{-s}}}\cdot {\frac {1}{1-3^{-s}}}\cdot {\frac {1}{1-5^{-s}}}\cdot {\frac {1}{1-7^{-s}}}\cdots }

where the infinite product extends over all prime numbers p.

The Riemann hypothesis discusses zeros outside the region of convergence of this series and Euler product. To make sense of the hypothesis, it is necessary to analytically continue the function to obtain a form that is valid for all complex s. Because the zeta function is meromorphic, all choices of how to perform this analytic continuation will lead to the same result, by the identity theorem. A first step in this continuation observes that the series for the zeta function and the Dirichlet eta function satisfy the relation

( 1 2 2 s ) ζ ( s ) = η ( s ) = n = 1 ( 1 ) n + 1 n s = 1 1 s 1 2 s + 1 3 s , {\displaystyle \left(1-{\frac {2}{2^{s}}}\right)\zeta (s)=\eta (s)=\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n^{s}}}={\frac {1}{1^{s}}}-{\frac {1}{2^{s}}}+{\frac {1}{3^{s}}}-\cdots ,}

within the region of convergence for both series. But the eta function series on the right converges not just when the real part of s is greater than one, but more generally whenever s has positive real part. Thus the zeta function can be redefined as η ( s ) / ( 1 2 / 2 s ) {\displaystyle \eta (s)/(1-2/2^{s})} , extending it from Re(s) > 1 to a larger domain: Re(s) > 0, except for the points where 1 2 / 2 s {\displaystyle 1-2/2^{s}} is zero. These are the points s = 1 + 2 π i n / log 2 {\displaystyle s=1+2\pi in/\log 2} where n {\displaystyle n} can be any nonzero integer; the zeta function can be extended to these values too by taking limits (see Dirichlet eta function § Landau's problem with ζ(s) = η(s)/0 and solutions), giving a finite value for all values of s with positive real part except the simple pole at s = 1.

In the strip 0 < Re(s) < 1 this extension of the zeta function satisfies the functional equation

ζ ( s ) = 2 s π s 1   sin ( π s 2 )   Γ ( 1 s )   ζ ( 1 s ) . {\displaystyle \zeta (s)=2^{s}\pi ^{s-1}\ \sin \left({\frac {\pi s}{2}}\right)\ \Gamma (1-s)\ \zeta (1-s).}

One may then define ζ(s) for all remaining nonzero complex numbers s (Re(s) ≤ 0 and s ≠ 0) by applying this equation outside the strip, and letting ζ(s) equal the right side of the equation whenever s has non-positive real part (and s ≠ 0).

If s is a negative even integer, then ζ(s) = 0, because the factor sin(πs/2) vanishes; these are the zeta function's trivial zeros. (If s is a positive even integer this argument does not apply because the zeros of the sine function are canceled by the poles of the gamma function as it takes negative integer arguments.)

The value ζ(0) = −1/2 is not determined by the functional equation, but is the limiting value of ζ(s) as s approaches zero. The functional equation also implies that the zeta function has no zeros with negative real part other than the trivial zeros, so all nontrivial zeros lie in the critical strip where s has real part between 0 and 1.

  • Riemann zeta function along the critical line with Re(s) = 1/2. Real values are shown on the horizontal axis and imaginary values are on the vertical axis. Re(ζ(1/2 + it)), Im(ζ(1/2 + it)) is plotted with t ranging between −30 and 30. Riemann zeta function along the critical line with Re(s) = 1/2. Real values are shown on the horizontal axis and imaginary values are on the vertical axis. Re(ζ(1/2 + it)), Im(ζ(1/2 + it)) is plotted with t ranging between −30 and 30.
  • Animation showing in 3D the Riemann zeta function critical strip (blue, where s has real part between 0 and 1), critical line (red, for real part of s equals 0.5) and zeroes (cross between red and orange): = with 0.1 ≤ r ≤ 0.9 and 1 ≤ t ≤ 51
  • The real part (red) and imaginary part (blue) of the Riemann zeta function ζ(s) along the critical line in the complex plane with real part Re(s) = 1/2. The first nontrivial zeros, where ζ(s) equals zero, occur where both curves touch the horizontal x-axis, for complex numbers with imaginary parts Im(s) equaling ±14.135, ±21.022 and ±25.011. The real part (red) and imaginary part (blue) of the Riemann zeta function ζ(s) along the critical line in the complex plane with real part Re(s) = 1/2. The first nontrivial zeros, where ζ(s) equals zero, occur where both curves touch the horizontal x-axis, for complex numbers with imaginary parts Im(s) equaling ±14.135, ±21.022 and ±25.011.

Origin

... es ist sehr wahrscheinlich, dass alle Wurzeln reell sind. Hiervon wäre allerdings ein strenger Beweis zu wünschen; ich habe indess die Aufsuchung desselben nach einigen flüchtigen vergeblichen Versuchen vorläufig bei Seite gelassen, da er für den nächsten Zweck meiner Untersuchung entbehrlich schien.

... it is very probable that all roots are real. Of course one would wish for a rigorous proof here; I have for the time being, after some fleeting vain attempts, provisionally put aside the search for this, as it appears dispensable for the immediate objective of my investigation.

— Riemann's statement of the Riemann hypothesis, from (Riemann 1859). (He was discussing a variant of the zeta function, modified in a way that the real line be mapped to the critical line.)

At the death of Riemann, a note was found among his papers, saying "These properties of ζ(s) (the function in question) are deduced from an expression of it which, however, I did not succeed in simplifying enough to publish it." We still have not the slightest idea of what the expression could be. As to the properties he simply enunciated, some thirty years elapsed before I was able to prove all of them but one .

— Jacques Hadamard, The Mathematician's Mind, VIII. Paradoxical Cases of Intuition

Riemann's original motivation for studying the zeta function and its zeros was their occurrence in his explicit formula for the number of primes π(x) less than or equal to a given number x, which he published in his 1859 paper "On the Number of Primes Less Than a Given Magnitude". His formula was given in terms of the related function

Π ( x ) = π ( x ) + 1 2 π ( x 1 / 2 ) + 1 3 π ( x 1 / 3 ) + 1 4 π ( x 1 / 4 ) + 1 5 π ( x 1 / 5 ) + 1 6 π ( x 1 / 6 ) + {\displaystyle \Pi (x)=\pi (x)+{\tfrac {1}{2}}\pi (x^{1/2})+{\tfrac {1}{3}}\pi (x^{1/3})+{\tfrac {1}{4}}\pi (x^{1/4})+{\tfrac {1}{5}}\pi (x^{1/5})+{\tfrac {1}{6}}\pi (x^{1/6})+\cdots }

which counts the primes and prime powers up to x, counting a prime power p as 1⁄n. The number of primes can be recovered from this function by using the Möbius inversion formula,

π ( x ) = n = 1 μ ( n ) n Π ( x 1 / n ) = Π ( x ) 1 2 Π ( x 1 / 2 ) 1 3 Π ( x 1 / 3 ) 1 5 Π ( x 1 / 5 ) + 1 6 Π ( x 1 / 6 ) , {\displaystyle {\begin{aligned}\pi (x)&=\sum _{n=1}^{\infty }{\frac {\mu (n)}{n}}\Pi (x^{1/n})\\&=\Pi (x)-{\frac {1}{2}}\Pi (x^{1/2})-{\frac {1}{3}}\Pi (x^{1/3})-{\frac {1}{5}}\Pi (x^{1/5})+{\frac {1}{6}}\Pi (x^{1/6})-\cdots ,\end{aligned}}}

where μ is the Möbius function. Riemann's formula is then

Π 0 ( x ) = li ( x ) ρ li ( x ρ ) log 2 + x d t t ( t 2 1 ) log t {\displaystyle \Pi _{0}(x)=\operatorname {li} (x)-\sum _{\rho }\operatorname {li} (x^{\rho })-\log 2+\int _{x}^{\infty }{\frac {dt}{t(t^{2}-1)\log t}}}

where the sum is over the nontrivial zeros of the zeta function and where Π0 is a slightly modified version of Π that replaces its value at its points of discontinuity by the average of its upper and lower limits:

Π 0 ( x ) = lim ε 0 Π ( x ε ) + Π ( x + ε ) 2 . {\displaystyle \Pi _{0}(x)=\lim _{\varepsilon \to 0}{\frac {\Pi (x-\varepsilon )+\Pi (x+\varepsilon )}{2}}.}

The summation in Riemann's formula is not absolutely convergent, but may be evaluated by taking the zeros ρ in order of the absolute value of their imaginary part. The function li occurring in the first term is the (unoffset) logarithmic integral function given by the Cauchy principal value of the divergent integral

li ( x ) = 0 x d t log t . {\displaystyle \operatorname {li} (x)=\int _{0}^{x}{\frac {dt}{\log t}}.}

The terms li(x) involving the zeros of the zeta function need some care in their definition as li has branch points at 0 and 1, and are defined (for x > 1) by analytic continuation in the complex variable ρ in the region Re(ρ) > 0, i.e. they should be considered as Ei(ρ log x). The other terms also correspond to zeros: the dominant term li(x) comes from the pole at s = 1, considered as a zero of multiplicity −1, and the remaining small terms come from the trivial zeros. For some graphs of the sums of the first few terms of this series see Riesel & Göhl (1970) or Zagier (1977).

This formula says that the zeros of the Riemann zeta function control the oscillations of primes around their "expected" positions. Riemann knew that the non-trivial zeros of the zeta function were symmetrically distributed about the line s = 1/2 + it, and he knew that all of its non-trivial zeros must lie in the range 0 ≤ Re(s) ≤ 1. He checked that a few of the zeros lay on the critical line with real part 1/2 and suggested that they all do; this is the Riemann hypothesis.

The result has caught the imagination of most mathematicians because it is so unexpected, connecting two seemingly unrelated areas in mathematics; namely, number theory, which is the study of the discrete, and complex analysis, which deals with continuous processes.

— (Burton 2006, p. 376)

Consequences

The practical uses of the Riemann hypothesis include many propositions known to be true under the Riemann hypothesis, and some that can be shown to be equivalent to the Riemann hypothesis.

Distribution of prime numbers

Riemann's explicit formula for the number of primes less than a given number states that, in terms of a sum over the zeros of the Riemann zeta function, the magnitude of the oscillations of primes around their expected position is controlled by the real parts of the zeros of the zeta function. In particular, the error term in the prime number theorem is closely related to the position of the zeros. For example, if β is the upper bound of the real parts of the zeros, then π ( x ) li ( x ) = O ( x β log x ) {\displaystyle \pi (x)-\operatorname {li} (x)=O\left(x^{\beta }\log x\right)} , where π ( x ) {\displaystyle \pi (x)} is the prime-counting function, li ( x ) {\displaystyle \operatorname {li} (x)} is the logarithmic integral function, log ( x ) {\displaystyle \log(x)} is the natural logarithm of x, and big O notation is used here. It is already known that 1/2 ≤ β ≤ 1.

Corrections to an estimate of the prime-counting function using zeros of the zeta function. The magnitude of the correction term is determined by the real part of the zero being added in the correction.

Von Koch (1901) proved that the Riemann hypothesis implies the "best possible" bound for the error of the prime number theorem. A precise version of von Koch's result, due to Schoenfeld (1976), says that the Riemann hypothesis implies

| π ( x ) li ( x ) | < 1 8 π x log ( x ) , for all  x 2657 , {\displaystyle |\pi (x)-\operatorname {li} (x)|<{\frac {1}{8\pi }}{\sqrt {x}}\log(x),\qquad {\text{for all }}x\geq 2657,}

Schoenfeld (1976) also showed that the Riemann hypothesis implies

| ψ ( x ) x | < 1 8 π x log 2 x , for all  x 73.2 , {\displaystyle |\psi (x)-x|<{\frac {1}{8\pi }}{\sqrt {x}}\log ^{2}x,\qquad {\text{for all }}x\geq 73.2,}

where ψ ( x ) {\displaystyle \psi (x)} is Chebyshev's second function.

Dudek (2014) proved that the Riemann hypothesis implies that for all x 2 {\displaystyle x\geq 2} there is a prime p {\displaystyle p} satisfying

x 4 π x log x < p x {\displaystyle x-{\frac {4}{\pi }}{\sqrt {x}}\log x<p\leq x} .

The constant 4/π may be reduced to (1 + ε) provided that x is taken to be sufficiently large. This is an explicit version of a theorem of Cramér.

Growth of arithmetic functions

The Riemann hypothesis implies strong bounds on the growth of many other arithmetic functions, in addition to the primes counting function above.

One example involves the Möbius function μ. The statement that the equation

1 ζ ( s ) = n = 1 μ ( n ) n s {\displaystyle {\frac {1}{\zeta (s)}}=\sum _{n=1}^{\infty }{\frac {\mu (n)}{n^{s}}}}

is valid for every s with real part greater than 1/2, with the sum on the right hand side converging, is equivalent to the Riemann hypothesis. From this we can also conclude that if the Mertens function is defined by

M ( x ) = n x μ ( n ) {\displaystyle M(x)=\sum _{n\leq x}\mu (n)}

then the claim that

M ( x ) = O ( x 1 2 + ε ) {\displaystyle M(x)=O\left(x^{{\frac {1}{2}}+\varepsilon }\right)}

for every positive ε is equivalent to the Riemann hypothesis (J. E. Littlewood, 1912; see for instance: paragraph 14.25 in Titchmarsh (1986)). The determinant of the order n Redheffer matrix is equal to M(n), so the Riemann hypothesis can also be stated as a condition on the growth of these determinants. Littlewood's result has been improved several times since then, by Edmund Landau, Edward Charles Titchmarsh, Helmut Maier and Hugh Montgomery, and Kannan Soundararajan. Soundararajan's result is that, conditional on the Riemann hypothesis,

M ( x ) = O ( x 1 / 2 exp ( ( log x ) 1 / 2 ( log log x ) 14 ) ) . {\displaystyle M(x)=O\left(x^{1/2}\exp \left((\log x)^{1/2}(\log \log x)^{14}\right)\right).}

The Riemann hypothesis puts a rather tight bound on the growth of M, since Odlyzko & te Riele (1985) disproved the slightly stronger Mertens conjecture

| M ( x ) | x . {\displaystyle |M(x)|\leq {\sqrt {x}}.}

Another closely related result is due to Björner (2011), that the Riemann hypothesis is equivalent to the statement that the Euler characteristic of the simplicial complex determined by the lattice of integers under divisibility is o ( n 1 / 2 + ϵ ) {\displaystyle o(n^{1/2+\epsilon })} for all ϵ > 0 {\displaystyle \epsilon >0} (see incidence algebra).

The Riemann hypothesis is equivalent to many other conjectures about the rate of growth of other arithmetic functions aside from μ(n). A typical example is Robin's theorem, which states that if σ(n) is the sigma function, given by

σ ( n ) = d n d {\displaystyle \sigma (n)=\sum _{d\mid n}d}

then

σ ( n ) < e γ n log log n {\displaystyle \sigma (n)<e^{\gamma }n\log \log n}

for all n > 5040 if and only if the Riemann hypothesis is true, where γ is the Euler–Mascheroni constant.

A related bound was given by Jeffrey Lagarias in 2002, who proved that the Riemann hypothesis is equivalent to the statement that:

σ ( n ) < H n + log ( H n ) e H n {\displaystyle \sigma (n)<H_{n}+\log(H_{n})e^{H_{n}}}

for every natural number n > 1, where H n {\displaystyle H_{n}} is the nth harmonic number.

The Riemann hypothesis is also true if and only if the inequality

n φ ( n ) < e γ log log n + e γ ( 4 + γ log 4 π ) log n {\displaystyle {\frac {n}{\varphi (n)}}<e^{\gamma }\log \log n+{\frac {e^{\gamma }(4+\gamma -\log 4\pi )}{\sqrt {\log n}}}}

is true for all n ≥ 120569# where φ(n) is Euler's totient function and 120569# is the product of the first 120569 primes.

Another example was found by Jérôme Franel, and extended by Landau (see Franel & Landau (1924)). The Riemann hypothesis is equivalent to several statements showing that the terms of the Farey sequence are fairly regular. One such equivalence is as follows: if Fn is the Farey sequence of order n, beginning with 1/n and up to 1/1, then the claim that for all ε > 0

i = 1 m | F n ( i ) i m | = O ( n 1 2 + ϵ ) {\displaystyle \sum _{i=1}^{m}|F_{n}(i)-{\tfrac {i}{m}}|=O\left(n^{{\frac {1}{2}}+\epsilon }\right)}

is equivalent to the Riemann hypothesis. Here

m = i = 1 n φ ( i ) {\displaystyle m=\sum _{i=1}^{n}\varphi (i)}

is the number of terms in the Farey sequence of order n.

For an example from group theory, if g(n) is Landau's function given by the maximal order of elements of the symmetric group Sn of degree n, then Massias, Nicolas & Robin (1988) showed that the Riemann hypothesis is equivalent to the bound

log g ( n ) < Li 1 ( n ) {\displaystyle \log g(n)<{\sqrt {\operatorname {Li} ^{-1}(n)}}}

for all sufficiently large n.

Lindelöf hypothesis and growth of the zeta function

The Riemann hypothesis has various weaker consequences as well; one is the Lindelöf hypothesis on the rate of growth of the zeta function on the critical line, which says that, for any ε > 0,

ζ ( 1 2 + i t ) = O ( t ε ) , {\displaystyle \zeta \left({\frac {1}{2}}+it\right)=O(t^{\varepsilon }),}

as t {\displaystyle t\to \infty } .

The Riemann hypothesis also implies quite sharp bounds for the growth rate of the zeta function in other regions of the critical strip. For example, it implies that

e γ lim sup t + | ζ ( 1 + i t ) | log log t 2 e γ {\displaystyle e^{\gamma }\leq \limsup _{t\rightarrow +\infty }{\frac {|\zeta (1+it)|}{\log \log t}}\leq 2e^{\gamma }}
6 π 2 e γ lim sup t + 1 / | ζ ( 1 + i t ) | log log t 12 π 2 e γ {\displaystyle {\frac {6}{\pi ^{2}}}e^{\gamma }\leq \limsup _{t\rightarrow +\infty }{\frac {1/|\zeta (1+it)|}{\log \log t}}\leq {\frac {12}{\pi ^{2}}}e^{\gamma }}

so the growth rate of ζ(1 + it) and its inverse would be known up to a factor of 2.

Large prime gap conjecture

The prime number theorem implies that on average, the gap between the prime p and its successor is log p. However, some gaps between primes may be much larger than the average. Cramér proved that, assuming the Riemann hypothesis, every gap is O(√p log p). This is a case in which even the best bound that can be proved using the Riemann hypothesis is far weaker than what seems true: Cramér's conjecture implies that every gap is O((log p)), which, while larger than the average gap, is far smaller than the bound implied by the Riemann hypothesis. Numerical evidence supports Cramér's conjecture.

Analytic criteria equivalent to the Riemann hypothesis

Many statements equivalent to the Riemann hypothesis have been found, though so far none of them have led to much progress in proving (or disproving) it. Some typical examples are as follows. (Others involve the divisor function σ(n).)

The Riesz criterion was given by Riesz (1916), to the effect that the bound

k = 1 ( x ) k ( k 1 ) ! ζ ( 2 k ) = O ( x 1 4 + ϵ ) {\displaystyle -\sum _{k=1}^{\infty }{\frac {(-x)^{k}}{(k-1)!\zeta (2k)}}=O\left(x^{{\frac {1}{4}}+\epsilon }\right)}

holds for all ε > 0 if and only if the Riemann hypothesis holds. See also the Hardy–Littlewood criterion.

Nyman (1950) proved that the Riemann hypothesis is true if and only if the space of functions of the form

f ( x ) = ν = 1 n c ν ρ ( θ ν x ) {\displaystyle f(x)=\sum _{\nu =1}^{n}c_{\nu }\rho \left({\frac {\theta _{\nu }}{x}}\right)}

where ρ(z) is the fractional part of z, 0 ≤ θν ≤ 1, and

ν = 1 n c ν θ ν = 0 , {\displaystyle \sum _{\nu =1}^{n}c_{\nu }\theta _{\nu }=0,}

is dense in the Hilbert space L(0,1) of square-integrable functions on the unit interval. Beurling (1955) extended this by showing that the zeta function has no zeros with real part greater than 1/p if and only if this function space is dense in L(0,1). This Nyman-Beurling criterion was strengthened by Baez-Duarte to the case where θ ν { 1 / k } k 1 {\displaystyle \theta _{\nu }\in \{1/k\}_{k\geq 1}} .

Salem (1953) showed that the Riemann hypothesis is true if and only if the integral equation

0 z σ 1 φ ( z ) e x / z + 1 d z = 0 {\displaystyle \int _{0}^{\infty }{\frac {z^{-\sigma -1}\varphi (z)}{{e^{x/z}}+1}}\,dz=0}

has no non-trivial bounded solutions φ {\displaystyle \varphi } for 1 / 2 < σ < 1 {\displaystyle 1/2<\sigma <1} .

Weil's criterion is the statement that the positivity of a certain function is equivalent to the Riemann hypothesis. Related is Li's criterion, a statement that the positivity of a certain sequence of numbers is equivalent to the Riemann hypothesis.

Speiser (1934) proved that the Riemann hypothesis is equivalent to the statement that ζ ( s ) {\displaystyle \zeta '(s)} , the derivative of ζ ( s ) {\displaystyle \zeta (s)} , has no zeros in the strip

0 < ( s ) < 1 2 . {\displaystyle 0<\Re (s)<{\frac {1}{2}}.}

That ζ ( s ) {\displaystyle \zeta (s)} has only simple zeros on the critical line is equivalent to its derivative having no zeros on the critical line.

The Farey sequence provides two equivalences, due to Jerome Franel and Edmund Landau in 1924.

The de Bruijn–Newman constant denoted by Λ and named after Nicolaas Govert de Bruijn and Charles M. Newman, is defined as the unique real number such that the function

H ( λ , z ) := 0 e λ u 2 Φ ( u ) cos ( z u ) d u {\displaystyle H(\lambda ,z):=\int _{0}^{\infty }e^{\lambda u^{2}}\Phi (u)\cos(zu)\,du} ,

that is parametrised by a real parameter λ, has a complex variable z and is defined using a super-exponentially decaying function

Φ ( u ) = n = 1 ( 2 π 2 n 4 e 9 u 3 π n 2 e 5 u ) e π n 2 e 4 u {\displaystyle \Phi (u)=\sum _{n=1}^{\infty }(2\pi ^{2}n^{4}e^{9u}-3\pi n^{2}e^{5u})e^{-\pi n^{2}e^{4u}}} .

has only real zeros if and only if λ ≥ Λ. Since the Riemann hypothesis is equivalent to the claim that all the zeroes of H(0, z) are real, the Riemann hypothesis is equivalent to the conjecture that Λ 0 {\displaystyle \Lambda \leq 0} . Brad Rodgers and Terence Tao discovered the equivalence is actually Λ = 0 {\displaystyle \Lambda =0} by proving zero to be the lower bound of the constant. Proving zero is also the upper bound would therefore prove the Riemann hypothesis. As of April 2020 the upper bound is Λ 0.2 {\displaystyle \Lambda \leq 0.2} .

Consequences of the generalized Riemann hypothesis

Several applications use the generalized Riemann hypothesis for Dirichlet L-series or zeta functions of number fields rather than just the Riemann hypothesis. Many basic properties of the Riemann zeta function can easily be generalized to all Dirichlet L-series, so it is plausible that a method that proves the Riemann hypothesis for the Riemann zeta function would also work for the generalized Riemann hypothesis for Dirichlet L-functions. Several results first proved using the generalized Riemann hypothesis were later given unconditional proofs without using it, though these were usually much harder. Many of the consequences on the following list are taken from Conrad (2010).

  • In 1913, Grönwall showed that the generalized Riemann hypothesis implies that Gauss's list of imaginary quadratic fields with class number 1 is complete, though Baker, Stark and Heegner later gave unconditional proofs of this without using the generalized Riemann hypothesis.
  • In 1917, Hardy and Littlewood showed that the generalized Riemann hypothesis implies a conjecture of Chebyshev that lim x 1 p > 2 ( 1 ) ( p + 1 ) / 2 x p = + , {\displaystyle \lim _{x\to 1^{-}}\sum _{p>2}(-1)^{(p+1)/2}x^{p}=+\infty ,} which says that primes 3 mod 4 are more common than primes 1 mod 4 in some sense. (For related results, see Prime number theorem § Prime number race.)
  • In 1923, Hardy and Littlewood showed that the generalized Riemann hypothesis implies a weak form of the Goldbach conjecture for odd numbers: that every sufficiently large odd number is the sum of three primes, though in 1937 Vinogradov gave an unconditional proof. In 1997 Deshouillers, Effinger, te Riele, and Zinoviev showed that the generalized Riemann hypothesis implies that every odd number greater than 5 is the sum of three primes. In 2013 Harald Helfgott proved the ternary Goldbach conjecture without the GRH dependence, subject to some extensive calculations completed with the help of David J. Platt.
  • In 1934, Chowla showed that the generalized Riemann hypothesis implies that the first prime in the arithmetic progression a mod m is at most Kmlog(m) for some fixed constant K.
  • In 1967, Hooley showed that the generalized Riemann hypothesis implies Artin's conjecture on primitive roots.
  • In 1973, Weinberger showed that the generalized Riemann hypothesis implies that Euler's list of idoneal numbers is complete.
  • Weinberger (1973) showed that the generalized Riemann hypothesis for the zeta functions of all algebraic number fields implies that any number field with class number 1 is either Euclidean or an imaginary quadratic number field of discriminant −19, −43, −67, or −163.
  • In 1976, G. Miller showed that the generalized Riemann hypothesis implies that one can test if a number is prime in polynomial time via the Miller test. In 2002, Manindra Agrawal, Neeraj Kayal and Nitin Saxena proved this result unconditionally using the AKS primality test.
  • Odlyzko (1990) discussed how the generalized Riemann hypothesis can be used to give sharper estimates for discriminants and class numbers of number fields.
  • Ono & Soundararajan (1997) showed that the generalized Riemann hypothesis implies that Ramanujan's integral quadratic form x + y + 10z represents all integers that it represents locally, with exactly 18 exceptions.
  • In 2021, Alexander (Alex) Dunn and Maksym Radziwill proved Patterson's conjecture on cubic Gauss sums, under the assumption of the GRH.

Excluded middle

Some consequences of the RH are also consequences of its negation, and are thus theorems. In their discussion of the Hecke, Deuring, Mordell, Heilbronn theorem, Ireland & Rosen (1990, p. 359) say

The method of proof here is truly amazing. If the generalized Riemann hypothesis is true, then the theorem is true. If the generalized Riemann hypothesis is false, then the theorem is true. Thus, the theorem is true!!

Care should be taken to understand what is meant by saying the generalized Riemann hypothesis is false: one should specify exactly which class of Dirichlet series has a counterexample.

Littlewood's theorem

This concerns the sign of the error in the prime number theorem. It has been computed that π(x) < li(x) for all x ≤ 10 (see this table), and no value of x is known for which π(x) > li(x).

In 1914 Littlewood proved that there are arbitrarily large values of x for which

π ( x ) > li ( x ) + 1 3 x log x log log log x , {\displaystyle \pi (x)>\operatorname {li} (x)+{\frac {1}{3}}{\frac {\sqrt {x}}{\log x}}\log \log \log x,}

and that there are also arbitrarily large values of x for which

π ( x ) < li ( x ) 1 3 x log x log log log x . {\displaystyle \pi (x)<\operatorname {li} (x)-{\frac {1}{3}}{\frac {\sqrt {x}}{\log x}}\log \log \log x.}

Thus the difference π(x) − li(x) changes sign infinitely many times. Skewes' number is an estimate of the value of x corresponding to the first sign change.

Littlewood's proof is divided into two cases: the RH is assumed false (about half a page of Ingham 1932, Chapt. V), and the RH is assumed true (about a dozen pages). Stanisław Knapowski (1962) followed this up with a paper on the number of times Δ ( n ) {\displaystyle \Delta (n)} changes sign in the interval Δ ( n ) {\displaystyle \Delta (n)} .

Gauss's class number conjecture

This is the conjecture (first stated in article 303 of Gauss's Disquisitiones Arithmeticae) that there are only finitely many imaginary quadratic fields with a given class number. One way to prove it would be to show that as the discriminant D → −∞ the class number h(D) → ∞.

The following sequence of theorems involving the Riemann hypothesis is described in Ireland & Rosen 1990, pp. 358–361:

Theorem (Hecke; 1918) — Let D < 0 be the discriminant of an imaginary quadratic number field K. Assume the generalized Riemann hypothesis for L-functions of all imaginary quadratic Dirichlet characters. Then there is an absolute constant C such that h ( D ) > C | D | log | D | . {\displaystyle h(D)>C{\frac {\sqrt {|D|}}{\log |D|}}.}

Theorem (Deuring; 1933) — If the RH is false then h(D) > 1 if |D| is sufficiently large.

Theorem (Mordell; 1934) — If the RH is false then h(D) → ∞ as D → −∞.

Theorem (Heilbronn; 1934) — If the generalized RH is false for the L-function of some imaginary quadratic Dirichlet character then h(D) → ∞ as D → −∞.

(In the work of Hecke and Heilbronn, the only L-functions that occur are those attached to imaginary quadratic characters, and it is only for those L-functions that GRH is true or GRH is false is intended; a failure of GRH for the L-function of a cubic Dirichlet character would, strictly speaking, mean GRH is false, but that was not the kind of failure of GRH that Heilbronn had in mind, so his assumption was more restricted than simply GRH is false.)

In 1935, Carl Siegel strengthened the result without using RH or GRH in any way.

Growth of Euler's totient

In 1983 J. L. Nicolas proved that φ ( n ) < e γ n log log n {\displaystyle \varphi (n)<e^{-\gamma }{\frac {n}{\log \log n}}} for infinitely many n, where φ(n) is Euler's totient function and γ is Euler's constant. Ribenboim remarks that: "The method of proof is interesting, in that the inequality is shown first under the assumption that the Riemann hypothesis is true, secondly under the contrary assumption."

Generalizations and analogs

Dirichlet L-series and other number fields

The Riemann hypothesis can be generalized by replacing the Riemann zeta function by the formally similar, but much more general, global L-functions. In this broader setting, one expects the non-trivial zeros of the global L-functions to have real part 1/2. It is these conjectures, rather than the classical Riemann hypothesis only for the single Riemann zeta function, which account for the true importance of the Riemann hypothesis in mathematics.

The generalized Riemann hypothesis extends the Riemann hypothesis to all Dirichlet L-functions. In particular it implies the conjecture that Siegel zeros (zeros of L-functions between 1/2 and 1) do not exist.

The extended Riemann hypothesis extends the Riemann hypothesis to all Dedekind zeta functions of algebraic number fields. The extended Riemann hypothesis for abelian extension of the rationals is equivalent to the generalized Riemann hypothesis. The Riemann hypothesis can also be extended to the L-functions of Hecke characters of number fields.

The grand Riemann hypothesis extends it to all automorphic zeta functions, such as Mellin transforms of Hecke eigenforms.

Function fields and zeta functions of varieties over finite fields

Artin (1924) introduced global zeta functions of (quadratic) function fields and conjectured an analogue of the Riemann hypothesis for them, which has been proved by Hasse in the genus 1 case and by Weil (1948) in general. For instance, the fact that the Gauss sum, of the quadratic character of a finite field of size q (with q odd), has absolute value q {\displaystyle {\sqrt {q}}} is actually an instance of the Riemann hypothesis in the function field setting. This led Weil (1949) to conjecture a similar statement for all algebraic varieties; the resulting Weil conjectures were proved by Pierre Deligne (1974, 1980).

Arithmetic zeta functions of arithmetic schemes and their L-factors

Arithmetic zeta functions generalise the Riemann and Dedekind zeta functions as well as the zeta functions of varieties over finite fields to every arithmetic scheme or a scheme of finite type over integers. The arithmetic zeta function of a regular connected equidimensional arithmetic scheme of Kronecker dimension n can be factorized into the product of appropriately defined L-factors and an auxiliary factor Jean-Pierre Serre (1969–1970). Assuming a functional equation and meromorphic continuation, the generalized Riemann hypothesis for the L-factor states that its zeros inside the critical strip ( s ) ( 0 , n ) {\displaystyle \Re (s)\in (0,n)} lie on the central line. Correspondingly, the generalized Riemann hypothesis for the arithmetic zeta function of a regular connected equidimensional arithmetic scheme states that its zeros inside the critical strip lie on vertical lines ( s ) = 1 / 2 , 3 / 2 , , n 1 / 2 {\displaystyle \Re (s)=1/2,3/2,\dots ,n-1/2} and its poles inside the critical strip lie on vertical lines ( s ) = 1 , 2 , , n 1 {\displaystyle \Re (s)=1,2,\dots ,n-1} . This is known for schemes in positive characteristic and follows from Pierre Deligne (1974, 1980), but remains entirely unknown in characteristic zero.

Selberg zeta functions

Main article: Selberg zeta function

Selberg (1956) introduced the Selberg zeta function of a Riemann surface. These are similar to the Riemann zeta function: they have a functional equation, and an infinite product similar to the Euler product but taken over closed geodesics rather than primes. The Selberg trace formula is the analogue for these functions of the explicit formulas in prime number theory. Selberg proved that the Selberg zeta functions satisfy the analogue of the Riemann hypothesis, with the imaginary parts of their zeros related to the eigenvalues of the Laplacian operator of the Riemann surface.

Ihara zeta functions

The Ihara zeta function of a finite graph is an analogue of the Selberg zeta function, which was first introduced by Yasutaka Ihara in the context of discrete subgroups of the two-by-two p-adic special linear group. A regular finite graph is a Ramanujan graph, a mathematical model of efficient communication networks, if and only if its Ihara zeta function satisfies the analogue of the Riemann hypothesis as was pointed out by T. Sunada.

Montgomery's pair correlation conjecture

Montgomery (1973) suggested the pair correlation conjecture that the correlation functions of the (suitably normalized) zeros of the zeta function should be the same as those of the eigenvalues of a random hermitian matrix. Odlyzko (1987) showed that this is supported by large-scale numerical calculations of these correlation functions.

Montgomery showed that (assuming the Riemann hypothesis) at least 2/3 of all zeros are simple, and a related conjecture is that all zeros of the zeta function are simple (or more generally have no non-trivial integer linear relations between their imaginary parts). Dedekind zeta functions of algebraic number fields, which generalize the Riemann zeta function, often do have multiple complex zeros. This is because the Dedekind zeta functions factorize as a product of powers of Artin L-functions, so zeros of Artin L-functions sometimes give rise to multiple zeros of Dedekind zeta functions. Other examples of zeta functions with multiple zeros are the L-functions of some elliptic curves: these can have multiple zeros at the real point of their critical line; the Birch-Swinnerton-Dyer conjecture predicts that the multiplicity of this zero is the rank of the elliptic curve.

Other zeta functions

There are many other examples of zeta functions with analogues of the Riemann hypothesis, some of which have been proved. Goss zeta functions of function fields have a Riemann hypothesis, proved by Sheats (1998). The main conjecture of Iwasawa theory, proved by Barry Mazur and Andrew Wiles for cyclotomic fields, and Wiles for totally real fields, identifies the zeros of a p-adic L-function with the eigenvalues of an operator, so can be thought of as an analogue of the Hilbert–Pólya conjecture for p-adic L-functions.

Attempted proofs

Several mathematicians have addressed the Riemann hypothesis, but none of their attempts has yet been accepted as a proof. Watkins (2021) lists some incorrect solutions.

Operator theory

Main article: Hilbert–Pólya conjecture

Hilbert and Pólya suggested that one way to derive the Riemann hypothesis would be to find a self-adjoint operator, from the existence of which the statement on the real parts of the zeros of ζ(s) would follow when one applies the criterion on real eigenvalues. Some support for this idea comes from several analogues of the Riemann zeta functions whose zeros correspond to eigenvalues of some operator: the zeros of a zeta function of a variety over a finite field correspond to eigenvalues of a Frobenius element on an étale cohomology group, the zeros of a Selberg zeta function are eigenvalues of a Laplacian operator of a Riemann surface, and the zeros of a p-adic zeta function correspond to eigenvectors of a Galois action on ideal class groups.

Odlyzko (1987) showed that the distribution of the zeros of the Riemann zeta function shares some statistical properties with the eigenvalues of random matrices drawn from the Gaussian unitary ensemble. This gives some support to the Hilbert–Pólya conjecture.

In 1999, Michael Berry and Jonathan Keating conjectured that there is some unknown quantization H ^ {\displaystyle {\hat {H}}} of the classical Hamiltonian H = xp so that ζ ( 1 / 2 + i H ^ ) = 0 {\displaystyle \zeta (1/2+i{\hat {H}})=0} and even more strongly, that the Riemann zeros coincide with the spectrum of the operator 1 / 2 + i H ^ {\displaystyle 1/2+i{\hat {H}}} . This is in contrast to canonical quantization, which leads to the Heisenberg uncertainty principle σ x σ p 2 {\displaystyle \sigma _{x}\sigma _{p}\geq {\frac {\hbar }{2}}} and the natural numbers as spectrum of the quantum harmonic oscillator. The crucial point is that the Hamiltonian should be a self-adjoint operator so that the quantization would be a realization of the Hilbert–Pólya program. In a connection with this quantum mechanical problem Berry and Connes had proposed that the inverse of the potential of the Hamiltonian is connected to the half-derivative of the function N ( s ) = 1 π Arg ξ ( 1 / 2 + i s ) {\displaystyle N(s)={\frac {1}{\pi }}\operatorname {Arg} \xi (1/2+i{\sqrt {s}})} then, in Hilbert-Polya approach V 1 ( x ) = 4 π d 1 / 2 N ( x ) d x 1 / 2 . {\displaystyle V^{-1}(x)={\sqrt {4\pi }}{\frac {d^{1/2}N(x)}{dx^{1/2}}}.} This yields a Hamiltonian whose eigenvalues are the square of the imaginary part of the Riemann zeros, and also that the functional determinant of this Hamiltonian operator is just the Riemann Xi function. In fact the Riemann Xi function would be proportional to the functional determinant (Hadamard product) det ( H + 1 / 4 + s ( s 1 ) ) {\displaystyle \det(H+1/4+s(s-1))} ξ ( s ) ξ ( 0 ) = det ( H + s ( s 1 ) + 1 / 4 ) det ( H + 1 / 4 ) . {\displaystyle {\frac {\xi (s)}{\xi (0)}}={\frac {\det(H+s(s-1)+1/4)}{\det(H+1/4)}}.} However this operator is not useful in practice since it includes the inverse function (implicit function ) of the potential but not the potential itself. The analogy with the Riemann hypothesis over finite fields suggests that the Hilbert space containing eigenvectors corresponding to the zeros might be some sort of first cohomology group of the spectrum Spec (Z) of the integers. Deninger (1998) described some of the attempts to find such a cohomology theory.

Zagier (1981) constructed a natural space of invariant functions on the upper half plane that has eigenvalues under the Laplacian operator that correspond to zeros of the Riemann zeta function—and remarked that in the unlikely event that one could show the existence of a suitable positive definite inner product on this space, the Riemann hypothesis would follow. Cartier (1982) discussed a related example, where due to a bizarre bug a computer program listed zeros of the Riemann zeta function as eigenvalues of the same Laplacian operator.

Schumayer & Hutchinson (2011) surveyed some of the attempts to construct a suitable physical model related to the Riemann zeta function.

Lee–Yang theorem

The Lee–Yang theorem states that the zeros of certain partition functions in statistical mechanics all lie on a "critical line" with their real part equal to 0, and this has led to some speculation about a relationship with the Riemann hypothesis.

Turán's result

Pál Turán (1948) showed that if the functions n = 1 N n s {\displaystyle \sum _{n=1}^{N}n^{-s}} have no zeros when the real part of s is greater than one then T ( x ) = n x λ ( n ) n 0  for  x > 0 , {\displaystyle T(x)=\sum _{n\leq x}{\frac {\lambda (n)}{n}}\geq 0{\text{ for }}x>0,} where λ(n) is the Liouville function given by (−1) if n has r prime factors. He showed that this in turn would imply that the Riemann hypothesis is true. But Haselgrove (1958) proved that T(x) is negative for infinitely many x (and also disproved the closely related Pólya conjecture), and Borwein, Ferguson & Mossinghoff (2008) showed that the smallest such x is 72185376951205. Spira (1968) showed by numerical calculation that the finite Dirichlet series above for N=19 has a zero with real part greater than 1. Turán also showed that a somewhat weaker assumption, the nonexistence of zeros with real part greater than 1+N for large N in the finite Dirichlet series above, would also imply the Riemann hypothesis, but Montgomery (1983) showed that for all sufficiently large N these series have zeros with real part greater than 1 + (log log N)/(4 log N). Therefore, Turán's result is vacuously true and cannot help prove the Riemann hypothesis.

Noncommutative geometry

Connes (1999, 2000) has described a relationship between the Riemann hypothesis and noncommutative geometry, and showed that a suitable analog of the Selberg trace formula for the action of the idèle class group on the adèle class space would imply the Riemann hypothesis. Some of these ideas are elaborated in Lapidus (2008).

Hilbert spaces of entire functions

Louis de Branges (1992) showed that the Riemann hypothesis would follow from a positivity condition on a certain Hilbert space of entire functions. However Conrey & Li (2000) showed that the necessary positivity conditions are not satisfied. Despite this obstacle, de Branges has continued to work on an attempted proof of the Riemann hypothesis along the same lines, but this has not been widely accepted by other mathematicians.

Quasicrystals

The Riemann hypothesis implies that the zeros of the zeta function form a quasicrystal, a distribution with discrete support whose Fourier transform also has discrete support. Dyson (2009) suggested trying to prove the Riemann hypothesis by classifying, or at least studying, 1-dimensional quasicrystals.

Arithmetic zeta functions of models of elliptic curves over number fields

When one goes from geometric dimension one, e.g. an algebraic number field, to geometric dimension two, e.g. a regular model of an elliptic curve over a number field, the two-dimensional part of the generalized Riemann hypothesis for the arithmetic zeta function of the model deals with the poles of the zeta function. In dimension one the study of the zeta integral in Tate's thesis does not lead to new important information on the Riemann hypothesis. Contrary to this, in dimension two work of Ivan Fesenko on two-dimensional generalisation of Tate's thesis includes an integral representation of a zeta integral closely related to the zeta function. In this new situation, not possible in dimension one, the poles of the zeta function can be studied via the zeta integral and associated adele groups. Related conjecture of Fesenko (2010) on the positivity of the fourth derivative of a boundary function associated to the zeta integral essentially implies the pole part of the generalized Riemann hypothesis. Suzuki (2011) proved that the latter, together with some technical assumptions, implies Fesenko's conjecture.

Multiple zeta functions

Deligne's proof of the Riemann hypothesis over finite fields used the zeta functions of product varieties, whose zeros and poles correspond to sums of zeros and poles of the original zeta function, in order to bound the real parts of the zeros of the original zeta function. By analogy, Kurokawa (1992) introduced multiple zeta functions whose zeros and poles correspond to sums of zeros and poles of the Riemann zeta function. To make the series converge he restricted to sums of zeros or poles all with non-negative imaginary part. So far, the known bounds on the zeros and poles of the multiple zeta functions are not strong enough to give useful estimates for the zeros of the Riemann zeta function.

Location of the zeros

Number of zeros

The functional equation combined with the argument principle implies that the number of zeros of the zeta function with imaginary part between 0 and T is given by

N ( T ) = 1 π A r g ( ξ ( s ) ) = 1 π A r g ( Γ ( s 2 ) π s 2 ζ ( s ) s ( s 1 ) / 2 ) {\displaystyle N(T)={\frac {1}{\pi }}\mathop {\mathrm {Arg} } (\xi (s))={\frac {1}{\pi }}\mathop {\mathrm {Arg} } (\Gamma ({\tfrac {s}{2}})\pi ^{-{\frac {s}{2}}}\zeta (s)s(s-1)/2)}

for s=1/2+iT, where the argument is defined by varying it continuously along the line with Im(s)=T, starting with argument 0 at ∞+iT. This is the sum of a large but well understood term

1 π A r g ( Γ ( s 2 ) π s / 2 s ( s 1 ) / 2 ) = T 2 π log T 2 π T 2 π + 7 / 8 + O ( 1 / T ) {\displaystyle {\frac {1}{\pi }}\mathop {\mathrm {Arg} } (\Gamma ({\tfrac {s}{2}})\pi ^{-s/2}s(s-1)/2)={\frac {T}{2\pi }}\log {\frac {T}{2\pi }}-{\frac {T}{2\pi }}+7/8+O(1/T)}

and a small but rather mysterious term

S ( T ) = 1 π A r g ( ζ ( 1 / 2 + i T ) ) = O ( log T ) . {\displaystyle S(T)={\frac {1}{\pi }}\mathop {\mathrm {Arg} } (\zeta (1/2+iT))=O(\log T).}

So the density of zeros with imaginary part near T is about log(T)/(2π), and the function S describes the small deviations from this. The function S(t) jumps by 1 at each zero of the zeta function, and for t ≥ 8 it decreases monotonically between zeros with derivative close to −log t.

Trudgian (2014) proved that, if T > e {\displaystyle T>e} , then

| N ( T ) T 2 π log T 2 π e | 0.112 log T + 0.278 log log T + 3.385 + 0.2 T {\displaystyle |N(T)-{\frac {T}{2\pi }}\log {\frac {T}{2\pi e}}|\leq 0.112\log T+0.278\log \log T+3.385+{\frac {0.2}{T}}} .

Karatsuba (1996) proved that every interval (T, T+H] for H T 27 82 + ε {\displaystyle H\geq T^{{\frac {27}{82}}+\varepsilon }} contains at least

H ( log T ) 1 3 e c log log T {\displaystyle H(\log T)^{\frac {1}{3}}e^{-c{\sqrt {\log \log T}}}}

points where the function S(t) changes sign.

Selberg (1946) showed that the average moments of even powers of S are given by

0 T | S ( t ) | 2 k d t = ( 2 k ) ! k ! ( 2 π ) 2 k T ( log log T ) k + O ( T ( log log T ) k 1 / 2 ) . {\displaystyle \int _{0}^{T}|S(t)|^{2k}dt={\frac {(2k)!}{k!(2\pi )^{2k}}}T(\log \log T)^{k}+O(T(\log \log T)^{k-1/2}).}

This suggests that S(T)/(log log T) resembles a Gaussian random variable with mean 0 and variance 2π (Ghosh (1983) proved this fact). In particular |S(T)| is usually somewhere around (log log T), but occasionally much larger. The exact order of growth of S(T) is not known. There has been no unconditional improvement to Riemann's original bound S(T)=O(log T), though the Riemann hypothesis implies the slightly smaller bound S(T)=O(log T/log log T). The true order of magnitude may be somewhat less than this, as random functions with the same distribution as S(T) tend to have growth of order about log(T). In the other direction it cannot be too small: Selberg (1946) showed that S(T) ≠ o((log T)/(log log T)), and assuming the Riemann hypothesis Montgomery showed that S(T) ≠ o((log T)/(log log T)).

Numerical calculations confirm that S grows very slowly: |S(T)| < 1 for T < 280, |S(T)| < 2 for T < 6800000, and the largest value of |S(T)| found so far is not much larger than 3.

Riemann's estimate S(T) = O(log T) implies that the gaps between zeros are bounded, and Littlewood improved this slightly, showing that the gaps between their imaginary parts tend to 0.

Theorem of Hadamard and de la Vallée-Poussin

Hadamard (1896) and de la Vallée-Poussin (1896) independently proved that no zeros could lie on the line Re(s) = 1. Together with the functional equation and the fact that there are no zeros with real part greater than 1, this showed that all non-trivial zeros must lie in the interior of the critical strip 0 < Re(s) < 1. This was a key step in their first proofs of the prime number theorem.

Both the original proofs that the zeta function has no zeros with real part 1 are similar, and depend on showing that if ζ(1 + it) vanishes, then ζ(1 + 2it) is singular, which is not possible. One way of doing this is by using the inequality

| ζ ( σ ) 3 ζ ( σ + i t ) 4 ζ ( σ + 2 i t ) | 1 {\displaystyle |\zeta (\sigma )^{3}\zeta (\sigma +it)^{4}\zeta (\sigma +2it)|\geq 1}

for σ > 1, t real, and looking at the limit as σ → 1. This inequality follows by taking the real part of the log of the Euler product to see that

| ζ ( σ + i t ) | = exp p n p n ( σ + i t ) n = exp p n p n σ cos ( t log p n ) n , {\displaystyle |\zeta (\sigma +it)|=\exp \Re \sum _{p^{n}}{\frac {p^{-n(\sigma +it)}}{n}}=\exp \sum _{p^{n}}{\frac {p^{-n\sigma }\cos(t\log p^{n})}{n}},}

where the sum is over all prime powers p, so that

| ζ ( σ ) 3 ζ ( σ + i t ) 4 ζ ( σ + 2 i t ) | = exp p n p n σ 3 + 4 cos ( t log p n ) + cos ( 2 t log p n ) n {\displaystyle |\zeta (\sigma )^{3}\zeta (\sigma +it)^{4}\zeta (\sigma +2it)|=\exp \sum _{p^{n}}p^{-n\sigma }{\frac {3+4\cos(t\log p^{n})+\cos(2t\log p^{n})}{n}}}

which is at least 1 because all the terms in the sum are positive, due to the inequality

3 + 4 cos ( θ ) + cos ( 2 θ ) = 2 ( 1 + cos ( θ ) ) 2 0. {\displaystyle 3+4\cos(\theta )+\cos(2\theta )=2(1+\cos(\theta ))^{2}\geq 0.}

Zero-free regions

The most extensive computer search by Platt and Trudgian for counter examples of the Riemann hypothesis has verified it for | t | 3.0001753328 10 12 {\displaystyle |t|\leq 3.0001753328\cdot 10^{12}} . Beyond that zero-free regions are known as inequalities concerning σ + i t, which can be zeroes. The oldest version is from De la Vallée-Poussin (1899–1900), who proved there is a region without zeroes that satisfies 1 − σ ≥ C/log(t)⁠ for some positive constant C. In other words, zeros cannot be too close to the line σ = 1: there is a zero-free region close to this line. This has been enlarged by several authors using methods such as Vinogradov's mean-value theorem.

The most recent paper by Mossinghoff, Trudgian and Yang is from December 2022 and provides four zero-free regions that improved the previous results of Kevin Ford from 2002, Mossinghoff and Trudgian themselves from 2015 and Pace Nielsen's slight improvement of Ford from October 2022:

σ 1 1 5.558691 log | t | {\displaystyle \sigma \geq 1-{\frac {1}{5.558691\log |t|}}} whenever | t | 2 {\displaystyle |t|\geq 2} ,
σ 1 1 55.241 ( log | t | ) 2 / 3 ( log log | t | ) 1 / 3 {\displaystyle \sigma \geq 1-{\frac {1}{55.241(\log {|t|})^{2/3}(\log {\log {|t|}})^{1/3}}}} whenever | t | 3 {\displaystyle |t|\geq 3} (largest known region in the bound 3.0001753328 10 12 | t | exp ( 64.1 ) 6.89 10 27 {\displaystyle 3.0001753328\cdot 10^{12}\leq |t|\leq \exp(64.1)\approx 6.89\cdot 10^{27}} ),
σ 1 0.04962 0.0196 1.15 + log 3 + 1 6 log t + log log t 0.685 + log 3 + 1 6 log t + 1.155 log log t {\displaystyle \sigma \geq 1-{\frac {0.04962-{\frac {0.0196}{1.15+\log 3+{\frac {1}{6}}\log t+\log \log t}}}{0.685+\log 3+{\frac {1}{6}}\log t+1.155\cdot \log \log t}}} whenever | t | 1.88 10 14 {\displaystyle |t|\geq 1.88\cdot 10^{14}} (largest known region in the bound exp ( 64.1 ) | t | exp ( 1000 ) 1.97 10 434 {\displaystyle \exp(64.1)\leq |t|\leq \exp(1000)\approx 1.97\cdot 10^{434}} ) and
σ 1 0.05035 27 164 ( log | t | ) + 7.096 + 0.0349 ( 27 164 ( log | t | ) + 7.096 ) 2 {\displaystyle \sigma \geq 1-{\frac {0.05035}{{\frac {27}{164}}(\log {|t|})+7.096}}+{\frac {0.0349}{({\frac {27}{164}}(\log {|t|})+7.096)^{2}}}} whenever | t | exp ( 1000 ) {\displaystyle |t|\geq \exp(1000)} (largest known region in its own bound)

The paper also presents an improvement to the second zero-free region, whose bounds are unknown on account of | t | {\displaystyle |t|} being merely assumed to be "sufficiently large" to fulfill the requirements of the paper's proof. This region is

σ 1 1 48.1588 ( log | t | ) 2 / 3 ( log log | t | ) 1 / 3 {\displaystyle \sigma \geq 1-{\frac {1}{48.1588(\log {|t|})^{2/3}(\log {\log {|t|}})^{1/3}}}} .

Zeros on the critical line

Hardy (1914) and Hardy & Littlewood (1921) showed there are infinitely many zeros on the critical line, by considering moments of certain functions related to the zeta function. Selberg (1942) proved that at least a (small) positive proportion of zeros lie on the line. Levinson (1974) improved this to one-third of the zeros by relating the zeros of the zeta function to those of its derivative, and Conrey (1989) improved this further to two-fifths. In 2020, this estimate was extended to five-twelfths by Pratt, Robles, Zaharescu and Zeindler by considering extended mollifiers that can accommodate higher order derivatives of the zeta function and their associated Kloosterman sums.

Most zeros lie close to the critical line. More precisely, Bohr & Landau (1914) showed that for any positive ε, the number of zeroes with real part at least 1/2+ε and imaginary part at between −T and T is O ( T ) {\displaystyle O(T)} . Combined with the facts that zeroes on the critical strip are symmetric about the critical line and that the total number of zeroes in the critical strip is Θ ( T log T ) {\displaystyle \Theta (T\log T)} , almost all non-trivial zeroes are within a distance ε of the critical line. Ivić (1985) gives several more precise versions of this result, called zero density estimates, which bound the number of zeros in regions with imaginary part at most T and real part at least 1/2+ε.

Hardy–Littlewood conjectures

In 1914 Godfrey Harold Hardy proved that ζ ( 1 2 + i t ) {\displaystyle \zeta \left({\tfrac {1}{2}}+it\right)} has infinitely many real zeros.

The next two conjectures of Hardy and John Edensor Littlewood on the distance between real zeros of ζ ( 1 2 + i t ) {\displaystyle \zeta \left({\tfrac {1}{2}}+it\right)} and on the density of zeros of ζ ( 1 2 + i t ) {\displaystyle \zeta \left({\tfrac {1}{2}}+it\right)} on the interval ( T , T + H ] {\displaystyle (T,T+H]} for sufficiently large T > 0 {\displaystyle T>0} , and H = T a + ε {\displaystyle H=T^{a+\varepsilon }} and with as small as possible value of a > 0 {\displaystyle a>0} , where ε > 0 {\displaystyle \varepsilon >0} is an arbitrarily small number, open two new directions in the investigation of the Riemann zeta function:

  1. For any ε > 0 {\displaystyle \varepsilon >0} there exists a lower bound T 0 = T 0 ( ε ) > 0 {\displaystyle T_{0}=T_{0}(\varepsilon )>0} such that for T T 0 {\displaystyle T\geq T_{0}} and H = T 1 4 + ε {\displaystyle H=T^{{\tfrac {1}{4}}+\varepsilon }} the interval ( T , T + H ] {\displaystyle (T,T+H]} contains a zero of odd order of the function ζ ( 1 2 + i t ) {\displaystyle \zeta {\bigl (}{\tfrac {1}{2}}+it{\bigr )}} .

Let N ( T ) {\displaystyle N(T)} be the total number of real zeros, and N 0 ( T ) {\displaystyle N_{0}(T)} be the total number of zeros of odd order of the function   ζ ( 1 2 + i t )   {\displaystyle ~\zeta \left({\tfrac {1}{2}}+it\right)~} lying on the interval ( 0 , T ]   {\displaystyle (0,T]~} .

  1. For any ε > 0 {\displaystyle \varepsilon >0} there exists T 0 = T 0 ( ε ) > 0 {\displaystyle T_{0}=T_{0}(\varepsilon )>0} and some c = c ( ε ) > 0 {\displaystyle c=c(\varepsilon )>0} , such that for T T 0 {\displaystyle T\geq T_{0}} and H = T 1 2 + ε {\displaystyle H=T^{{\tfrac {1}{2}}+\varepsilon }} the inequality N 0 ( T + H ) N 0 ( T ) c H {\displaystyle N_{0}(T+H)-N_{0}(T)\geq cH} is true.

Selberg's zeta function conjecture

Main article: Selberg's zeta function conjecture

Atle Selberg (1942) investigated the problem of Hardy–Littlewood 2 and proved that for any ε > 0 there exists such T 0 = T 0 ( ε ) > 0 {\displaystyle T_{0}=T_{0}(\varepsilon )>0} and c = c(ε) > 0, such that for T T 0 {\displaystyle T\geq T_{0}} and H = T 0.5 + ε {\displaystyle H=T^{0.5+\varepsilon }} the inequality N ( T + H ) N ( T ) c H log T {\displaystyle N(T+H)-N(T)\geq cH\log T} is true. Selberg conjectured that this could be tightened to H = T 0.5 {\displaystyle H=T^{0.5}} . A. A. Karatsuba (1984a, 1984b, 1985) proved that for a fixed ε satisfying the condition 0 < ε < 0.001, a sufficiently large T and H = T a + ε {\displaystyle H=T^{a+\varepsilon }} , a = 27 82 = 1 3 1 246 {\displaystyle a={\tfrac {27}{82}}={\tfrac {1}{3}}-{\tfrac {1}{246}}} , the interval (T, T+H) contains at least cH log(T) real zeros of the Riemann zeta function ζ ( 1 2 + i t ) {\displaystyle \zeta \left({\tfrac {1}{2}}+it\right)} and therefore confirmed the Selberg conjecture. The estimates of Selberg and Karatsuba can not be improved in respect of the order of growth as T → ∞.

Karatsuba (1992) proved that an analog of the Selberg conjecture holds for almost all intervals (T, T+H], H = T ε {\displaystyle H=T^{\varepsilon }} , where ε is an arbitrarily small fixed positive number. The Karatsuba method permits to investigate zeros of the Riemann zeta function on "supershort" intervals of the critical line, that is, on the intervals (T, T+H], the length H of which grows slower than any, even arbitrarily small degree T. In particular, he proved that for any given numbers ε, ε 1 {\displaystyle \varepsilon _{1}} satisfying the conditions 0 < ε , ε 1 < 1 {\displaystyle 0<\varepsilon ,\varepsilon _{1}<1} almost all intervals (T, T+H] for H exp { ( log T ) ε } {\displaystyle H\geq \exp {\{(\log T)^{\varepsilon }\}}} contain at least H ( log T ) 1 ε 1 {\displaystyle H(\log T)^{1-\varepsilon _{1}}} zeros of the function ζ ( 1 2 + i t ) {\displaystyle \zeta \left({\tfrac {1}{2}}+it\right)} . This estimate is quite close to the one that follows from the Riemann hypothesis.

Numerical calculations

The function

π s 2 Γ ( s 2 ) ζ ( s ) {\displaystyle \pi ^{-{\frac {s}{2}}}\Gamma ({\tfrac {s}{2}})\zeta (s)}

has the same zeros as the zeta function in the critical strip, and is real on the critical line because of the functional equation, so one can prove the existence of zeros exactly on the real line between two points by checking numerically that the function has opposite signs at these points. Usually one writes

ζ ( 1 2 + i t ) = Z ( t ) e i θ ( t ) {\displaystyle \zeta ({\tfrac {1}{2}}+it)=Z(t)e^{-i\theta (t)}}

where Hardy's Z function and the Riemann–Siegel theta function θ are uniquely defined by this and the condition that they are smooth real functions with θ(0) = 0. By finding many intervals where the function Z changes sign one can show that there are many zeros on the critical line. To verify the Riemann hypothesis up to a given imaginary part T of the zeros, one also has to check that there are no further zeros off the line in this region. This can be done by calculating the total number of zeros in the region using Turing's method and checking that it is the same as the number of zeros found on the line. This allows one to verify the Riemann hypothesis computationally up to any desired value of T (provided all the zeros of the zeta function in this region are simple and on the critical line).

These calculations can also be used to estimate π ( x ) {\displaystyle \pi (x)} for finite ranges of x {\displaystyle x} . For example, using the latest result from 2020 (zeros up to height 3 × 10 12 {\displaystyle 3\times 10^{12}} ), it has been shown that

| π ( x ) li ( x ) | < 1 8 π x log ( x ) , for  2657 x 1.101 × 10 26 . {\displaystyle |\pi (x)-\operatorname {li} (x)|<{\frac {1}{8\pi }}{\sqrt {x}}\log(x),\qquad {\text{for }}2657\leq x\leq 1.101\times 10^{26}.}

In general, this inequality holds if

x 2657 {\displaystyle x\geq 2657} and 9.06 log log x x log x T , {\displaystyle {\frac {9.06}{\log {\log {x}}}}{\sqrt {\frac {x}{\log {x}}}}\leq T,}

where T {\displaystyle T} is the largest known value such that the Riemann hypothesis is true for all zeros ρ {\displaystyle \rho } with ( ρ ) ( 0 , T ] {\displaystyle \Im {\left(\rho \right)}\in \left(0,T\right]} .

Some calculations of zeros of the zeta function are listed below, where the "height" of a zero is the magnitude of its imaginary part, and the height of the nth zero is denoted by γn. So far all zeros that have been checked are on the critical line and are simple. (A multiple zero would cause problems for the zero finding algorithms, which depend on finding sign changes between zeros.) For tables of the zeros, see Haselgrove & Miller (1960) or Odlyzko.

Year Number of zeros Author
1859? 3 B. Riemann used the Riemann–Siegel formula (unpublished, but reported in Siegel 1932).
1903 15 J. P. Gram (1903) used Euler–Maclaurin formula and discovered Gram's law. He showed that all 10 zeros with imaginary part at most 50 range lie on the critical line with real part 1/2 by computing the sum of the inverse 10th powers of the roots he found.
1914 79 (γn ≤ 200) R. J. Backlund (1914) introduced a better method of checking all the zeros up to that point are on the line, by studying the argument S(T) of the zeta function.
1925 138 (γn ≤ 300) J. I. Hutchinson (1925) found the first failure of Gram's law, at the Gram point g126.
1935 195 E. C. Titchmarsh (1935) used the recently rediscovered Riemann–Siegel formula, which is much faster than Euler–Maclaurin summation. It takes about O(T) steps to check zeros with imaginary part less than T, while the Euler–Maclaurin method takes about O(T) steps.
1936 1041 E. C. Titchmarsh (1936) and L. J. Comrie were the last to find zeros by hand.
1953 1104 A. M. Turing (1953) found a more efficient way to check that all zeros up to some point are accounted for by the zeros on the line, by checking that Z has the correct sign at several consecutive Gram points and using the fact that S(T) has average value 0. This requires almost no extra work because the sign of Z at Gram points is already known from finding the zeros, and is still the usual method used. This was the first use of a digital computer to calculate the zeros.
1956 15000 D. H. Lehmer (1956) discovered a few cases where the zeta function has zeros that are "only just" on the line: two zeros of the zeta function are so close together that it is unusually difficult to find a sign change between them. This is called "Lehmer's phenomenon", and first occurs at the zeros with imaginary parts 7005.063 and 7005.101, which differ by only .04 while the average gap between other zeros near this point is about 1.
1956 25000 D. H. Lehmer
1958 35337 N. A. Meller
1966 250000 R. S. Lehman
1968 3500000 Rosser, Yohe & Schoenfeld (1969) stated Rosser's rule (described below).
1977 40000000 R. P. Brent
1979 81000001 R. P. Brent
1982 200000001 R. P. Brent, J. van de Lune, H. J. J. te Riele, D. T. Winter
1983 300000001 J. van de Lune, H. J. J. te Riele
1986 1500000001 van de Lune, te Riele & Winter (1986) gave some statistical data about the zeros and give several graphs of Z at places where it has unusual behavior.
1987 A few of large (≈10) height A. M. Odlyzko (1987) computed smaller numbers of zeros of much larger height, around 10, to high precision to check Montgomery's pair correlation conjecture.
1992 A few of large (≈10) height A. M. Odlyzko (1992) computed a 175 million zeros of heights around 10 and a few more of heights around 2×10, and gave an extensive discussion of the results.
1998 10000 of large (≈10) height A. M. Odlyzko (1998) computed some zeros of height about 10
2001 10 J. van de Lune (unpublished)
2004 ≈9×10 S. Wedeniwski (ZetaGrid distributed computing)
2004 10 and a few of large (up to ≈10) heights Xavier Gourdon (2004) and Patrick Demichel used the Odlyzko–Schönhage algorithm. They also checked two billion zeros around heights γn = 10, 10, ..., 10.
2020 1.2363×10 (γn ≤ 3×10) Platt & Trudgian (2021).

They also verified the work of Gourdon (2004) and others.

Gram points

A Gram point is a point on the critical line 1/2 + it where the zeta function is real and non-zero. Using the expression for the zeta function on the critical line, ζ(1/2 + it) = Z(t)e, where Hardy's function, Z, is real for real t, and θ is the Riemann–Siegel theta function, we see that zeta is real when sin(θ(t)) = 0. This implies that θ(t) is an integer multiple of π, which allows for the location of Gram points to be calculated fairly easily by inverting the formula for θ. They are usually numbered as gn for n = 0, 1, ..., where gn is the unique solution of θ(t) = nπ.

Gram observed that there was often exactly one zero of the zeta function between any two Gram points; Hutchinson called this observation Gram's law. There are several other closely related statements that are also sometimes called Gram's law: for example, (−1)Z(gn) is usually positive, or Z(t) usually has opposite sign at consecutive Gram points. The imaginary parts γn of the first few zeros (in blue) and the first few Gram points gn are given in the following table

g−1 γ1 g0 γ2 g1 γ3 g2 γ4 g3 γ5 g4 γ6 g5
0 3.436 9.667 14.135 17.846 21.022 23.170 25.011 27.670 30.425 31.718 32.935 35.467 37.586 38.999
This is a polar plot of the first 20 real values rn of the zeta function along the critical line, ζ(1/2 + it), with t running from 0 to 50. The values of rn in this range are the first 10 non-trivial Riemann zeta function zeros and the first 10 Gram points, each labeled by n. Fifty red points have been plotted between each rn, and the zeros are projected onto concentric magenta rings scaled to show the relative distance between their values of t. Gram's law states that the curve usually crosses the real axis once between zeros.

The first failure of Gram's law occurs at the 127th zero and the Gram point g126, which are in the "wrong" order.

g124 γ126 g125 g126 γ127 γ128 g127 γ129 g128
279.148 279.229 280.802 282.455 282.465 283.211 284.104 284.836 285.752

A Gram point t is called good if the zeta function is positive at 1/2 + it. The indices of the "bad" Gram points where Z has the "wrong" sign are 126, 134, 195, 211, ... (sequence A114856 in the OEIS). A Gram block is an interval bounded by two good Gram points such that all the Gram points between them are bad. A refinement of Gram's law called Rosser's rule due to Rosser, Yohe & Schoenfeld (1969) says that Gram blocks often have the expected number of zeros in them (the same as the number of Gram intervals), even though some of the individual Gram intervals in the block may not have exactly one zero in them. For example, the interval bounded by g125 and g127 is a Gram block containing a unique bad Gram point g126, and contains the expected number 2 of zeros although neither of its two Gram intervals contains a unique zero. Rosser et al. checked that there were no exceptions to Rosser's rule in the first 3 million zeros, although there are infinitely many exceptions to Rosser's rule over the entire zeta function.

Gram's rule and Rosser's rule both say that in some sense zeros do not stray too far from their expected positions. The distance of a zero from its expected position is controlled by the function S defined above, which grows extremely slowly: its average value is of the order of (log log T), which only reaches 2 for T around 10. This means that both rules hold most of the time for small T but eventually break down often. Indeed, Trudgian (2011) showed that both Gram's law and Rosser's rule fail in a positive proportion of cases. To be specific, it is expected that in about 66% one zero is enclosed by two successive Gram points, but in 17% no zero and in 17% two zeros are in such a Gram-interval on the long run Hanga (2020).

Arguments for and against the Riemann hypothesis

Mathematical papers about the Riemann hypothesis tend to be cautiously noncommittal about its truth. Of authors who express an opinion, most of them, such as Riemann (1859) and Bombieri (2000), imply that they expect (or at least hope) that it is true. The few authors who express serious doubt about it include Ivić (2008), who lists some reasons for skepticism, and Littlewood (1962), who flatly states that he believes it false, that there is no evidence for it and no imaginable reason it would be true. The consensus of the survey articles (Bombieri 2000, Conrey 2003, and Sarnak 2005) is that the evidence for it is strong but not overwhelming, so that while it is probably true there is reasonable doubt.

Some of the arguments for and against the Riemann hypothesis are listed by Sarnak (2005), Conrey (2003), and Ivić (2008), and include the following:

  • Several analogues of the Riemann hypothesis have already been proved. The proof of the Riemann hypothesis for varieties over finite fields by Deligne (1974) is possibly the single strongest theoretical reason in favor of the Riemann hypothesis. This provides some evidence for the more general conjecture that all zeta functions associated with automorphic forms satisfy a Riemann hypothesis, which includes the classical Riemann hypothesis as a special case. Similarly Selberg zeta functions satisfy the analogue of the Riemann hypothesis, and are in some ways similar to the Riemann zeta function, having a functional equation and an infinite product expansion analogous to the Euler product expansion. But there are also some major differences; for example, they are not given by Dirichlet series. The Riemann hypothesis for the Goss zeta function was proved by Sheats (1998). In contrast to these positive examples, some Epstein zeta functions do not satisfy the Riemann hypothesis even though they have an infinite number of zeros on the critical line. These functions are quite similar to the Riemann zeta function, and have a Dirichlet series expansion and a functional equation, but the ones known to fail the Riemann hypothesis do not have an Euler product and are not directly related to automorphic representations.
  • At first, the numerical verification that many zeros lie on the line seems strong evidence for it. But analytic number theory has had many conjectures supported by substantial numerical evidence that turned out to be false. See Skewes number for a notorious example, where the first exception to a plausible conjecture related to the Riemann hypothesis probably occurs around 10; a counterexample to the Riemann hypothesis with imaginary part this size would be far beyond anything that can currently be computed using a direct approach. The problem is that the behavior is often influenced by very slowly increasing functions such as log log T, that tend to infinity, but do so so slowly that this cannot be detected by computation. Such functions occur in the theory of the zeta function controlling the behavior of its zeros; for example the function S(T) above has average size around (log log T). As S(T) jumps by at least 2 at any counterexample to the Riemann hypothesis, one might expect any counterexamples to the Riemann hypothesis to start appearing only when S(T) becomes large. It is never much more than 3 as far as it has been calculated, but is known to be unbounded, suggesting that calculations may not have yet reached the region of typical behavior of the zeta function.
  • Denjoy's probabilistic argument for the Riemann hypothesis is based on the observation that if μ(x) is a random sequence of "1"s and "−1"s then, for every ε > 0, the partial sums M ( x ) = n x μ ( n ) {\displaystyle M(x)=\sum _{n\leq x}\mu (n)} (the values of which are positions in a simple random walk) satisfy the bound M ( x ) = O ( x 1 / 2 + ε ) {\displaystyle M(x)=O(x^{1/2+\varepsilon })} with probability 1. The Riemann hypothesis is equivalent to this bound for the Möbius function μ and the Mertens function M derived in the same way from it. In other words, the Riemann hypothesis is in some sense equivalent to saying that μ(x) behaves like a random sequence of coin tosses. When μ(x) is nonzero its sign gives the parity of the number of prime factors of x, so informally the Riemann hypothesis says that the parity of the number of prime factors of an integer behaves randomly. Such probabilistic arguments in number theory often give the right answer, but tend to be very hard to make rigorous, and occasionally give the wrong answer for some results, such as Maier's theorem.
  • The calculations in Odlyzko (1987) show that the zeros of the zeta function behave very much like the eigenvalues of a random Hermitian matrix, suggesting that they are the eigenvalues of some self-adjoint operator, which would imply the Riemann hypothesis. All attempts to find such an operator have failed.
  • There are several theorems, such as Goldbach's weak conjecture for sufficiently large odd numbers, that were first proved using the generalized Riemann hypothesis, and later shown to be true unconditionally. This could be considered as weak evidence for the generalized Riemann hypothesis, as several of its "predictions" are true.
  • Lehmer's phenomenon, where two zeros are sometimes very close, is sometimes given as a reason to disbelieve the Riemann hypothesis. But one would expect this to happen occasionally by chance even if the Riemann hypothesis is true, and Odlyzko's calculations suggest that nearby pairs of zeros occur just as often as predicted by Montgomery's conjecture.
  • Patterson suggests that the most compelling reason for the Riemann hypothesis for most mathematicians is the hope that primes are distributed as regularly as possible.

Notes

  1. Bombieri (2000).
  2. Euler, Leonhard (1744). Variae observationes circa series infinitas. Commentarii academiae scientiarum Petropolitanae 9, pp. 160–188, Theorems 7 and 8. In Theorem 7 Euler proves the formula in the special case s = 1 {\displaystyle s=1} , and in Theorem 8 he proves it more generally. In the first corollary to his Theorem 7 he notes that ζ ( 1 ) = log {\displaystyle \zeta (1)=\log \infty } , and he makes use of this latter result in his Theorem 19, to show that the sum of the inverses of the prime numbers is log log {\displaystyle \log \log \infty } .
  3. Values for ζ can be found by calculating, e.g., ζ(1/2 − 30i).("Wolframalpha computational intelligence". wolframalpha.com. Wolfram. Retrieved 2 October 2022.
  4. Ingham (1932), Theorem 30, p. 83; Montgomery & Vaughan (2007), p. 430.
  5. Ingham (1932), p. 82.
  6. Landau, Edmund (1924), "Über die Möbiussche Funktion", Rend. Circ. Mat. Palermo, 48 (2): 277–280, doi:10.1007/BF03014702, S2CID 123636883
  7. Titchmarsh, Edward Charles (1927), "A consequence of the Riemann hypothesis", J. London Math. Soc., 2 (4): 247–254, doi:10.1112/jlms/s1-2.4.247
  8. Maier, Helmut; Montgomery, Hugh (2009), "The sum of the Möbius function", Bull. London Math. Soc., 41 (2): 213–226, doi:10.1112/blms/bdn119, hdl:2027.42/135214, S2CID 121272525
  9. Soundararajan, Kannan (2009), "Partial sums of the Möbius function", J. Reine Angew. Math., 2009 (631): 141–152, arXiv:0705.0723, doi:10.1515/CRELLE.2009.044, S2CID 16501321
  10. Robin (1984).
  11. Lagarias, Jeffrey C. (2002), "An elementary problem equivalent to the Riemann hypothesis", The American Mathematical Monthly, 109 (6): 534–543, arXiv:math/0008177, doi:10.2307/2695443, ISSN 0002-9890, JSTOR 2695443, MR 1908008, S2CID 15884740
  12. Broughan (2017), Corollary 5.35.
  13. ^ Titchmarsh (1986).
  14. Nicely (1999).
  15. Baez-Duarte, Luis (2005). "A general strong Nyman-Beurling criterion for the Riemann hypothesis". Publications de l'Institut Mathématique. Nouvelle Série. 78 (92): 117–125. arXiv:math/0505453. doi:10.2298/PIM0578117B. S2CID 17406178.
  16. Rodgers & Tao (2020).
  17. ^ Platt & Trudgian (2021).
  18. "Caltech Mathematicians Solve 19th Century Number Riddle". California Institute of Technology. October 31, 2022.
  19. Dunn, Alexander; Radziwiłł, Maksym (2021). "Bias in cubic Gauss sums: Patterson's conjecture". arXiv:2109.07463 .
  20. Goldfeld, Dorian (1985). "Gauss' class number problem for imaginary quadratic fields". Bulletin of the American Mathematical Society. 13 (1): 23–37. doi:10.1090/S0273-0979-1985-15352-2. ISSN 0273-0979.
  21. Siegel, Carl (1935). "Über die Classenzahl quadratischer Zahlkörper". Acta Arithmetica. 1 (1): 83–86. doi:10.4064/aa-1-1-83-86. ISSN 0065-1036. Retrieved 8 April 2024.
  22. Ribenboim (1996), p. 320.
  23. Radziejewski (2007).
  24. Wiles (2000).
  25. Leichtnam (2005).
  26. Knauf (1999).
  27. Sarnak (2005).
  28. Odlyzko (2002).
  29. Mossinghoff, Michael J.; Trudgian, Timothy S.; Yang, Andrew (2022-12-13). "Explicit zero-free regions for the Riemann zeta-function". arXiv:2212.06867 .
  30. Pratt, Kyle; Robles, Nicolas; Zaharescu, Alexandru; Zeindler, Dirk (2020). "More than five-twelfths of the zeros of ζ are on the critical line". Res Math Sci. 7. arXiv:1802.10521. doi:10.1007/s40687-019-0199-8. S2CID 202542332.
  31. Johnston, David R. (29 July 2022). "Improving bounds on prime counting functions by partial verification of the Riemann hypothesis". The Ramanujan Journal. 59 (4): 1307–1321. arXiv:2109.02249. doi:10.1007/s11139-022-00616-x. S2CID 237420836.
  32. Weisstein, Eric W., "Riemann Zeta Function Zeros", MathWorld: "ZetaGrid is a distributed computing project attempting to calculate as many zeros as possible. It had reached 1029.9 billion zeros as of Feb. 18, 2005."
  33. Edwards (1974).
  34. Lehmer (1956).
  35. p. 75: "One should probably add to this list the 'Platonic' reason that one expects the natural numbers to be the most perfect idea conceivable, and that this is only compatible with the primes being distributed in the most regular fashion possible..."

References

Popular expositions

Note: Derbyshire 2003, Rockmore 2005, Sabbagh 2003a, Sabbagh 2003b, Sautoy 2003, and Watkins 2015 are non-technical. Edwards 1974, Patterson 1988, Borwein/Choi/Rooney/Weirathmueller 2008, Mazur/Stein 2015, Broughan 2017, and Nahin 2021 give mathematical introductions. Titchmarsh 1986, Ivić 1985, and Karatsuba/Voronin 1992 are advanced monographs.

External links

L-functions in number theory
Analytic examples
Algebraic examples
Theorems
Analytic conjectures
Algebraic conjectures
p-adic L-functions
Bernhard Riemann
Categories: