Misplaced Pages

Water on Mars: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 13:35, 25 May 2013 editRobertinventor (talk | contribs)Extended confirmed users20,925 edits Phoenix: added the 2010 results about oxygen isotope ratios suggesting reasonably abundant liquid water on the Mars surface recently← Previous edit Latest revision as of 07:01, 2 January 2025 edit undoBasilicon (talk | contribs)10 editsm Hydrothermal alteration: Removed extra T from chemosynthtetic 
Line 1: Line 1:
{{short description|Study of past and present water on Mars}}
{{About||the music group|Water on Mars (band)|the Doctor Who episode|The Waters of Mars}}
{{About||the ''Doctor Who'' special|The Waters of Mars{{!}}''The Waters of Mars''|the band|Water on Mars (band)}}
{{Use mdy dates|date=August 2011}}
{{Very long|date=August 2011}} {{Use mdy dates|date=July 2018}}
]. Surface water is readily visible at some places, such as the ice-filled ], near the ].]]
]]]
'''Water on ]''' exists almost exclusively as water ice. The ] consist primarily of water ice, and further ice is contained in Martian surface rocks at more temperate latitudes (]). A small amount of water vapor is present in the ].<ref name="ucar">{{cite web|url=http://www.windows.ucar.edu/tour/link=/mars/exploring/MGS_water_clouds.html| title=Mars Global Surveyor Measures Water Clouds| accessdate=March 7, 2009}}</ref> There are no bodies of liquid water on the Martian surface.


Almost all ] on ] today exists as ] ] ice, though it also exists in small quantities as vapor in ].<ref name=":1">{{cite book |last1=Jakosky |first1=B. M. |last2=Haberle |first2=R.M. |date=1992 |chapter=The Seasonal Behavior of Water on Mars |title=Mars |editor-first=H. H. |editor-last=Kieffer |display-editors=etal |publisher=University of Arizona Press |location=Tucson, Arizona |pages=969–1016}}</ref>
Current conditions on the planet surface do not support the long-term existence of liquid water. The average atmospheric pressure and temperature are far too low, leading to immediate freezing and resulting ]. Despite this, research suggests that in the past there was liquid water flowing on the surface,<ref>{{cite web|url=http://www.space.com/scienceastronomy/flashback-water-on-mars-announced-10-years-ago-100622.html |title=Flashback: Water on Mars Announced 10 Years Ago |publisher=SPACE.com |date=June 22, 2000 |accessdate=December 19, 2010}}</ref><ref>{{cite web
| url=http://science.nasa.gov/headlines/y2001/ast05jan_1.htm
| title=Science@NASA, The Case of the Missing Mars Water
| accessdate=March 7, 2009}}</ref> creating large areas similar to Earth's oceans.<ref>ISBN 0-312-24551-3</ref><ref>{{cite web|url=http://www.psrd.hawaii.edu/July03/MartianSea.html |title=PSRD: Ancient Floodwaters and Seas on Mars |publisher=Psrd.hawaii.edu |date=July 16, 2003 |accessdate=December 19, 2010}}</ref><ref>{{cite web|url=http://www.spaceref.com/news/viewpr.html?pid=26947 |title=Gamma-Ray Evidence Suggests Ancient Mars Had Oceans &#124; SpaceRef – Your Space Reference |publisher=SpaceRef |date=November 17, 2008 |accessdate=December 19, 2010}}</ref><ref name="2003JGRE..108.5042C">{{cite journal | last1 = Carr | first1 = M. | last2 = Head | first2 = J. | author-separator =, | author-name-separator= | year = 2003 | title = Oceans on Mars: An assessment of the observational evidence and possible fate | url = | journal=Journal of Geophysical Research | volume = 108 | page = 5042 |bibcode = 2003JGRE..108.5042C | doi = 10.1029/2002JE001963 }}</ref> According to ], ] of the ]s (MER): "The idea been resolved. It's been resolved by ], it's been resolved by ], it's been resolved by ], it's been amply resolved from orbit as well."<ref name="SFN-20130125">{{cite web |last=Harwood |first=William |title=Opportunity rover moves into 10th year of Mars operations |url=http://www.spaceflightnow.com/news/n1301/25opportunity/ |date=January 25, 2013 |publisher=Space Flight Now |accessdate=February 18, 2013 }}</ref>


What was thought to be low-volume liquid ]s in shallow ], also called ],<ref name="Torres 2015">{{cite journal |title=Transient liquid water and water activity at Gale crater on Mars |journal=Nature Geoscience |date= April 13, 2015 |last1=Martín-Torres |first1=F. Javier |last2=Zorzano |first2=María-Paz |last3=Valentín-Serrano |first3=Patricia |last4=Harri |first4=Ari-Matti |last5=Genzer |first5=Maria |doi=10.1038/ngeo2412 |volume=8 |issue=5 |pages=357–361|bibcode=2015NatGe...8..357M }}</ref><ref name="Ojhaetal2015">{{cite journal |last1=Ojha |first1=L. |last2=Wilhelm |first2=M. B. |last3=Murchie |first3=S. L. |last4=McEwen |first4=A. S. |last5=Wray |first5=J. J. |last6=Hanley |first6=J. |last7=Massé |first7=M. |last8=Chojnacki |first8=M. |date=2015 |title=Spectral evidence for hydrated salts in recurring slope lineae on Mars |journal=Nature Geoscience |doi=10.1038/ngeo2546 |volume=8 |issue=11 |pages=829–832|bibcode=2015NatGe...8..829O |s2cid=59152931 }}</ref> may be grains of flowing sand and dust slipping downhill to make dark streaks.<ref name=":2"> {{Webarchive|url=https://web.archive.org/web/20211208070556/https://www.nasa.gov/feature/jpl/recurring-martian-streaks-flowing-sand-not-water |date=December 8, 2021 }} NASA, November 20, 2017</ref> While most water ice is buried, it is exposed at the surface across several locations on Mars. In the mid-latitudes, it is exposed by impact craters, steep scarps and gullies.<ref>{{Cite journal |last1=Byrne |first1=Shane |last2=Dundas |first2=Colin M. |last3=Kennedy |first3=Megan R. |last4=Mellon |first4=Michael T. |last5=McEwen |first5=Alfred S. |last6=Cull |first6=Selby C. |last7=Daubar |first7=Ingrid J. |last8=Shean |first8=David E. |last9=Seelos |first9=Kimberly D. |last10=Murchie |first10=Scott L. |last11=Cantor |first11=Bruce A. |last12=Arvidson |first12=Raymond E. |last13=Edgett |first13=Kenneth S. |last14=Reufer |first14=Andreas |last15=Thomas |first15=Nicolas |date=2009-09-25 |title=Distribution of Mid-Latitude Ground Ice on Mars from New Impact Craters |url=https://www.science.org/doi/10.1126/science.1175307 |journal=Science |language=en |volume=325 |issue=5948 |pages=1674–1676 |doi=10.1126/science.1175307 |pmid=19779195 |bibcode=2009Sci...325.1674B |s2cid=10657508 |issn=0036-8075 |access-date=July 14, 2023 |archive-date=July 14, 2023 |archive-url=https://web.archive.org/web/20230714044836/https://www.science.org/doi/10.1126/science.1175307 |url-status=live }}</ref><ref>{{Cite journal |last1=Dundas |first1=Colin M. |last2=Bramson |first2=Ali M. |last3=Ojha |first3=Lujendra |last4=Wray |first4=James J. |last5=Mellon |first5=Michael T. |last6=Byrne |first6=Shane |last7=McEwen |first7=Alfred S. |last8=Putzig |first8=Nathaniel E. |last9=Viola |first9=Donna |last10=Sutton |first10=Sarah |last11=Clark |first11=Erin |last12=Holt |first12=John W. |date=2018-01-12 |title=Exposed subsurface ice sheets in the Martian mid-latitudes |journal=Science |language=en |volume=359 |issue=6372 |pages=199–201 |doi=10.1126/science.aao1619 |pmid=29326269 |bibcode=2018Sci...359..199D |s2cid=206662378 |issn=0036-8075|doi-access=free }}</ref><ref>{{Cite journal |last1=Khuller |first1=Aditya |last2=Christensen |first2=Philip |date=2021-01-18 |title=Evidence of Exposed Dusty Water Ice within Martian Gullies |url=https://onlinelibrary.wiley.com/doi/10.1029/2020JE006539 |journal=Journal of Geophysical Research: Planets |language=en |volume=126 |issue=2 |doi=10.1029/2020JE006539 |bibcode=2021JGRE..12606539R |s2cid=234174382 |issn=2169-9097 |access-date=July 27, 2022 |archive-date=June 11, 2024 |archive-url=https://web.archive.org/web/20240611060735/https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020JE006539 |url-status=live }}</ref> Additionally, water ice is also visible at the surface at the ].<ref name=":3">{{cite book |last=Carr |first=M. H. |date=1996 |title=Water on Mars |publisher=Oxford University Press |location=New York |page=197}}</ref> Abundant water ice is also present beneath the permanent ] ice cap at the Martian south pole. More than 5&nbsp;million&nbsp;km<sup>3</sup> of ice have been detected at or near the surface of Mars, enough to cover the whole planet to a depth of {{convert|35|meters}}.<ref name="ChristensenIceBudget" /> Even more ice might be locked away in the deep subsurface.<ref name=":6">Carr, 2006, p. 173.</ref><ref>
There are a number<ref>{{cite web|url=http://www.esa.int/SPECIALS/Mars_Express/SEMYKEX5WRD_0.html |title=Water at Martian south pole |date=March 17, 2004 |accessdate=September 29, 2009}}</ref> of direct and indirect proofs of water's presence either on or ], e.g. ]s,<ref name="history.nasa.gov">{{cite web|url=http://history.nasa.gov/SP-441/ch4.htm |title=ch4 |publisher=History.nasa.gov |accessdate=December 19, 2010}}</ref><ref name="Harrison 2005">{{cite journal | last1 = Harrison | first1 = K | last2 = Grimm | first2 = R. | author-separator =, | author-name-separator= | year = 2005 | title = Groundwater-controlled valley networks and the decline of surface runoff on early Mars | url = | journal=Journal of Geophysical Research | volume = 110 | doi = 10.1029/2005JE002455 | bibcode=2005JGRE..11012S16H}}</ref><ref name="Howard, A. 2005">{{cite journal | last1 = Howard | first1 = A. | last2 = Moore | year = 2005 | first2 = Jeffrey M. | last3 = Irwin | first3 = Rossman P. | title = An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits | url = | journal=Journal of Geophysical Research | volume = 110 |doi = 10.1029/2005JE002459 | bibcode=2005JGRE..11012S14H}}</ref> polar caps, ],<ref name="Kieffer1992"/> ] craters or minerals directly connected to the existence of liquid water (such as ]), grey, crystalline ], phyllosilicates, opal,<ref>{{cite web|url=http://www.space.com/6033-signs-ancient-mars-wet.html |title=New Signs That Ancient Mars Was Wet |publisher=Space.com |date=2008-10-28 |accessdate=2013-02-10}}</ref> and ].<ref name="Itv.com">{{cite web|url=http://www.itv.com/news/articles/Was-there-life-on-mars-930980581.html |title=Articles &#124; Was there life on Mars? – ITV News |publisher=Itv.com |accessdate=December 19, 2010}}</ref><ref>Glotch, T. and P. Christensen. 2005. Geologic and mineralogical mapping of Aram Chaos: Evidence for water-rich history. J. Geophys. Res. 110. {{doi|10.1029/2004JE002389}}</ref> With the improved cameras on advanced Mars orbiters such as ], ], ], ], and the ] pictures of ancient lakes,<ref name="Irwin III 2005" /><ref name="Fassett2008">{{cite journal | doi = 10.1016/j.icarus.2008.06.016 | last1 = Fassett | first1 = C. | last2 = Head | first2 = III | author-separator =, | author-name-separator= | year = 2008 | title = Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology | url = | journal=Icarus | volume = 198 | pages = 37–56 | bibcode=2008Icar..198...37F}}</ref><ref name="lpi.usra.edu">{{cite journal | last1=Parker |first1= T. |year= 2000 | title=Argyre Planitia and the Mars Global Hydrologic Cycle| volume=XXXI | bibcode = 2000LPI....31.2033P | journal=Lunar and Planetary Science | url=http://www.lpi.usra.edu/meetings/lpsc2000/pdf/2033.pdf | format=PDF | last2=Clifford | first2=S. M. | last3=Banerdt | first3=W. B. | page=2033}}</ref><ref name="Heisinger2002">{{cite journal | doi = 10.1016/S0032-0633(02)00054-5 | last1 = Heisinger | first1 = H. | last2 = Head | first2 = J. | author-separator =, | author-name-separator= | year = 2002 | title = Topography and morphology of the Argyre basin, Mars: implications for its geologic and hydrologic history | url = | journal=Planet. Space Sci. | volume = 50 | pages = 939–981 | bibcode=2002P&SS...50..939H | issue = 10–11}}</ref><ref name="ISBN 978-0-521-87201-0"/><ref name="ISBN 978-0-521-87201-0"/><ref name="Moore2001">{{cite journal | doi = 10.1006/icar.2001.6736 | last1 = Moore | first1 = J. | last2 = Wilhelms | first2 = D. | author-separator =, | author-name-separator= | year = 2001 | title = Hellas as a possible site of ancient ice-covered lakes on Mars | url = | journal=Icarus | volume = 154 | pages = 258–276 | bibcode=2001Icar..154..258M | issue = 2}}</ref><ref name="http">{{cite journal | last1=Weitz |first1= C. |first2= T. |last2=Parker |year= 2000 |title= New evidence that the Valles Marineris interior deposits formed in standing bodies of water | journal=Lunar and Planetary Science |volume= XXXI | bibcode = 2000LPI....31.1693W | url =http://www.lpi.usra.edu/meetings/lpsc2000/pdf/1693.pdf | format=PDF | page=1693}}</ref>
Chryse Planitia
ancient river valleys,<ref name="history.nasa.gov"/><ref name="Morton, O 2002">Morton, O. 2002. Mapping Mars. Picador, NY, NY</ref> and widespread glaciation<ref>{{cite journal | last1= Head | first1= JW | last2= Neukum | first2= G | last3= Jaumann | first3= R | last4= Hiesinger | first4= H | last5= Hauber | first5= E | last6= Carr | first6= M | last7= Masson | first7= P | last8= Foing | first8= B | last9= Hoffmann | first9= H | title= Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars | journal= Nature | volume= 434 | issue= 7031 |pages= 346–350 | year= 2005 | pmid = 15772652 | doi= 10.1038/nature03359 |bibcode = 2005Natur.434..346H }}</ref><ref>Head, J. and D. Marchant. 2006. Evidence for global-scale northern mid-latitude glaciation in the Amazonian period of Mars: Debris-covered glacial and valley glacial deposits in the 30 - 50 N latitude band. Lunar. Planet. Sci. 37. Abstract 1127</ref><ref>Head, J. and D. Marchant. 2006. Modifications of the walls of a Noachian crater in Northern Arabia Terra (24 E, 39 N) during northern mid-latitude Amazonian glacial epochs on Mars: Nature and evolution of Lobate Debris Aprons and their relationships to lineated valley fill and glacial systems. Lunar. Planet. Sci. 37. Abstract 1128</ref><ref>Head, J., et al. 2006. Modification if the dichotomy boundary on Mars by Amazonian mid-latitude regional glaciation. Geophys. Res Lett. 33</ref><ref>Garvin, J. et al. 2002. Lunar Planet. Sci: 33. Abstract # 1255.</ref> have accumulated. Besides the visual confirmation of water from a huge collection of images, an orbiting Gamma Ray Spectrometer found ice just under the surface of much of the planet.<ref name="mars.jpl.nasa.gov">{{cite web|url=http://mars.jpl.nasa.gov/odyssey/newsroom/pressreleases/20020528a.html |title=Mars Odyssey: Newsroom |publisher=Mars.jpl.nasa.gov |date=May 28, 2002 |accessdate=December 19, 2010}}</ref><!---<ref name="space.com">{{dead link|date=December 2010}}</ref>---><ref name="Feildman, T. 2004">{{cite journal | year=2004 | last1=Feldman | first1=W. C. |title= Global distribution of near-surface hydrogen on Mars | journal=J. Geographical Research |volume= 109 |doi = 10.1029/2003JE002160 | bibcode=2004JGRE..10909006F}}</ref> Also, radar studies discovered pure ice in formations that were thought to be glaciers.<ref>{{cite web|url=http://www.planetary.brown.edu/pdfs/3733.pdf |title=Radar evidence for ice in lobate debris aprons in the mid-northern latitudes of Mars |publisher=Planetary.brown.edu |date= |accessdate=2013-02-10}}</ref><ref>Head, J. et al. 2005. Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature: 434. 346-350</ref><ref>{{cite web|author=Source: Brown University Posted Monday, October 17, 2005 |url=http://www.marstoday.com/news/viewpr.html?pid=18050 |title=Mars' climate in flux: Mid-latitude glaciers &#124; SpaceRef - Your Space Reference |publisher=Marstoday.com |date=2005-10-17 |accessdate=2013-02-10}}</ref><ref>{{cite web|author=&nbsp;|&nbsp; Contact: Richard Lewis&nbsp;|&nbsp; |url=http://news.brown.edu/pressreleases/2008/04/martian-glaciers |title=Glaciers Reveal Martian Climate Has Been Recently Active &#124; Brown University News and Events |publisher=News.brown.edu |date=2008-04-23 |accessdate=2013-02-10}}</ref><ref>Plaut, J. et al. 2008. Radar Evidence for Ice in Lobate Debris Aprons in the Mid-Northern Latitudes of Mars. Lunar and Planetary Science XXXIX. 2290.pdf</ref><ref>Holt, J. et al. 2008. Radar Sounding Evidence for Ice within Lobate Debris Aprons near Hellas Basin, Mid-Southern Latitudes of Mars. Lunar and Planetary Science XXXIX. 2441.pdf</ref> The ] lander exposed ice as it landed, watched chunks of ice disappear,<ref name=Press> – Official NASA press release (June 19, 2008)</ref><ref name="Rayl">{{cite web
</ref>
| last = Rayl
Some liquid water may occur transiently on the Martian surface today, but limited to traces of dissolved moisture from the atmosphere and thin films, which are challenging environments for known life.<ref name="Ojhaetal2015"/><ref name="NASA-20131210">{{cite web |last1=Webster |first1=Guy |last2=Brown |first2=Dwayne |title=NASA Mars Spacecraft Reveals a More Dynamic Red Planet |url=http://www.jpl.nasa.gov/news/news.php?release=2013-361&1#1 |date=December 10, 2013 |publisher=] |access-date=December 11, 2013 |archive-date=December 14, 2013 |archive-url=https://web.archive.org/web/20131214013848/http://www.jpl.nasa.gov/news/news.php?release=2013-361&1#1 |url-status=live }}</ref><ref name="Salt and water 2014">{{cite news |url=http://astrobiology.nasa.gov/articles/2014/7/3/liquid-water-from-ice-and-salt-on-mars/ |title=Liquid Water From Ice and Salt on Mars |work=Geophysical Research Letters |publisher=NASA Astrobiology |date=July 3, 2014 |access-date=August 13, 2014 |archive-url=https://web.archive.org/web/20140814092915/http://astrobiology.nasa.gov/articles/2014/7/3/liquid-water-from-ice-and-salt-on-mars/ |archive-date=August 14, 2014 |url-status=dead }}</ref> No evidence of present-day liquid water has been discovered on the planet's surface because under typical Martian conditions (water vapor pressure <1 Pa <ref>{{Cite journal |last1=Fischer |first1=E. |last2=Martínez |first2=G. M. |last3=Rennó |first3=N. O. |last4=Tamppari |first4=L. K. |last5=Zent |first5=A. P. |date=November 2019 |title=Relative Humidity on Mars: New Results From the Phoenix TECP Sensor |url=http://dx.doi.org/10.1029/2019je006080 |journal=Journal of Geophysical Research: Planets |volume=124 |issue=11 |pages=2780–2792 |doi=10.1029/2019je006080 |pmid=32025455 |issn=2169-9097 |pmc=6988475 |bibcode=2019JGRE..124.2780F |access-date=April 11, 2024 |archive-date=June 11, 2024 |archive-url=https://web.archive.org/web/20240611060735/https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JE006080 |url-status=live }}</ref> and ambient atmospheric pressure ~700 Pa <ref>{{Cite journal |last1=Hess |first1=Seymour L. |last2=Henry |first2=Robert M. |last3=Tillman |first3=James E. |date=1979-06-10 |title=The seasonal variation of atmospheric pressure on Mars as affected by the south polar cap |url=http://dx.doi.org/10.1029/jb084ib06p02923 |journal=Journal of Geophysical Research: Solid Earth |volume=84 |issue=B6 |pages=2923–2927 |doi=10.1029/jb084ib06p02923 |bibcode=1979JGR....84.2923H |issn=0148-0227 |access-date=April 11, 2024 |archive-date=June 11, 2024 |archive-url=https://web.archive.org/web/20240611060736/https://agupubs.onlinelibrary.wiley.com/doi/10.1029/JB084iB06p02923 |url-status=live }}</ref>), warming water ice on the Martian surface would ] at rates of up to 4 meters per year.<ref>{{Cite journal |last1=Khuller |first1=Aditya R. |last2=Clow |first2=Gary D. |date=April 2024 |title=Turbulent Fluxes and Evaporation/Sublimation Rates on Earth, Mars, Titan, and Exoplanets |journal=Journal of Geophysical Research: Planets |language=en |volume=129 |issue=4 |doi=10.1029/2023JE008114 |issn=2169-9097 |doi-access=free |bibcode=2024JGRE..12908114K }}</ref> Before about ], Mars may have had a denser ] and higher surface temperatures,<ref name=":7">{{cite journal |last=Pollack |first=J. B. |date=1979 |title=Climatic Change on the Terrestrial Planets |journal=Icarus |volume=37 |issue=3 |pages=479–553 |doi=10.1016/0019-1035(79)90012-5 |bibcode=1979Icar...37..479P}}</ref><ref>{{cite journal |last1=Pollack |first1=J. B. |last2=Kasting |first2=J. F. |last3=Richardson |first3=S. M. |last4=Poliakoff |first4=K. |date=1987 |title=The Case for a Wet, Warm Climate on Early Mars |journal=Icarus |volume=71 |issue=2 |pages=203–224 |doi=10.1016/0019-1035(87)90147-3 |pmid=11539035 |bibcode=1987Icar...71..203P|hdl=2060/19870013977 |hdl-access=free }}</ref><ref>{{cite journal | last = Fairén | first = A. G. | year = 2010 | title = A cold and wet Mars Mars | journal = Icarus | volume = 208 | issue = 1| pages = 165–175 | doi=10.1016/j.icarus.2010.01.006 | bibcode = 2010Icar..208..165F }}</ref><ref>{{cite journal | last = Fairén | first = A. G. | display-authors = etal | year = 2009 | title = Stability against freezing of aqueous solutions on early Mars | url = https://zenodo.org/record/1233311 | journal = Nature | volume = 459 | issue = 7245 | pages = 401–404 | doi = 10.1038/nature07978 | pmid = 19458717 | bibcode = 2009Natur.459..401F | s2cid = 205216655 | access-date = August 29, 2020 | archive-date = August 3, 2020 | archive-url = https://web.archive.org/web/20200803152150/https://zenodo.org/record/1233311 | url-status = live }}</ref> potentially allowing greater amounts of liquid water on the surface,<ref name="sciencedaily">{{cite web|url=https://www.sciencedaily.com/releases/2015/03/150305140447.htm|title=releases/2015/03/150305140447|publisher=sciencedaily.com|access-date=May 25, 2015|archive-date=December 12, 2023|archive-url=https://web.archive.org/web/20231212070055/https://www.sciencedaily.com/releases/2015/03/150305140447.htm|url-status=live}}</ref><ref>{{cite journal | last1 = Villanueva | first1 = G. | last2 = Mumma | first2 = M. | last3 = Novak | first3 = R. | last4 = Käufl | first4 = H. | last5 = Hartogh | first5 = P. | last6 = Encrenaz | first6 = T. | author6-link = Thérèse Encrenaz | last7 = Tokunaga | first7 = A. | last8 = Khayat | first8 = A. | last9 = Smith | first9 = M. | year = 2015 | title = Strong water isotopic anomalies in the martian atmosphere: Probing current and ancient reservoirs | url = https://zenodo.org/record/1231265 | journal = Science | volume = 348 | issue = 6231 | pages = 218–221 | doi = 10.1126/science.aaa3630 | bibcode = 2015Sci...348..218V | pmid = 25745065 | s2cid = 206633960 | access-date = July 23, 2019 | archive-date = November 1, 2021 | archive-url = https://web.archive.org/web/20211101201308/https://zenodo.org/record/1231265 | url-status = live }}</ref><ref name="Baker">{{cite journal |last1=Baker |first1=V. R. |last2=Strom |first2=R. G. |last3=Gulick |first3=V. C. |last4=Kargel |first4=J. S. |last5=Komatsu |first5=G. |last6=Kale |first6=V. S. |date=1991 |title=Ancient oceans, ice sheets and the hydrological cycle on Mars |journal=Nature |volume=352 |issue=6348 |pages=589–594 |doi=10.1038/352589a0 |bibcode=1991Natur.352..589B|s2cid=4321529 }}</ref><ref>{{cite journal | last1 = Salese | first1 = F. | last2 = Ansan | first2 = V. | last3 = Mangold | first3 = N. | last4 = Carter | first4 = J. | last5 = Anouck | first5 = O. | last6 = Poulet | first6 = F. | last7 = Ori | first7 = G. G. | year = 2016 | title = A sedimentary origin for intercrater plains north of the Hellas basin: Implications for climate conditions and erosion rates on early Mars | journal = Journal of Geophysical Research: Planets | volume = 121 | issue = 11 | pages = 2239–2267 | doi = 10.1002/2016JE005039 | bibcode = 2016JGRE..121.2239S | s2cid = 132873898 | url = https://hal.archives-ouvertes.fr/hal-02305998/file/Salese2016_jgre20597.pdf | access-date = November 22, 2019 | archive-date = March 10, 2020 | archive-url = https://web.archive.org/web/20200310235340/https://hal.archives-ouvertes.fr/hal-02305998/file/Salese2016_jgre20597.pdf | url-status = live }}</ref> possibly including ]<ref>{{cite journal |last1=Parker |first1=T. J. |last2=Saunders |first2=R. S. |last3=Schneeberger |first3=D. M. |date=1989 |title=Transitional Morphology in West Deuteronilus Mensae, Mars: Implications for Modification of the Lowland/Upland Boundary |journal=Icarus |volume=82 |issue=1 |pages=111–145 |doi=10.1016/0019-1035(89)90027-4 |bibcode=1989Icar...82..111P|s2cid=120460110 }}</ref><ref>{{cite journal |last1=Dohm |first1=J. M. |last2=Baker |first2=Victor R. |date=2009 |title=GRS Evidence and the Possibility of Paleooceans on Mars |journal=Planetary and Space Science |volume=57 |issue=5–6 |pages=664–684 |doi=10.1016/j.pss.2008.10.008 |bibcode=2009P&SS...57..664D |last3=Boynton |first3=William V. |last4=Fairén |first4=Alberto G. |last5=Ferris |first5=Justin C. |last6=Finch |first6=Michael |last7=Furfaro |first7=Roberto |last8=Hare |first8=Trent M. |last9=Janes |first9=Daniel M. |last10=Kargel |first10=Jeffrey S. |last11=Karunatillake |first11=Suniti |last12=Keller |first12=John |last13=Kerry |first13=Kris |last14=Kim |first14=Kyeong J. |last15=Komatsu |first15=Goro |last16=Mahaney |first16=William C. |last17=Schulze-Makuch |first17=Dirk |last18=Marinangeli |first18=Lucia |last19=Ori |first19=Gian G. |last20=Ruiz |first20=Javier |last21=Wheelock |first21=Shawn J. |url=http://eprints.ucm.es/10512/2/25-Marte_9_P%C3%A1gina_01.pdf |access-date=July 23, 2019 |archive-date=September 22, 2017 |archive-url=https://web.archive.org/web/20170922010358/http://eprints.ucm.es/10512/2/25-Marte_9_P%C3%A1gina_01.pdf |url-status=dead }}</ref><ref name="Sea">{{cite web |url=http://www.psrd.hawaii.edu/July03/MartianSea.html |title=PSRD: Ancient Floodwaters and Seas on Mars |work=Planetary Science Research Discoveries |publisher=University of Hawaii |date=July 16, 2003 |access-date=December 18, 2009 |archive-date=January 4, 2011 |archive-url=https://web.archive.org/web/20110104093144/http://www.psrd.hawaii.edu/July03/MartianSea.html |url-status=live }}</ref><ref>{{cite web |url=http://www.spaceref.com/news/viewpr.html?pid=26947 |title=Gamma-Ray Evidence Suggests Ancient Mars Had Oceans |work=SpaceRef |date=November 17, 2008}}</ref> that may have covered one-third of the planet.<ref>{{cite journal |last1=Clifford |first1=S. M. |last2=Parker |first2=T. J. |date=2001 |title=The Evolution of the Martian Hydrosphere: Implications for the Fate of a Primordial Ocean and the Current State of the Northern Plains |journal=Icarus |volume=154 |issue=1 |pages=40–79 |doi=10.1006/icar.2001.6671 |bibcode=2001Icar..154...40C|s2cid=13694518 }}</ref><ref name="ReferenceA" /><ref name="third">{{cite web |url=https://www.sciencedaily.com/releases/2010/06/100613181245.htm |title=Ancient ocean may have covered third of Mars |publisher=Science Daily |date=June 14, 2010 |access-date=February 28, 2018 |archive-date=October 9, 2021 |archive-url=https://web.archive.org/web/20211009114213/https://www.sciencedaily.com/releases/2010/06/100613181245.htm |url-status=live }}</ref> Water has also apparently flowed across the surface for short periods at various intervals more recently in Mars' history.<ref>Carr, 2006, pp. 144–147.</ref><ref>{{cite journal |last1=Fassett |first1=C. I. |last2=Dickson |first2=James L. |date=2010 |title=Supraglacial and Proglacial Valleys on Amazonian Mars |journal=Icarus |volume=208 |issue=1 |pages=86–100 |doi=10.1016/j.icarus.2010.02.021 |bibcode=2010Icar..208...86F|last3=Head |first3=James W. |last4=Levy |first4=Joseph S. |last5=Marchant |first5=David R.}}</ref><ref name="flashback">{{cite web |url=http://www.space.com/scienceastronomy/flashback-water-on-mars-announced-10-years-ago-100622.html |title=Flashback: Water on Mars Announced 10 Years Ago |publisher=Space.com |date=June 22, 2000 |access-date=June 23, 2010 |archive-date=December 22, 2010 |archive-url=https://web.archive.org/web/20101222210332/http://www.space.com/scienceastronomy/flashback-water-on-mars-announced-10-years-ago-100622.html |url-status=live }}</ref> ] in ], explored by the ], is the geological remains of an ancient ] that could have been a hospitable environment for ].<ref name="NYT-20131209">{{cite news |last=Chang |first=Kenneth |title=On Mars, an Ancient Lake and Perhaps Life |url=https://www.nytimes.com/2013/12/10/science/space/on-mars-an-ancient-lake-and-perhaps-life.html |date=December 9, 2013 |work=] |access-date=February 26, 2017 |archive-date=December 9, 2013 |archive-url=https://web.archive.org/web/20131209202521/http://www.nytimes.com/2013/12/10/science/space/on-mars-an-ancient-lake-and-perhaps-life.html |url-status=live }}</ref><ref name="SCI-20131209">{{cite journal |author=Various |title=Science – Special Collection – Curiosity Rover on Mars |url=https://www.science.org/action/doSearch?AllField=Curiosity+Mars |date=December 9, 2013 |journal=] |access-date=June 30, 2022 |archive-date=January 28, 2014 |archive-url=https://web.archive.org/web/20140128102653/http://www.sciencemag.org/site/extra/curiosity/ |url-status=live }}</ref><ref name="lpi.usra.edu">{{cite journal |last1=Parker |first1=T. |date=2000 |title=Argyre Planitia and the Mars Global Hydrologic Cycle |volume=XXXI |bibcode=2000LPI....31.2033P |journal=Lunar and Planetary Science |url=http://www.lpi.usra.edu/meetings/lpsc2000/pdf/2033.pdf |last2=Clifford |first2=S. M. |last3=Banerdt |first3=W. B. |page=2033 |access-date=December 19, 2010 |archive-date=July 6, 2021 |archive-url=https://web.archive.org/web/20210706110818/https://www.lpi.usra.edu/meetings/lpsc2000/pdf/2033.pdf |url-status=live }}</ref><ref name="Heisinger2002">{{cite journal |doi=10.1016/S0032-0633(02)00054-5 |last1=Heisinger |first1=H. |last2=Head |first2=J. |year=2002 |title=Topography and morphology of the Argyre basin, Mars: implications for its geologic and hydrologic history |journal=Planetary and Space Science |volume=50 |pages=939–981 |bibcode=2002P&SS...50..939H |issue=10–11}}</ref> The present-day inventory of '''water on Mars''' can be estimated from spacecraft images, ] techniques (] measurements,<ref>{{cite book |last=Soderblom |first=L. A. |date=1992 |title=The composition and mineralogy of the Martian surface from spectroscopic observations – 0.3 micron to 50 microns |editor-first=H. H. |editor-last=Kieffer |display-editors=etal |publisher=University of Arizona Press |location=Tucson, Arizona |pages= |isbn=978-0-8165-1257-7 |url=https://archive.org/details/mars0000unse/page/557 }}</ref><ref>{{cite journal |last1=Glotch |first1=T. |first2=P. |last2=Christensen |date=2005 |title=Geologic and mineralogical mapping of Aram Chaos: Evidence for water-rich history |journal=Journal of Geophysical Research |volume=110 |issue=E9 |pages=E09006 |doi=10.1029/2004JE002389 |bibcode=2005JGRE..110.9006G|s2cid=53489327 |doi-access=free }}</ref> ],<ref name="Holt, J. 2008">{{cite journal |bibcode=2008LPI....39.2441H |year=2008 |title=Radar Sounding Evidence for Ice within Lobate Debris Aprons near Hellas Basin, Mid-Southern Latitudes of Mars |journal=Lunar and Planetary Science |volume=XXXIX |issue=1391 |url=http://www.lpi.usra.edu/meetings/lpsc2008/pdf/2441.pdf |last1=Holt |first1=J. W. |last2=Safaeinili |first2=A. |last3=Plaut |first3=J. J. |last4=Young |first4=D. A. |last5=Head |first5=J. W. |last6=Phillips |first6=R. J. |last7=Campbell |first7=B. A. |last8=Carter |first8=L. M. |last9=Gim |first9=Y. |last10=Seu |first10=R. |first11=Sharad |last11=Team |page=2441 |access-date=December 19, 2010 |archive-date=June 11, 2016 |archive-url=https://web.archive.org/web/20160611110443/http://www.lpi.usra.edu/meetings/lpsc2008/pdf/2441.pdf |url-status=live }}</ref> etc.), and surface investigations from landers and rovers.<ref name="Amos June 2013">{{cite news |first=Jonathan |last=Amos |title=Old Opportunity Mars rover makes rock discovery |date=June 10, 2013 |work=BBC News |url=https://www.bbc.co.uk/news/science-environment-22832673 |access-date=June 22, 2018 |archive-date=October 9, 2021 |archive-url=https://web.archive.org/web/20211009114213/https://www.bbc.co.uk/news/science-environment-22832673 |url-status=live }}</ref><ref name="Clay clues">{{cite news |title=Mars Rover Opportunity Examines Clay Clues in Rock |date=May 17, 2013 |publisher=Jet Propulsion Laboratory, NASA |url=http://www.jpl.nasa.gov/news/news.php?release=2013-167 |access-date=June 16, 2013 |archive-date=June 11, 2013 |archive-url=https://web.archive.org/web/20130611181547/http://www.jpl.nasa.gov/news/news.php?release=2013-167 |url-status=live }}</ref> Geologic evidence of past water includes enormous ] carved by floods,<ref name="Floods 2015">{{cite news |url=http://spaceref.com/mars/regional-not-global-processes-led-to-huge-martian-floods.html |archive-url=https://archive.today/20150929035120/http://spaceref.com/mars/regional-not-global-processes-led-to-huge-martian-floods.html |url-status=dead |archive-date=September 29, 2015 |title=Regional, Not Global, Processes Led to Huge Martian Floods |work=Planetary Science Institute |via=SpaceRef |date=September 11, 2015 |access-date=September 12, 2015 }}</ref> ancient river ],<ref name="Harrison 2005">{{cite journal |last1=Harrison |first1=K |last2=Grimm |first2=R. |date=2005 |title=Groundwater-controlled valley networks and the decline of surface runoff on early Mars |journal=Journal of Geophysical Research |volume=110 |issue=E12 |pages=E12S16 |doi=10.1029/2005JE002455 |bibcode=2005JGRE..11012S16H|s2cid=7755332 |doi-access=free }}</ref><ref name="Howard, A. 2005">{{cite journal |last1=Howard |first1=A. |last2=Moore |first2=Jeffrey M. |last3=Irwin |first3=Rossman P. |date=2005 |title=An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits |journal=Journal of Geophysical Research |volume=110 |issue=E12 |pages=E12S14 |doi=10.1029/2005JE002459 |bibcode=2005JGRE..11012S14H|s2cid=14890033 |doi-access=free }}</ref> ],<ref>{{cite journal | last1 = Salese | first1 = F. | last2 = Di Achille | first2 = G. | last3 = Neesemann | first3 = A. | last4 = Ori | first4 = G. G. | last5 = Hauber | first5 = E. | year = 2016 | title = Hydrological and sedimentary analyses of well-preserved paleofluvial-paleolacustrine systems at Moa Valles, Mars | journal = Journal of Geophysical Research: Planets | volume = 121 | issue = 2| pages = 194–232 | doi = 10.1002/2015JE004891 | bibcode = 2016JGRE..121..194S | s2cid = 130651090 | doi-access = free }}</ref> and ];<ref name="Irwin III 2005" /><ref name="Fassett2008">{{cite journal |doi=10.1016/j.icarus.2008.06.016 |last1=Fassett |first1=C. |last2=Head |first2=III |year=2008 |title=Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology |journal=Icarus |volume=198 |issue=1 |pages=37–56 |bibcode=2008Icar..198...37F}}</ref><ref name="Moore2001">{{cite journal |doi=10.1006/icar.2001.6736 |last1=Moore |first1=J. |last2=Wilhelms |first2=D. |date=2001 |title=Hellas as a possible site of ancient ice-covered lakes on Mars |url=https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20020050249_2002081883.pdf |journal=Icarus |volume=154 |pages=258–276 |bibcode=2001Icar..154..258M |issue=2 |hdl=2060/20020050249 |s2cid=122991710 |access-date=July 7, 2017 |archive-date=October 9, 2021 |archive-url=https://web.archive.org/web/20211009114217/https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20020050249_2002081883.pdf |url-status=live }}</ref><ref name="http">{{cite journal |last1=Weitz |first1=C. |first2=T. |last2=Parker |date=2000 |title=New evidence that the Valles Marineris interior deposits formed in standing bodies of water |journal=Lunar and Planetary Science |volume=XXXI |bibcode=2000LPI....31.1693W |url=http://www.lpi.usra.edu/meetings/lpsc2000/pdf/1693.pdf |page=1693 |access-date=December 19, 2010 |archive-date=July 6, 2021 |archive-url=https://web.archive.org/web/20210706112057/http://www.lpi.usra.edu/meetings/lpsc2000/pdf/1693.pdf |url-status=live }}</ref> and the detection of rocks and minerals on the surface that could only have formed in liquid water.<ref>{{cite news |url=http://www.space.com/6033-signs-ancient-mars-wet.html |title=New Signs That Ancient Mars Was Wet |work=Space.com |date=October 28, 2008 |access-date=October 3, 2011 |archive-date=November 10, 2021 |archive-url=https://web.archive.org/web/20211110082153/https://www.space.com/6033-signs-ancient-mars-wet.html |url-status=live }}</ref> Numerous ] features suggest the presence of ground ice (])<ref>{{cite book |last=Squyres |first=S. W. |date=1992 |chapter=Ice in the Martian Regolith |title=Mars |editor-first=H. H. |editor-last=Kieffer |display-authors=etal |publisher=University of Arizona Press |location=Tucson, Arizona |pages= |isbn=978-0-8165-1257-7 |chapter-url=https://archive.org/details/mars0000unse/page/523 }}</ref> and the movement of ice in ]s, both in the recent past<ref name="HeadMarchant2006">{{cite journal |last1=Head |first1=J. |first2=D. |last2=Marchant |date=2006 |title=Modifications of the walls of a Noachian crater in Northern Arabia Terra (24 E, 39 N) during northern mid-latitude Amazonian glacial epochs on Mars: Nature and evolution of Lobate Debris Aprons and their relationships to lineated valley fill and glacial systems (abstract) |journal=Lunar and Planetary Science |volume=37 |page=1128}}</ref><ref>{{cite journal |last=Head |first=J. |display-authors=etal |date=2006 |title=Modification if the dichotomy boundary on Mars by Amazonian mid-latitude regional glaciation |journal=Geophysical Research Letters |page=33 <!-- check this -->|doi=10.1029/2005gl024360 |bibcode=2006GeoRL..33.8S03H |volume=33|issue=8 |s2cid=9653193 |doi-access=free }}</ref><ref>{{cite journal |last1=Head |first1=J. |first2=D. |last2=Marchant |date=2006 |title=Evidence for global-scale northern mid-latitude glaciation in the Amazonian period of Mars: Debris-covered glacial and valley glacial deposits in the 30–50 N latitude band |journal=Lunar and Planetary Science |volume=37 |page=1127}}</ref><ref name="Richard Lewis">{{cite web |first=Richard |last=Lewis |url=http://news.brown.edu/pressreleases/2008/04/martian-glaciers |title=Glaciers Reveal Martian Climate Has Been Recently Active |publisher=Brown University |date=April 23, 2008 |access-date=October 12, 2009 |archive-date=October 12, 2013 |archive-url=https://web.archive.org/web/20131012034101/http://news.brown.edu/pressreleases/2008/04/martian-glaciers |url-status=live }}</ref> and present.<ref name="Plaut, J. 2008">{{cite journal |last1=Plaut |first1=Jeffrey J. |last2=Safaeinili |first2=Ali |last3=Holt |first3=John W. |last4=Phillips |first4=Roger J. |last5=Head |first5=James W. |last6=Seu |first6=Roberto |last7=Putzig |first7=Nathaniel E. |last8=Frigeri |first8=Alessandro |title=Radar Evidence for Ice in Lobate Debris Aprons in the Mid-Northern Latitudes of Mars |doi=10.1029/2008GL036379 |date=2009 |volume=36 |journal=Geophysical Research Letters |url=http://www.planetary.brown.edu/pdfs/3733.pdf |issue=2 |pages=n/a |bibcode=2009GeoRL..36.2203P |s2cid=17530607 |access-date=April 4, 2010 |archive-date=January 23, 2021 |archive-url=https://web.archive.org/web/20210123201616/http://www.planetary.brown.edu/pdfs/3733.pdf |url-status=dead }}</ref> ] and ] along cliffs and crater walls suggest that flowing water continues to shape the surface of Mars, although to a far lesser degree than in the ancient past.
| first = A. j. s.
| title = ''Phoenix'' Scientists Confirm Water-Ice on Mars
| work=
| publisher=]
| date = June 21, 2008
| url = http://www.planetary.org/news/2008/0621_Phoenix_Scientists_Confirm_WaterIce_on.html
| accessdate =June 23, 2008}}</ref><ref name="Confirmation of Water on Mars">{{cite web|url=http://www.nasa.gov/mission_pages/phoenix/news/phoenix-20080620.html |title=Confirmation of Water on Mars |publisher=Nasa.gov |date=June 20, 2008 |accessdate=December 19, 2010}}</ref> detected snow falling,<ref name="Witeway2009">{{cite journal | last1 = Witeway | first1 = J. | year = 2009 | last2 = Komguem | first2 = L | last3 = Dickinson | first3 = C | last4 = Cook | first4 = C | last5 = Illnicki | first5 = M | last6 = Seabrook | first6 = J | last7 = Popovici | first7 = V | last8 = Duck | first8 = TJ | last9 = Davy | first9 = R | title = Mars Water-Ice Clouds and Precipation | url = | journal=Science | volume = 325 | issue = 5936| pages = 68–70 | pmid = 19574386 | doi = 10.1126/science.1172344 |bibcode = 2009Sci...325...68W }}</ref> and even saw drops of liquid water.<ref name="Sciencedaily.com">{{cite web|url=http://www.sciencedaily.com/releases/2009/03/090319232438.htm |title=Liquid Saltwater Is Likely Present On Mars, New Analysis Shows |publisher=Sciencedaily.com |date=2009-03-20 |accessdate=2011-08-20}}</ref><ref name="ISBN 978-1-60598-176-5">ISBN 978-1-60598-176-5</ref><ref name="Renno2009">{{cite journal | doi = 10.1029/2009JE003362 | title = Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site | year = 2009 | last1 = Rennó | first1 = Nilton O. | last2 = Bos | first2 = Brent J. | last3 = Catling | first3 = David | last4 = Clark | first4 = Benton C. | last5 = Drube | first5 = Line | last6 = Fisher | first6 = David | last7 = Goetz | first7 = Walter | last8 = Hviid | first8 = Stubbe F. | last9 = Keller | first9 = Horst Uwe | journal = Journal of Geophysical Research | volume = 114 |bibcode=2009JGRC..11400E03R}}</ref>


Although the surface of Mars was periodically wet and could have been hospitable to microbial life billions of years ago,<ref name="Wall">{{cite news |last=Wall |first=Mike |title=Q & A with Mars Life-Seeker Chris Carr |date=March 25, 2011 |url=http://www.space.com/11232-mars-life-evolution-carr-interview.html |work=Space.com |access-date=June 16, 2013 |archive-date=June 3, 2013 |archive-url=https://web.archive.org/web/20130603003111/http://www.space.com/11232-mars-life-evolution-carr-interview.html |url-status=live }}</ref> the current environment at the surface is dry and subfreezing, probably presenting an insurmountable obstacle for living organisms. In addition, Mars lacks a thick atmosphere, ], and ], allowing solar and ] to strike the surface unimpeded. The damaging effects of ionizing radiation on cellular structure is another one of the prime limiting factors on the survival of life on the surface.<ref name="Dartnell-1">{{cite journal |title=Modelling the surface and subsurface Martian radiation environment: Implications for astrobiology |journal=Geophysical Research Letters |date=January 30, 2007 |first1=L. R. |last1=Dartnell |last2=Desorgher |last3=Ward |last4=Coates |volume=34 |issue=2 |pages=L02207 |doi=10.1029/2006GL027494 |quote=The damaging effect of ionising radiation on cellular structure is one of the prime limiting factors on the survival of life in potential astrobiological habitats. |bibcode=2007GeoRL..34.2207D |s2cid=59046908 |url=http://discovery.ucl.ac.uk/134609/ |doi-access=free |access-date=July 23, 2019 |archive-date=October 7, 2019 |archive-url=https://web.archive.org/web/20191007215744/http://discovery.ucl.ac.uk/134609/ |url-status=live }}</ref><ref name="ionising radiation">{{cite journal |title=Martian sub-surface ionising radiation: biosignatures and geology |journal=Biogeosciences |date=2007 |first1=L. R. |last1=Dartnell |first2=L. |last2=Desorgher |first3=J. M. |last3=Ward |first4=A. J. |last4=Coates |volume=4 |issue=4 |pages=545–558 |quote=This ionising radiation field is deleterious to the survival of dormant cells or spores and the persistence of molecular biomarkers in the subsurface, and so its characterisation. ... Even at a depth of 2 meters beneath the surface, any microbes would likely be dormant, cryopreserved by the current freezing conditions, and so metabolically inactive and unable to repair cellular degradation as it occurs. |bibcode=2007BGeo....4..545D |doi=10.5194/bg-4-545-2007 |url=http://hal.archives-ouvertes.fr/docs/00/29/76/31/PDF/bg-4-545-2007.pdf |doi-access=free |access-date=September 1, 2019 |archive-date=July 9, 2014 |archive-url=https://web.archive.org/web/20140709003524/http://hal.archives-ouvertes.fr/docs/00/29/76/31/PDF/bg-4-545-2007.pdf |url-status=live }}</ref> Therefore, the best potential locations for discovering ] may be in subsurface environments.<ref name="subsurface habitability model">{{cite journal |title=A Possible Biochemical Model for Mars |journal=43rd Lunar and Planetary Science Conference |date=2012 |first=A. |last=de Morais |url=http://www.lpi.usra.edu/meetings/lpsc2012/pdf/2943.pdf |access-date=June 5, 2013 |quote=The extensive volcanism at that time much possibly created subsurface cracks and caves within different strata, and the liquid water could have been stored in these subterraneous places, forming large aquifers with deposits of saline liquid water, minerals organic molecules, and geothermal heat – ingredients for life as we know on Earth. |archive-date=July 6, 2021 |archive-url=https://web.archive.org/web/20210706110831/https://www.lpi.usra.edu/meetings/lpsc2012/pdf/2943.pdf |url-status=live }}</ref><ref name="Parnell">{{cite news |first=JohnThomas |last=Didymus |title=Scientists find evidence Mars subsurface could hold life |date=January 21, 2013 |url=http://digitaljournal.com/article/341801 |work=Digital Journal – Science |quote=There can be no life on the surface of Mars, because it is bathed in radiation and it's completely frozen. Life in the subsurface would be protected from that. – Prof. Parnell. |access-date=June 16, 2013 |archive-date=December 13, 2013 |archive-url=https://web.archive.org/web/20131213201137/http://digitaljournal.com/article/341801 |url-status=live }}</ref><ref name=Steigerwald>{{cite news |first=Bill |last=Steigerwald |title=Martian Methane Reveals the Red Planet is not a Dead Planet |date=January 15, 2009 |publisher=NASA |url=http://www.nasa.gov/mission_pages/mars/news/marsmethane.html |work=NASA's Goddard Space Flight Center |quote=If microscopic Martian life is producing the methane, it likely resides far below the surface, where it's still warm enough for liquid water to exist |access-date=June 16, 2013 |archive-date=January 17, 2009 |archive-url=https://web.archive.org/web/20090117141425/http://www.nasa.gov/mission_pages/mars/news/marsmethane.html |url-status=dead }}</ref> Large amounts of underground ice have been found on Mars; the volume of water detected is equivalent to the volume of water in ].<ref name="NASA-20161122">{{cite web |author=Staff |title=Scalloped Terrain Led to Finding of Buried Ice on Mars |url=http://photojournal.jpl.nasa.gov/catalog/PIA21136 |date=November 22, 2016 |work=] |access-date=November 23, 2016 |archive-date=November 24, 2016 |archive-url=https://web.archive.org/web/20161124094205/http://photojournal.jpl.nasa.gov/catalog/PIA21136 |url-status=live }}</ref><ref name="Register-2016">{{cite web |url=https://www.theregister.co.uk/2016/11/22/nasa_finds_ice_under_martian_surface/ |title=Lake of frozen water the size of New Mexico found on Mars – NASA |work=The Register |date=November 22, 2016 |access-date=November 23, 2016 |archive-date=November 23, 2016 |archive-url=https://web.archive.org/web/20161123120850/http://www.theregister.co.uk/2016/11/22/nasa_finds_ice_under_martian_surface/ |url-status=live }}</ref><ref name="NASA-20161122jpl">{{cite web |url=http://www.jpl.nasa.gov/news/news.php?release=2016-299 |title=Mars Ice Deposit Holds as Much Water as Lake Superior |publisher=NASA |date=November 22, 2016 |access-date=November 23, 2016 |archive-date=November 23, 2016 |archive-url=https://web.archive.org/web/20161123145052/http://www.jpl.nasa.gov/news/news.php?release=2016-299 |url-status=live }}</ref> In 2018, scientists reported the discovery of ], {{convert|1.5|km|mi|abbr=on}} below the ], with a horizontal extent of about {{convert|20|km|mi|abbr=on}}, the first known stable body of liquid water on the planet,<ref name="SCI-20180725"/><ref>{{cite news |last1=Halton |first1=Mary |title=Liquid water 'lake' revealed on Mars |url=https://www.bbc.co.uk/news/science-environment-44952710 |access-date=July 26, 2018 |work=BBC News |date=July 25, 2018 |archive-date=July 25, 2018 |archive-url=https://web.archive.org/web/20180725141308/https://www.bbc.co.uk/news/science-environment-44952710 |url-status=live }}</ref> but subsequent work has questioned this detection.<ref>{{cite journal |last1=Grima |first1=Cyril |last2=Mouginot |first2=Jeremie |last3=Kofman |first3=Wlodek |last4=Herique |first4=A. |last5=Beck |first5=P. |title=The Basal Detectability of an Ice-Covered Mars by MARSIS |journal=Geophysical Research Letters |volume=49 |date=January 2022 |issue=2 |doi=10.1029/2021GL096518 |bibcode=2022GeoRL..4996518G |s2cid=246327935 |url=https://hal-insu.archives-ouvertes.fr/insu-03705391/file/Geophysical%20Research%20Letters%20-%202022%20-%20Grima%20-%20The%20Basal%20Detectability%20of%20an%20Ice%25E2%2580%2590Covered%20Mars%20by%20MARSIS.pdf |access-date=August 29, 2022 |archive-date=June 11, 2024 |archive-url=https://web.archive.org/web/20240611060733/https://hal-insu.archives-ouvertes.fr/insu-03705391/file/Geophysical%20Research%20Letters%20-%202022%20-%20Grima%20-%20The%20Basal%20Detectability%20of%20an%20Ice%25E2%2580%2590Covered%20Mars%20by%20MARSIS.pdf |url-status=live }}</ref><ref>{{cite news |url=https://www.space.com/mars-underground-lake-volcanic-rock |last=Howell |first=Elizabeth |title=Mars' suspected underground lake could be just volcanic rock, new study finds |work=] |date=January 25, 2022 |access-date=April 4, 2022 |archive-date=April 4, 2022 |archive-url=https://web.archive.org/web/20220404083531/https://www.space.com/mars-underground-lake-volcanic-rock |url-status=live }}</ref>
Today, it is generally believed that Mars had abundant water very early in its history<ref name="Space-20120702">{{cite web |author=Staff |title=Ancient Mars Water Existed Deep Underground |url=http://www.space.com/16335-mars-underground-water-impact-craters.html |date=July 2, 2012 |publisher=] |accessdate=July 3, 2012 }}</ref> during which snow and rain fell on the planet and created rivers, lakes, and possibly oceans.<ref>Forget, F., et al. 2006. Planet Mars Story of Another World. Praxis Publishing, Chichester, UK. ISBN 978-0-387-48925-4</ref><ref>Carr, M. 2006. The Surface of Mars. Cambridge University Press. ISBN 978-0-521-87201-0</ref><ref>{{cite journal | last1 = Craddock | first1 = R. | last2 = Howard | first2 = A. | year = 2002 | title = The case for rainfall on a warm, wet early Mars | url = | journal = J. Geophys. Res | volume = 107 | issue = | page = E11 }}</ref> Large clay deposits were produced. Life may even have come into existence. Large areas of liquid water have disappeared, but climate changes have frequently deposited large amounts of water-rich materials in mid-latitudes.<ref>{{cite journal | last1 = Head | first1 = J. ''et al.'' | year = 2006 | title = Extensive valley glacier deposits in the northern mid-latitudes of Mars: Evidence for the late Amazonian obliquity-driven climate change | url = | journal = Earth Planet. Sci. Lett. | volume = 241 | issue = | pages = 663–671 }}</ref><ref>Madeleine, J. et al. 2007. Mars: A proposed climatic scenario for northern mid-latitude glaciation. Lunar Planet. Sci. 38. Abstract 1778.</ref><ref>{{cite journal | last1 = Madeleine | first1 = J. ''et al.'' | year = 2009 | title = Amazonian northern mid-latitude glaciation on Mars: A proposed climate scenario | url = | journal = Icarus | volume = 203 | issue = | pages = 300–405 }}</ref><ref>Mischna, M. et al. 2003. On the orbital forcing of martian water and CO2 cycles: A general circulation model study with simplified volatile schemes. ''J. Geophys. Res.'' 108. (E6). 5062.</ref> From these materials, glaciers and other forms of frozen ground came to be. Small amounts of water probably melt on steep slopes from time to time and produce gullies.<ref></ref><ref name="Head 2008 PNAS">{{cite journal | pmid=18725636 | year=2008 | last1=Head | first1=JW | last2=Marchant | first2=DR | last3=Kreslavsky | first3=MA | title=Formation of gullies on Mars: Link to recent climate history and insolation microenvironments implicate surface water flow origin | volume=105 | issue=36 | pages=13258–63 | doi=10.1073/pnas.0803760105 | pmc=2734344 | journal=] | bibcode=2008PNAS..10513258H }}</ref> Recent images have also detected yearly changes on some slopes that may have been caused by liquid water.<ref name=voanews>{{cite web|url=http://www.voanews.com/english/news/science-technology/NASA-Finds-Possible-Signs-of-Flowing-Water-on-Mars-126807133.html|title=NASA Finds Possible Signs of Flowing Water on Mars|publisher=voanews.com|accessdate=August 5, 2011}}</ref><ref name=mag>{{cite web|url=http://news.sciencemag.org/sciencenow/2011/08/is-mars-weeping-salty-tears.html|title=Is Mars Weeping Salty Tears?|publisher=news.sciencemag.org|accessdate=August 5, 2011}}</ref> Although Mars is very cold at present, water could exist as a liquid if it contains salts.<ref>{{cite web|url=http://www.sciencedaily.com/releases/2009/02/090213110731.htm |title=Mars Gullies May Have Been Formed By Flowing Liquid Brine |publisher=Sciencedaily.com |date=2009-02-15 |accessdate=2013-02-10}}</ref> Salt is expected to be on the Martian surface.<ref name="Osterloo2008">{{cite journal | doi = 10.1126/science.1150690 | last1 = Osterloo | first1 = MM | last2 = Hamilton| year = 2008 | first2 = VE | last3 = Bandfield | first3 = JL | last4 = Glotch | first4 = TD | last5 = Baldridge | first5 = AM | last6 = Christensen | first6 = PR | last7 = Tornabene | first7 = LL | last8 = Anderson | first8 = FS | title = Chloride-Bearing Materials in the Southern Highlands of Mars | url = | journal=Science | volume = 319 | issue = 5870| pages = 1651–1654 | pmid = 18356522 | bibcode=2008Sci...319.1651O}}</ref>


Understanding the extent and situation of water on Mars is vital to assess the planet's potential for harboring life and for providing usable ]. For this reason, "Follow the Water" was the science theme of ]'s ] (MEP) in the first decade of the 21st century. NASA and ] missions including ], ], ]s (MERs), ] (MRO), and Mars ] have provided information about water's abundance and distribution on Mars.<ref>{{Cite web |last1=Wilson |first1=Jim |last2=Dunbar |first2=Brian |date=August 3, 2017 |title=Mars Overview |url=http://www.nasa.gov/mission_pages/mars/overview/index.html |url-status=dead |archive-url=https://web.archive.org/web/20211209015359/http://www.nasa.gov/mission_pages/mars/overview/index.html |archive-date=December 9, 2021 |website=]}}</ref> Mars Odyssey, Mars Express, MRO, and ] are still operating, and discoveries continue to be made. In September 2020, scientists confirmed the existence of several large ] under ice in the ] of the planet ]. According to one of the researchers, "We identified the same body of water , but we also found three other bodies of water around the main one ... It's a complex system."<ref name="NAT-20200928">{{cite journal |last=Lauro |first=Sebastian Emanuel |display-authors=etal |title=Multiple subglacial water bodies below the south pole of Mars unveiled by new MARSIS data |url=https://www.nature.com/articles/s41550-020-1200-6 |date=28 September 2020 |journal=] |volume=5 |pages=63–70 |doi=10.1038/s41550-020-1200-6 |arxiv=2010.00870 |bibcode=2021NatAs...5...63L |s2cid=222125007 |access-date=29 September 2020 |archive-date=December 31, 2021 |archive-url=https://web.archive.org/web/20211231032305/https://www.nature.com/articles/s41550-020-1200-6 |url-status=live }}</ref><ref name="NNEWS-20200928">{{cite journal |last=O'Callaghan |first=Jonathan |title=Water on Mars: discovery of three buried lakes intrigues scientists |url=https://www.nature.com/articles/d41586-020-02751-1 |date=28 September 2020 |journal=] |doi=10.1038/d41586-020-02751-1 |pmid=32989309 |s2cid=222155190 |access-date=29 September 2020 |archive-date=January 11, 2022 |archive-url=https://web.archive.org/web/20220111055610/https://www.nature.com/articles/d41586-020-02751-1 |url-status=live }}</ref> In March 2021, researchers reported that a considerable amount of water on ancient Mars has remained but that, for the most part, has likely been sequestered into the rocks and crust of the planet over the years.<ref name="NASA-20210316">{{cite news |last1=Hautaluoma |first1=Grey |last2=Johnson |first2=Alana |last3=Good |first3=Andrew |title=New Study Challenges Long-Held Theory of Fate of Mars' Water |url=https://www.jpl.nasa.gov/news/new-study-challenges-long-held-theory-of-fate-of-mars-water |date=16 March 2021 |work=] |access-date=16 March 2021 |archive-date=October 11, 2021 |archive-url=https://web.archive.org/web/20211011081355/https://www.jpl.nasa.gov/news/new-study-challenges-long-held-theory-of-fate-of-mars-water |url-status=live }}</ref><ref name="CNET-20210316">{{cite news |last=Mack |first=Eric |title=Mars hides an ancient ocean beneath its surface |url=https://www.cnet.com/news/mars-hides-an-ancient-ocean-beneath-its-surface/ |date=16 March 2021 |work=] |access-date=16 March 2021 |archive-date=March 17, 2021 |archive-url=https://web.archive.org/web/20210317155333/https://www.cnet.com/news/mars-hides-an-ancient-ocean-beneath-its-surface/ |url-status=live }}</ref><ref name="SCI-20210316">{{cite journal |last=Scheller |first=E. L. |display-authors=et al. |title=Long-term drying of Mars by sequestration of ocean-scale volumes of water in the crust |date=16 March 2021 |journal=] |volume=372 |issue=6537 |pages=56–62 |doi=10.1126/science.abc7717|pmc=8370096 |pmid=33727251 |bibcode=2021Sci...372...56S |doi-access=free }}</ref><ref name="NYT-20210319">{{cite news |last=Chang |first=Kenneth |title=The Water on Mars Vanished. This Might Be Where It Went |url=https://www.nytimes.com/2021/03/19/science/mars-water-missing.html |date=19 March 2021 |work=] |access-date=19 March 2021 |archive-date=November 24, 2021 |archive-url=https://web.archive.org/web/20211124184254/https://www.nytimes.com/2021/03/19/science/mars-water-missing.html |url-status=live }}</ref> In August 2024, further analysis of data from NASA's ] enabled researchers to discover a reservoir of liquid water at depths of {{convert|10–20|km}} under the Martian crust.<ref>{{Cite journal |last1=Wright |first1=Vashan |last2=Morzfeld |first2=Matthias |last3=Manga |first3=Michael |editor=David Kohlstedt |title=Liquid water in the Martian mid-crust |journal=] |volume=121 |issue=35 |date=August 12, 2024 |pages=e2409983121 |doi=10.1073/pnas.2409983121 |pmid=39133865 |doi-access=free |pmc=11363344 |bibcode=2024PNAS..12109983W }}</ref>
Details of how water has been discovered can be found in the sections that follow on the various orbiting and landing robots that have been sent to Mars. In addition, many bits and pieces of indirect evidence are listed here. Since several missions (Mars Odyssey, Mars Global Surveyor, Mars Reconnaissance Orbiter, Mars Express, Mars ] and Mars ]) are still sending back data from the Red Planet, discoveries continue to be made. One recent discovery, announced by ] on September 27, 2012, is that the ''Curiosity Rover'' found evidence for an ancient ] suggesting a "vigorous flow" of ] on Mars.<ref name="NASA-20120927" /><ref name="NASA-20120927a" /><ref name="AP-20120927" />


== Historical background ==
==Image maps of Mars==
{{Main|History of Mars observation}}
The following ] of the ] has ]s to ] in addition to the noted ] and ] locations. Click on the features and you will be taken to the corresponding article pages. ] is at the top; ]: red (higher), yellow (zero), blue (lower).
The notion of water on Mars preceded the ] by hundreds of years. Early ] observers correctly assumed that the white polar caps and clouds were indications of water's presence. These observations, coupled with the fact that Mars has a 24-hour day, led astronomer ] to declare in 1784 that Mars probably offered its inhabitants "a situation in many respects similar to ours."<ref>Sheehan, 1996, p. 35.</ref>
{{Mars map indicating landers}}
{{multiple image
| align = right
| direction = vertical
| image1 = Karte Mars Schiaparelli MKL1888.png
| width1 = 220
| alt1 =
| caption1 = Historical map of Mars drawn by ] during the planet's "Great Opposition" of 1877.
| image2 = Lowell Mars channels.jpg
| width2 = 220
| alt2 =
| caption2 = Mars canals illustrated by astronomer ], 1898.
| footer =
}}


By the start of the 20th century, most astronomers recognized that Mars was far colder and drier than Earth. The presence of oceans was no longer accepted, so the paradigm changed to an image of Mars as a "dying" planet with only a meager amount of water. The dark areas, which could be seen to change seasonally, were then thought to be tracts of vegetation.<ref>{{cite book |last1=Kieffer |first1=H.H. |last2=Jakosky |first2=B.M |last3=Snyder |first3=C. |date=1992 |chapter=The Planet Mars: From Antiquity to the Present |title=Mars |editor-first=H.H. |editor-last=Kieffer |display-editors=etal |publisher=University of Arizona Press |location=Tucson, AZ |pages=1–33}}</ref> The person most responsible for popularizing this view of Mars was ] (1855–1916), who imagined a race of Martians constructing a network of ] to bring water from the poles to the inhabitants at the equator. Although generating tremendous public enthusiasm, Lowell's ideas were rejected by most astronomers. The majority view of the scientific establishment at the time is probably best summarized by English astronomer ] (1851–1928) who compared the climate of Mars to conditions atop a {{convert|20,000|foot|m|adj=on|spell=in}} peak on an arctic island<ref>hartmann, 2003, p. 20.</ref> where only ] might be expected to survive.
===Map of quadrangles===


In the meantime, many astronomers were refining the tool of planetary ] in hope of determining the composition of the ]. Between 1925 and 1943, ] and ] at the ] tried to identify oxygen and water vapor in the Martian atmosphere, with generally negative results. The only component of the Martian atmosphere known for certain was carbon dioxide (CO<sub>2</sub>) identified spectroscopically by ] in 1947.<ref>Sheehan, 1996, p. 150.</ref> Water vapor was not unequivocally detected on Mars until 1963.<ref>{{cite journal |last1=Spinrad |first1=H. |last2=Münch |first2=G. |last3=Kaplan |first3=L. D. |date=1963 |title=Letter to the Editor: the Detection of Water Vapor on Mars |journal=Astrophysical Journal |volume=137 |page=1319 |doi=10.1086/147613 |bibcode=1963ApJ...137.1319S}}</ref>
The following ] of the planet Mars is divided into the 30 ] defined by the ]<ref name="mapping mars">{{cite book| title=Mapping Mars: Science, Imagination, and the Birth of a World |first=Oliver |last=Morton |publisher=Picador USA |location=New York |year=2002| isbn=0-312-24551-3 |page=98 }}</ref><ref></ref> The quadrangles are numbered with the prefix "MC" for "Mars Chart."<ref></ref> Click on the quadrangle and you will be taken to the corresponding article pages. ] is at the top; {{Coord|0|N|180|W|globe:Mars}} is at the far left on the ]. The map images were taken by the ].
] acquired this image showing a barren planet (1965).]]
{{Mars Quads - By Name}}


The composition of the ], assumed to be water ice since the time of ] (1666), was questioned by a few scientists in the late 1800s who favored CO<sub>2</sub> ice, because of the planet's overall low temperature and apparent lack of appreciable water. This hypothesis was confirmed theoretically by ] and ] in 1966.<ref>{{cite journal |last1=Leighton |first1=R.B. |last2=Murray |first2=B.C. |date=1966 |title=Behavior of Carbon Dioxide and Other Volatiles on Mars |journal=Science |volume=153 |issue=3732 |pages=136–144 |doi=10.1126/science.153.3732.136 |pmid=17831495|bibcode=1966Sci...153..136L |s2cid=28087958 }}</ref> Today it is known that the winter caps at both poles are primarily composed of CO<sub>2</sub> ice, but that a permanent (or perennial) cap of water ice remains during the summer at the northern pole. At the southern pole, a small cap of CO<sub>2</sub> ice remains during summer, but this cap too is underlain by water ice.
==Findings from probes==
{{Main|Timeline of discoveries of water on Mars}}


The final piece of the Martian climate puzzle was provided by ] in 1965. Grainy television pictures from the spacecraft showed a surface dominated by ]s, which implied that the surface was very old and had not experienced the level of erosion and tectonic activity seen on Earth. Little erosion meant that liquid water had probably not played a large role in the planet's ] for billions of years.<ref>{{cite journal |last=Leighton |first=R.B. |author2=Murray, B.C. |author3=Sharp, R.P. |author4=Allen, J.D. |author5=Sloan, R.K. |date=1965 |title=Mariner IV Photography of Mars: Initial Results |journal=Science |volume=149 |issue=3684 |pages=627–630 |doi=10.1126/science.149.3684.627 |pmid=17747569|bibcode=1965Sci...149..627L |s2cid=43407530 }}</ref> Furthermore, the variations in the radio signal from the spacecraft as it passed behind the planet allowed scientists to calculate the density of the atmosphere. The results showed an atmospheric pressure less than 1% of Earth's at sea level, effectively precluding the existence of liquid water, which would rapidly boil or freeze at such low pressures.<ref>{{cite journal |last1=Kliore |first1=A. |display-authors=etal |date=1965 |title=Occultation Experiment: Results of the First Direct Measurement of Mars's Atmosphere and Ionosphere |journal=Science |volume=149 |issue=3689 |pages=1243–1248 |doi=10.1126/science.149.3689.1243 |pmid=17747455|bibcode=1965Sci...149.1243K |s2cid=34369864 }}</ref> Thus, a vision of Mars was born of a world much like the Moon, but with just a wisp of an atmosphere to blow the dust around. This view of Mars would last nearly another decade until ] showed a much more dynamic Mars with hints that the planet's past environment was more clement than the present one.
=== Mariner 9 ===
], as seen by Mariner 9. Such images implied that large amounts of water once flowed on the surface of Mars.]]
Mariner 9 imaging revealed the first direct evidence of water in the form of river beds, ]s (including the ], a system of canyons over about {{convert|4020|km|mi|-1}} long), evidence of water ] and deposition, weather fronts, ]s, and more.<ref>{{cite web|url=http://marsprogram.jpl.nasa.gov/missions/past/mariner8-9.html |title=Mars Exploration: Missions |publisher=Marsprogram.jpl.nasa.gov |accessdate=December 19, 2010}}</ref> The findings from the Mariner 9 missions underpinned the later ]. The enormous ] canyon system is named after Mariner 9 in honor of its achievements. Launched in 1971, its mission ended the following year.


On January 24, 2014, NASA reported that ] on Mars by the ] and ] ] will be searching for evidence of ancient life, including a ] based on ]ic, ]ic and/or ] ]s, as well as ancient water, including ] (]s related to ancient rivers or lakes) that may have been ].<ref name="SCI-20140124a">{{cite journal |last=Grotzinger |first=John P. |title=Introduction to Special Issue – Habitability, Taphonomy, and the Search for Organic Carbon on Mars |journal=] |date=January 24, 2014 |volume=343 |number=6169 |pages=386–387 |doi=10.1126/science.1249944 |bibcode=2014Sci...343..386G |pmid=24458635|doi-access=free }}</ref><ref name="SCI-20140124special">{{cite journal |author=Various |title=Special Issue – Table of Contents – Exploring Martian Habitability |url=https://www.science.org/toc/science/343/6169 |date=January 24, 2014 |journal=] |volume=343 |number=6169 |pages=345–452 |access-date=June 30, 2022 |archive-date=January 29, 2014 |archive-url=https://web.archive.org/web/20140129042127/http://www.sciencemag.org/content/343/6169.toc |url-status=live }}</ref><ref name="SCI-20140124c">{{cite journal |author=Grotzinger, J.P. |display-authors=etal |title=A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars |date=January 24, 2014 |journal=] |volume=343 |number=6169 |doi=10.1126/science.1242777 |pages=1242777 |pmid=24324272|bibcode=2014Sci...343A.386G |citeseerx=10.1.1.455.3973 |s2cid=52836398 }}</ref>
===Viking program===
By discovering many geological forms that are typically formed from large amounts of water, ] orbiters caused a revolution in our ideas about water on Mars. Huge river valleys were found in many areas. They showed that floods of water broke through dams, carved deep valleys, eroded grooves into bedrock, and traveled thousands of kilometers.<ref name="history.nasa.gov"/> Large areas in the southern hemisphere contained branched ], suggesting that rain once fell. The flanks of some volcanoes are believed to have been exposed to rainfall because they resemble those occurring on Hawaiian volcanoes.<ref>{{cite web|url=http://history.nasa.gov/SP-441/ch5.htm |title=ch5 |publisher=History.nasa.gov |accessdate=December 19, 2010}}</ref> Many craters look as if the impactor fell into mud. When they were formed, ice in the soil may have melted, turned the ground into mud, then the mud flowed across the surface.<ref>{{cite web|url=http://history.nasa.gov/SP-441/ch7.htm |title=ch7 |publisher=History.nasa.gov |accessdate=December 19, 2010}}</ref> Normally, material from an impact goes up, then down. It does not flow across the surface, going around obstacles, as it does on some Martian craters.<ref name="Kieffer1992"/><ref name="Raeburn">Raeburn, P. 1998. Uncovering the Secrets of the Red Planet Mars. National Geographic Society. Washington D.C.</ref><ref name="Moore">Moore, P. et al. 1990. The Atlas of the Solar System. Mitchell Beazley Publishers NY, NY.</ref> Regions, called "Chaotic Terrain,"seemed to have quickly lost great volumes of water which caused large channels to form downstream. The amount of water involved was almost unthinkable—estimates for some channel flows run to ten thousand times the flow of the ].<ref name="Morton, O 2002"/> Underground volcanism may have melted frozen ice; the water then flowed away and the ground just collapsed to leave chaotic terrain.


For many years it was thought that the observed remains of floods were caused by the release of water from a global water table, but research published in 2015 reveals regional deposits of sediment and ice emplaced 450 million years earlier to be the source.<ref name="Rodriguez 2015">{{cite journal |title=Martian outflow channels: How did their source aquifers form, and why did they drain so rapidly? |journal=Scientific Reports |date=September 8, 2015 |last1=Rodriguez |first1=J. Alexis P. |last2=Kargel |first2= Jeffrey S. |last3=Baker |first3=Victor R. |last4=Gulick |first4=Virginia C. |volume=5 |doi=10.1038/srep13404 |pmid=26346067 |pmc=4562069 |display-authors=etal |pages=13404|bibcode=2015NatSR...513404R }}</ref> "Deposition of sediment from rivers and glacial melt filled giant canyons beneath primordial ocean contained within the planet's northern lowlands. It was the water preserved in these canyon sediments that was later released as great floods, the effects of which can be seen today."<ref name="Floods 2015"/><ref name="Rodriguez 2015"/>
The images below, some of the best from the Viking orbiters, are mosaics of many small, high resolution images.
<gallery perRow="6">
Image:Streamlined Islands in Maja Vallis.jpg|Streamlined islands in ] suggest that large floods occurred on Mars.
Image:Viking Teardrop Islands.jpg|Tear-drop shaped islands caused by flood waters from Maja Vallis. The islands are formed in the ejecta of ], ], and ].
Image:Detail of Maja Vallis Flow.jpg|Large amounts of water would have been required to carry out the erosion shown in this image of ].
Image:Branched Channels from Viking.jpg|Networks of branched channels in ] are strong evidence for rain on Mars in the past.
Image:Flow from Arandas Crater.jpg|The ejecta from ] acted like mud suggesting that large amounts of frozen water were melted by the impact.
Image:Alba Patera Channels.jpg|Channels & troughs on the flank of ]. Some are associated with lava flows, others are probably caused by running water.
</gallery>
] landing site in ]]]
Results from Viking lander experiments strongly suggest the presence of water in the present and in the past of Mars. All samples heated in the gas chromatograph-mass spectrometer (GSMS) gave off water. However, the way the samples were handled prohibited an exact measurement of the amount of water. But, it was around 1%.<ref name="Arvidson, R 1989">{{cite journal | doi = 10.1029/RG027i001p00039 | last1 = Arvidson | first1 = R | last2 = Gooding | year = 1989 | first2 = James L. | last3 = Moore | first3 = Henry J. | title = The Martian surface as Imaged, Sampled, and Analyzed by the Viking Landers | url = | journal=Review of Geophysics | volume = 27 | pages = 39–60 | bibcode=1989RvGeo..27...39A}}</ref> General chemical analysis suggested the surface had been exposed to water in the past. Some chemicals in the soil contained ] and ] that were like those remaining after sea water evaporates. Sulfur was more concentrated in the crust on top of the soil, than in the bulk soil beneath. So it was concluded that the upper crust was cemented together with sulfates that were transported to the surface dissolved in water. This process is common on Earth's deserts. The sulfur may be present as ] of ], magnesium, calcium, or iron. A ] of iron is also possible.<ref>{{cite journal | doi = 10.1126/science.194.4271.1283 | last1 = Clark | first1 = B. | last2 = Baird | year = 1976 | first2 = AK | last3 = Rose Jr | first3 = HJ | last4 = Toulmin P | first4 = 3rd | last5 = Keil | first5 = K | last6 = Castro | first6 = AJ | last7 = Kelliher | first7 = WC | last8 = Rowe | first8 = CD | last9 = Evans | first9 = PH | title = Inorganic Analysis of Martian Samples at the Viking Landing Sites | url = | journal=Science | volume = 194 | issue = 4271| pages = 1283–1288 | pmid = 17797084 | bibcode=1976Sci...194.1283C}}</ref>


== Evidence from rocks and minerals ==
Using results from the chemical measurements, mineral models suggest that the soil could be a mixture of about 80% iron-rich ], about 10% ] (]?), about 5% ] (]), and about 5% ] (], ], ]?). These minerals are typical weathering products of mafic ]. The presence of clay, magnesium sulfate, kieserite, calcite, hematite, and goethite strongly suggest that water was once in the area.<ref>{{cite journal | doi = 10.1126/science.194.4271.1288 | last1 = Baird | first1 = A. | last2 = Toulmin P | year = 1976 | first2 = 3rd | last3 = Clark | first3 = BC | last4 = Rose Jr | first4 = HJ | last5 = Keil | first5 = K | last6 = Christian | first6 = RP | last7 = Gooding | first7 = JL | title = Mineralogic and Petrologic Implications of Viking Geochemical Results From Mars: Interim Report | url = | journal=Science | volume = 194 | issue = 4271| pages = 1288–1293 | pmid = 17797085 |bibcode = 1976Sci...194.1288B }}</ref> Sulfate contains chemically bound water, hence its presence suggests water was around in the past. ] found similar group of minerals. Because Viking 2 was much farther north, pictures it took in the winter showed frost.
{{Main|Composition of Mars}}
It is widely accepted that Mars had abundant water very early in its history,<ref name="Space-20120702">{{cite news |author=<!-- Staff writer(s); no by-line --> |title=Ancient Mars Water Existed Deep Underground |url=http://www.space.com/16335-mars-underground-water-impact-craters.html |date=July 2, 2012 |work=] |access-date=July 13, 2012 |archive-date=May 9, 2021 |archive-url=https://web.archive.org/web/20210509184104/https://www.space.com/16335-mars-underground-water-impact-craters.html |url-status=live }}</ref><ref>{{cite journal |last1=Craddock |first1=R. |last2=Howard |first2=A. |date=2002 |title=The case for rainfall on a warm, wet early Mars |journal=Journal of Geophysical Research |volume=107 |issue=E11 |page=E11 |doi=10.1029/2001je001505 |bibcode=2002JGRE..107.5111C|doi-access=free }}</ref> but all large areas of liquid water have since disappeared. A fraction of this water is retained on modern Mars as both ice and locked into the structure of abundant water-rich materials, including ]s (]) and ].<ref>{{cite journal |last=Head |first=J. |display-authors=etal |date=2006 |title=Extensive valley glacier deposits in the northern mid-latitudes of Mars: Evidence for the late Amazonian obliquity-driven climate change |journal=Earth and Planetary Science Letters |volume=241 |issue=3–4 |pages=663–671 |bibcode=2006E&PSL.241..663H |doi=10.1016/j.epsl.2005.11.016}}</ref><ref name="wwwspaceref.com">{{cite web |author=Staff |publisher=NASA |date=October 28, 2008 |url=http://www.spaceref.com/news/viewpr.html?pid=26817 |archive-url=https://archive.today/20130202173747/http://www.spaceref.com/news/viewpr.html?pid=26817 |url-status=dead |archive-date=February 2, 2013 |title=NASA Mars Reconnaissance Orbiter Reveals Details of a Wetter Mars |website=SpaceRef }}</ref> Studies of hydrogen isotopic ratios indicate that asteroids and comets from beyond 2.5 ]s (AU) provide the source of Mars' water,<ref name="Lunine 2003">{{cite journal |title=The Origin of Water on Mars |journal=Icarus |date=September 2003 |first1=Jonathan I. |last1=Lunine |first2=John |last2=Chambers |display-authors=etal |volume=165 |issue=1 |doi=10.1016/S0019-1035(03)00172-6 |bibcode=2003Icar..165....1L |pages=1–8}}</ref> that currently totals 6% to 27% of the Earth's present ocean.<ref name="Lunine 2003" />
]


=== Water in weathering products (aqueous minerals) ===
=== Mars Global Surveyor ===
The primary rock type on the surface of Mars is ], a fine-grained ] rock made up mostly of the ] silicate minerals ], ], and ].<ref>{{cite book |last1=Soderblom |first1=L. A. |last2=Bell |first2=J. F. |date=2008 |chapter=Exploration of the Martian Surface: 1992–2007 |title=The Martian Surface: Composition, Mineralogy, and Physical Properties |url=https://archive.org/details/martiansurfaceco00bell |url-access=limited |editor-first=J. F. |editor-last=Bell |publisher=Cambridge University Press |pages=–19|bibcode=2008mscm.book.....B |isbn=9780521866989 }}</ref> When exposed to water and atmospheric gases, these minerals ] into new (secondary) minerals, some of which may incorporate water into their crystalline structures, either as H<sub>2</sub>O or as ] (OH). Examples of ] (or hydroxylated) minerals include the iron hydroxide ] (a common component of terrestrial ]); the ] minerals ] and ]; ]line silica; and ]s (also called ]), such as ] and ]. All of these minerals have been detected on Mars.<ref>{{cite book |last1=Ming |first1=D. W. |last2=Morris |first2=R. V. |last3=Clark |first3=R. C. |date=2008 |chapter=Aqueous Alteration on Mars |title=The Martian Surface: Composition, Mineralogy, and Physical Properties |url=https://archive.org/details/martiansurfaceco00bell |url-access=limited |editor-first=J. F. |editor-last=Bell |publisher=Cambridge University Press |pages=–540|bibcode=2008mscm.book.....B |isbn=9780521866989 }}</ref>
]


One direct effect of chemical weathering is to consume water and other reactive chemical species, taking them from mobile reservoirs like the ] and ] and sequestering them in rocks and minerals.<ref>{{cite book |last=Lewis |first=J. S. |date=1997 |title=Physics and Chemistry of the Solar System |edition=revised |publisher=Academic Press |location=San Diego, California |isbn=978-0-12-446742-2}}</ref> The amount of water in the Martian crust stored as ] is currently unknown, but may be quite large.<ref>{{cite journal |last=Lasue |first=J. |display-authors=etal |date=2013 |title=Quantitative Assessments of the Martian Hydrosphere |journal=Space Science Reviews |volume=174 |issue=1–4 |pages=155–212 |doi=10.1007/s11214-012-9946-5|bibcode=2013SSRv..174..155L |s2cid=122747118 }}</ref> For example, mineralogical models of the rock outcroppings examined by instruments on the ] at ] suggest that the ] deposits there could contain up to 22% water by weight.<ref>{{cite journal |last=Clark |first=B. C. |display-authors=etal |date=2005 |title=Chemistry and Mineralogy of Outcrops at Meridiani Planum |journal=Earth and Planetary Science Letters |volume=240 |issue=1 |pages=73–94 |doi=10.1016/j.epsl.2005.09.040 |bibcode=2005E&PSL.240...73C}}</ref>
The ]'s ] (TES) is an instrument able to detect mineral composition on Mars. Mineral composition gives information on the presence or absence of water in ancient times. TES identified a large (30,000 square-kilometer) area (in the ] formation) that contained the mineral ]. It is thought that the ancient impact that created the ] resulted in faults that exposed the olivine. Olivine is present in many ] volcanic ]; in the presence of water it weathers into minerals such as ], ], ], ], and ]. The discovery of olivine is strong evidence that parts of Mars have been extremely dry for a long time. Olivine was also discovered in many other small outcrops within 60 degrees north and south of the equator.<ref>{{cite journal | doi = 10.1126/science.1089647 | last1 = Hoefen | first1 = T. | year = 2003 | last2 = Clark | first2 = RN | last3 = Bandfield | first3 = JL | last4 = Smith | first4 = MD | last5 = Pearl | first5 = JC | last6 = Christensen | first6 = PR | title = Discovery of Olivine in the Nili Fossae Region of Mars | url = | journal=Science | volume = 302 | issue = 5645| pages = 627–630 | pmid = 14576430 |bibcode = 2003Sci...302..627H }}</ref> Olivine has been found in the ] (], ], and ]) ] that are generally accepted to have come from Mars.<ref>{{cite journal | last1 = Hamiliton | first1 = W. | last2 = Christensen | year = 1997 | first2 = Philip R. | last3 = McSween | first3 = Harry Y. | title = Determination of Martian meteorite lithologies and mineralogies using vibrational spectroscopy| url = | journal=Journal of Geophysical Research | volume = 102 | pages = 25593–25603 | doi = 10.1029/97JE01874 | bibcode=1997JGR...10225593H}}</ref> Later studies have found that olivine-rich rocks cover more than 113,000 square kilometers of the Martian surface. That is 11 times larger than the five volcanoes on the Big Island of Hawaii.<ref>{{dead link|date=December 2010}}</ref>


On Earth, all chemical weathering reactions involve water to some degree.<ref>{{cite book |last=Bloom |first=A. L. |date=1978 |title=Geomorphology: A Systematic Analysis of Late Cenozoic Landforms |url=https://archive.org/details/geomorphologysys0000bloo |url-access=registration |publisher=Prentice-Hall |location=Englewood Cliffs, New Jersey <!-- Please check |ISBN=0-13-353080-68 --> |page=|isbn=9780133530865 }}</ref> Thus, many secondary minerals do not actually incorporate water, but still require water to form. Some examples of anhydrous secondary minerals include many ], some ] (e.g., ]), and metallic oxides such as the iron oxide mineral ]. On Mars, a few of these weathering products may theoretically form without water or with scant amounts present as ice or in thin molecular-scale films (]).<ref>{{cite journal |last=Boynton |first=W. V. |display-authors=etal |date=2009 |title=Evidence for Calcium Carbonate at the Mars Phoenix Landing Site |journal=Science |volume=325 |pages=61–4 |doi=10.1126/science.1172768 |pmid=19574384 |issue=5936|bibcode=2009Sci...325...61B |s2cid=26740165 }}</ref><ref>{{cite book |last1=Gooding |first1=J. L. |last2=Arvidson |first2=R. E. |last3=Zolotov |first3=M. Yu. |date=1992 |chapter=Physical and Chemical Weathering |title=Mars |editor-first=H. H. |editor-last=Kieffer |display-editors=etal |publisher=University of Arizona Press |location=Tucson, Arizona |pages= |isbn=978-0-8165-1257-7 |chapter-url=https://archive.org/details/mars0000unse/page/626 }}</ref> The extent to which such exotic weathering processes operate on Mars is still uncertain. Minerals that incorporate water or form in the presence of water are generally termed "aqueous minerals".
On December 6, 2006 NASA released photos of two craters called ] and ] which appear to show the presence of liquid water on Mars at some point between 1999 and 2001.<ref>{{cite news | url=http://www.timesonline.co.uk/article/0,,3-2491082,00.html |title=Water has been flowing on Mars within past five years, Nasa says |work=The Times |location=UK |accessdate=March 17, 2007 |first=Mark |last=Henderson |date=December 7, 2006}}</ref><ref> ''The Christian Science Monitor''. Retrieved on March 17, 2007</ref>


Aqueous minerals are sensitive indicators of the type of environment that existed when the minerals formed. The ease with which aqueous reactions occur (see ]) depends on the pressure, temperature, and on the concentrations of the gaseous and soluble species involved.<ref>{{cite book |last=Melosh |first=H. J. |date=2011 |title=Planetary Surface Processes |url=https://archive.org/details/planetarysurface00melo |url-access=limited |publisher=Cambridge University Press |isbn=978-0-521-51418-7 |page=}}</ref> Two important properties are ] and ]. For example, the sulfate mineral ] forms only in low pH (highly acidic) water. Phyllosilicates usually form in water of neutral to high pH (alkaline). E<sub>h</sub> is a measure of the ] of an aqueous system. Together E<sub>h</sub> and pH indicate the types of minerals that are thermodynamically most stable and therefore most likely to form from a given set of aqueous components. Thus, past environmental conditions on Mars, including those conducive to life, can be inferred from the types of minerals present in the rocks.
Hundreds of gullies have been discovered that were formed from liquid water, possible in recent times. These gullies occur on steep slopes and mostly in certain bands of latitude.<ref name="Malin, M 2001">{{cite journal | last1=Malin | first1=Michael C. | last2=Edgett | first2=Kenneth S. | title=Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission | pages=23429–23570 |journal=Journal of Geophysical Research | year=2001 | doi = 10.1029/2000JE001455 | volume=106 | bibcode=2001JGR...10623429M}}</ref><ref>{{cite web|url=http://www.msss.com/mars_images/moc/2006/12/06/gullies/sirenum_crater/index.html |title=Mars Global Surveyor MOC2-1618 Release |doi=10.1126/science.288.5475.2330 |publisher=Msss.com |accessdate=December 19, 2010}}</ref><ref>{{cite journal | doi = 10.1126/science.1135156 | last1 = Malin | first1 = M. | last2 = Edgett | year = 2006 | first2 = KS | last3 = Posiolova | first3 = LV | last4 = McColley | first4 = SM | last5 = Dobrea | first5 = EZ | title = Present-Day Impact Cratering Rate and Contemporary Gully Activity on Mars | url = | journal=Science | volume = 314 | issue = 5805| pages = 1573–1577 | pmid = 17158321 |bibcode = 2006Sci...314.1573M }}</ref><ref>{{cite web|url=http://www.space.com/scienceastronomy/061206_mars_gullies.html |title=Changing Mars Gullies Hint at Recent Flowing Water |publisher=SPACE.com |date=December 6, 2006 |accessdate=December 19, 2010}}</ref><ref>{{cite web|url=http://mars.jpl.nasa.gov/mgs/msss/camera/images/june2000/ab1/index.html |title=Mars Global Surveyor MOC2-239 Release |publisher=Mars.jpl.nasa.gov |accessdate=December 19, 2010}}</ref>


=== Hydrothermal alteration ===
Below are some examples of gullies that were photographed by Mars Global Surveyor.
Aqueous minerals can also form in the subsurface by ] fluids migrating through pores and fissures. The heat source driving a hydrothermal system may be nearby ] bodies or residual heat from large ].<ref>{{cite journal |last1=Abramov |first1=O. |last2=Kring |first2=D. A. |date=2005 |title=Impact-Induced Hydrothermal Activity on Early Mars |journal=Journal of Geophysical Research |volume=110 |issue=E12 |page=E12S09 |doi=10.1029/2005JE002453 |bibcode=2005JGRE..11012S09A|s2cid=20787765 |doi-access=free }}</ref> One important type of hydrothermal alteration in the Earth's oceanic crust is ], which occurs when seawater migrates through ] and basaltic rocks. The water-rock reactions result in the oxidation of ferrous iron in olivine and pyroxene to produce ferric iron (as the mineral ]) yielding molecular ] (H<sub>2</sub>) as a byproduct. The process creates a highly alkaline and reducing (low Eh) environment favoring the formation of certain phyllosilicates (serpentine minerals) and various carbonate minerals, which together form a rock called ].<ref>{{cite journal |last1=Schrenk |first1=M. O. |last2=Brazelton |first2=W. J. |last3=Lang |first3=S. Q. |date=2013 |title=Serpentinization, Carbon, and Deep Life |journal=Reviews in Mineralogy & Geochemistry |volume=75 |issue=1 |pages=575–606 |doi=10.2138/rmg.2013.75.18|bibcode=2013RvMG...75..575S |s2cid=8600635 }}</ref> The hydrogen gas produced can be an important energy source for ] organisms or it can react with CO<sub>2</sub> to produce ] gas, a process that has been considered as a non-biological source for the trace amounts of methane reported in the Martian atmosphere.<ref>{{cite journal |last=Baucom |first=Martin |title=Life on Mars? |journal=American Scientist |date=March–April 2006 |volume=94 |issue=2 |pages=119 |doi=10.1511/2006.58.119 |url=http://www.americanscientist.org/issues/pub/life-on-mars |access-date=October 23, 2013 |archive-date=June 15, 2017 |archive-url=https://web.archive.org/web/20170615115316/http://www.americanscientist.org/issues/pub/life-on-mars |url-status=dead }}</ref> Serpentine minerals can also store a lot of water (as hydroxyl) in their crystal structure. A recent study has argued that hypothetical serpentinites in the ancient highland crust of Mars could hold as much as a {{convert|500|m}}-thick global equivalent layer (GEL) of water.<ref>{{citation |last1=Chassefière |first1=E |last2=Langlais |first2=B. |last3=Quesnel |first3=Y. |last4=Leblanc |first4=F. |date=2013 |title=The Fate of Early Mars' Lost Water: The Role of Serpentinization |work=EPSC Abstracts |volume=8 |page=EPSC2013-188 |url=http://meetingorganizer.copernicus.org/EPSC2013/EPSC2013-188.pdf |access-date=October 23, 2013 |archive-date=July 6, 2021 |archive-url=https://web.archive.org/web/20210706110825/https://meetingorganizer.copernicus.org/EPSC2013/EPSC2013-188.pdf |url-status=live }}</ref> Although some serpentine minerals have been detected on Mars, no widespread outcroppings are evident from remote sensing data.<ref>{{cite journal |last1=Ehlmann |first1=B. L. |author2-link=John F. Mustard |last2=Mustard |first2=J. F. |last3=Murchie |first3=S. L. |date=2010 |title=Geologic Setting of Serpentine Deposits on Mars |journal=Geophysical Research Letters |volume=37 |issue=6 |page=L06201 |doi=10.1029/2010GL042596 |bibcode=2010GeoRL..37.6201E |s2cid=10738206 |url=https://authors.library.caltech.edu/34912/1/2010GL042596.pdf |access-date=July 23, 2019 |archive-date=September 18, 2021 |archive-url=https://web.archive.org/web/20210918070155/https://authors.library.caltech.edu/34912/1/2010GL042596.pdf |url-status=live }}</ref> This fact does not preclude the presence of large amounts of serpentinite hidden at depth in the Martian crust.
<gallery>
Image:Gully in Phaethontis.jpg|Group of gullies on north wall of crater that lies west of the crater Newton (41.3047 degrees south latitude, 192.89 east longitide). Image is located in the ].
Image:Gullies and tongue-shaped glacier.jpg|Gullies in a crater in ], north of the large crater ]. Features that may be remains of old ] are present. One, to the right, has the shape of a tongue.
Image:Kaiser Gullies.JPG|Gullies on one wall of Kaiser Crater. Gullies usually are found in only one wall of a crater. Location is ].
Image:Gullies in Gorgonum.jpg|Full color image of gullies on wall of ]. Image is located in the ].
</gallery>


=== Weathering rates ===
A few channels on Mars displayed inner channels that suggest sustained fluid flows. The most well-known is the one in ]. Another was found in ].<ref name="Malin, M 2001"/>
The rates at which primary minerals convert to secondary aqueous minerals vary. Primary silicate minerals crystallize from magma under pressures and temperatures vastly higher than conditions at the surface of a planet. When exposed to a surface environment these minerals are out of ] and will tend to interact with available chemical components to form more stable mineral phases. In general, the silicate minerals that crystallize at the highest temperatures (solidify first in a cooling magma) weather the most rapidly.<ref>{{cite book |last=Bloom |first=A. L. |date=1978 |title=Geomorphology: A Systematic Analysis of Late Cenozoic Landforms |url=https://archive.org/details/geomorphologysys0000bloo |url-access=registration |publisher=Prentice-Hall |location=Englewood Cliffs, New Jersey <!-- Please check |ISBN=0-13-353080-68 -->|isbn=9780133530865 }}., p. 120</ref><ref>Melosh, H.J., 2011. Planetary surface processes. Cambridge Univ. Press., pp. 500</ref> On Earth and Mars, the most common mineral to meet this criterion is ], which readily weathers to ] in the presence of water. Olivine is widespread on Mars,<ref>{{cite journal |last=Ody |first=A. |display-authors=etal |date=2013 |title=Global Investigation of Olivine on Mars: Insights into Crust and Mantle Compositions |journal=Journal of Geophysical Research |volume=118 |issue=2 |pages=234–262 |doi=10.1029/2012JE004149 |bibcode=2013JGRE..118..234O|doi-access=free }}</ref> suggesting that Mars' surface has not been pervasively altered by water; abundant geological evidence suggests otherwise.<ref>{{cite journal |title=Noble Gases in Iddingsite from the Lafayette meteorite: Evidence for Liquid water on Mars in the last few hundred million years |journal=Meteoritics and Planetary Science |volume=35 |issue=1 |pages=107–115 |date=2000 |doi=10.1111/j.1945-5100.2000.tb01978.x |last1=Swindle |first1=T. D. |last2=Treiman |first2=A. H. |last3=Lindstrom |first3=D. J. |last4=Burkland |first4=M. K. |last5=Cohen |first5=B. A. |last6=Grier |first6=J. A.|author6-link=JA Grier |last7=Li |first7=B. |last8=Olson |first8=E. K. |bibcode=2000M&PS...35..107S |doi-access=free }}</ref><ref>{{cite journal |last1=Head |first1=J. |last2=Kreslavsky |first2=M. A. |last3=Ivanov |first3=M. A. |last4=Hiesinger |first4=H. |last5=Fuller |first5=E. R. |last6=Pratt |first6=S. |date=2001 |title=Water in Middle Mars History: New Insights From MOLA Data |journal= AGU Spring Meeting Abstracts|volume=2001 |pages=P31A–02 INVITED |bibcode=2001AGUSM...P31A02H }}</ref><ref>{{cite journal |last=Head |first=J. |display-authors=etal |date=2001 |title=Exploration for standing Bodies of Water on Mars: When Were They There, Where did They go, and What are the Implications for Astrobiology? |bibcode=2001AGUFM.P21C..03H |journal= AGU Fall Meeting Abstracts|volume=21 |pages=P21C–03 }}</ref>
]. ]]
Many places on ] show '''dark streaks on steep slopes''', such as ] walls. ]s have been studied since the ] and ] missions.<ref>{{cite web|url=http://hirise.lpl.arizona.edu/PSP_003570_1915 |title=HiRISE &#124; Slope Streaks in Marte Vallis (PSP_003570_1915) |publisher=Hirise.lpl.arizona.edu |accessdate=December 19, 2010}}</ref> It seems that streaks start out being dark, then they become lighter with age. Often they originate with a small narrow spot, then widen and extend downhill for hundreds of meters. Streaks do not seem to be associated with any particular layer of material because they do not always start at a common level along a slope. Although many of the streaks appear very dark, they are only 10% or less darker than the surrounding surface. Mars Global Surveyor found that new streaks have formed in less than one year on Mars.


=== Martian meteorites ===
Several ideas have been advanced to explain the streaks. Some involve water,<ref>{{dead link|date=December 2010}}</ref> or even the growth of ].<ref>{{cite web|url=http://www.spcae.com/scienceastronomy/streaks_mars_021211.html |title=spcae.com |publisher=spcae.com |accessdate=December 19, 2010}}</ref><ref>{{dead link|date=December 2010}}</ref> The generally accepted explanation for the streaks is that they are formed from the avalanching of a thin layer of bright dust that is covering a darker surface. Bright dust settles on all Martian surfaces after a period of time.<ref name="Malin, M 2001"/>
].]]
Over 60 meteorites have been found that came from Mars.<ref>Meyer, C. (2012) The Martian Meteorite Compendium; National Aronautics and Space Administration. http://curator.jsc.nasa.gov/antmet/mmc/ {{Webarchive|url=https://web.archive.org/web/20210507123018/http://curator.jsc.nasa.gov/antmet/mmc/ |date=May 7, 2021 }}.</ref> Some of them contain evidence that they were exposed to water when on Mars. Some ]s called ]ic shergottites, appear (from the presence of hydrated ]s and ]s) to have been exposed to liquid water prior to ejection into space.<ref>{{cite web |url=http://www2.jpl.nasa.gov/snc/shergotty.html |title=Shergotty Meteorite – JPL, NASA |publisher=NASA |access-date=December 19, 2010 |archive-date=January 18, 2011 |archive-url=https://web.archive.org/web/20110118011546/http://www2.jpl.nasa.gov/snc/shergotty.html |url-status=live }}</ref><ref>{{cite journal |last1=Hamiliton |first1=W. |last2=Christensen |first2=Philip R. |last3=McSween |first3=Harry Y. |date=1997 |title=Determination of Martian meteorite lithologies and mineralogies using vibrational spectroscopy |journal=Journal of Geophysical Research |volume=102 |issue=E11 |pages=25593–25603 |doi=10.1029/97JE01874 |bibcode=1997JGR...10225593H}}</ref> It has been shown that another class of meteorites, the ]s, were suffused with liquid water around 620&nbsp;million years ago and that they were ejected from Mars around 10.75&nbsp;million years ago by an asteroid impact. They fell to Earth within the last 10,000 years.<ref name=Nakhlites>{{cite journal |url=http://www.lpi.usra.edu/science/treiman/nakhlite_rev.pdf |last=Treiman |first=A. |title=The nakhlite meteorites: Augite-rich igneous rocks from Mars |access-date=September 8, 2006 |journal=Chemie der Erde – Geochemistry |volume=65 |pages=203–270 |date=2005 |doi=10.1016/j.chemer.2005.01.004 |bibcode=2005ChEG...65..203T |issue=3 |archive-date=March 27, 2009 |archive-url=https://web.archive.org/web/20090327135357/http://www.lpi.usra.edu/science/treiman/nakhlite_rev.pdf |url-status=live }}</ref> Martian meteorite ] has one order of magnitude more water than most other Martian meteorites. It is similar to the basalts studied by rover missions, and it was formed in the early ].<ref>{{cite journal|title=Unique Meteorite from Early Amazonian Mars: Water-Rich Basaltic Breccia Northwest Africa 7034|first1=Carl B.|last1=Agee|first2=Nicole V.|last2=Wilson|first3=Francis M.|last3=McCubbin|first4=Karen|last4=Ziegler|first5=Victor J.|last5=Polyak|first6=Zachary D.|last6=Sharp|first7=Yemane|last7=Asmerom|first8=Morgan H.|last8=Nunn|first9=Robina|last9=Shaheen|first10=Mark H.|last10=Thiemens|first11=Andrew|last11=Steele|first12=Marilyn L.|last12=Fogel|first13=Roxane|last13=Bowden|first14=Mihaela|last14=Glamoclija|first15=Zhisheng|last15=Zhang|first16=Stephen M.|last16=Elardo|date=February 15, 2013|journal=Science|volume=339|issue=6121|pages=780–785|doi=10.1126/science.1228858|pmid=23287721|bibcode=2013Sci...339..780A|s2cid=206544554|doi-access=free}}</ref><ref>{{cite journal |last=Agree |first=C. |display-authors=etal |year=2013 |title=Unique Meteorite from Early Amazonian Mars: Water-Rich Basaltic Breccia Northwest Africa 7034 |journal=Science |volume=339 |issue=6121 |pages=780–785|doi=10.1126/science.1228858 |pmid=23287721 |bibcode=2013Sci...339..780A |s2cid=206544554 |doi-access=free }}</ref>


In 1996, a group of scientists reported the possible presence of microfossils in the ], a meteorite from Mars.<ref>{{cite journal |doi=10.1126/science.273.5277.924 |last1=McKay |first1=D. Jr. |last2=Gibson |first2=E. K. |last3=Thomas-Keprta |first3=K. L. |last4=Vali |first4=H. |last5=Romanek |first5=C. S. |last6=Clemett |first6=S. J. |last7=Chillier |first7=X. D. |last8=Maechling |first8=C. R. |last9=Zare |first9=R. N. |date=1996 |title=Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite AL84001 |journal=Science |volume=273 |issue=5277 |pages=924–930 |pmid=8688069 |bibcode=1996Sci...273..924M|s2cid=40690489 }}</ref> Many studies disputed the validity of their interpretation mainly based on the shape of these presumed fossils.<ref>{{cite news |last1=Gibbs |first1=W. |first2=C. |last2=Powell |title=Bugs in the Data? |date=August 19, 1996 |work=Scientific American |url=http://www.scientificamerican.com/article.cfm?id=bugs-in-the-data |access-date=December 19, 2010 |archive-date=October 17, 2012 |archive-url=https://web.archive.org/web/20121017033400/http://www.scientificamerican.com/article.cfm?id=bugs-in-the-data |url-status=live }}</ref><ref>{{cite web |url=http://www.space.com/scienceastronomy/solarsystem/mars_meteorite_020320.html |title=Controversy Continues: Mars Meteorite Clings to Life – Or Does It? |publisher=Space.com |date=March 20, 2002 |access-date=November 27, 2009 |archive-date=April 4, 2002 |archive-url=https://web.archive.org/web/20020404034759/http://www.space.com/scienceastronomy/solarsystem/mars_meteorite_020320.html |url-status=dead }}</ref> It was found that most of the ] in the meteorite was of terrestrial origin.<ref>{{cite journal |doi=10.1126/science.279.5349.362 |last1=Bada |first1=J. |last2=Glavin |first2=D. P. |last3=McDonald |first3=G. D. |last4=Becker |first4=L. |date=1998 |title=A Search for Endogenous Amino Acids in Martian Meteorite AL84001 |journal=Science |volume=279 |issue=5349 |pages=362–365 |pmid=9430583 |bibcode=1998Sci...279..362B|s2cid=32301715 }}</ref> In addition, the scientific consensus is that "morphology alone cannot be used unambiguously as a tool for primitive life detection".<ref name=morphology>{{cite book | title = Instruments, Methods, and Missions for Astrobiology II | journal = SPIE Proceedings | date = December 30, 1999 | first1 = Juan-Manuel Garcia-Ruiz | volume = 3755 | pages = 74–82 | doi = 10.1117/12.375088 | quote = It is concluded that 'morphology cannot be used unambiguously as a tool for primitive life detection'.| last1 = Garcia-Ruiz | editor-first1 = Richard B. | editor-last1 = Hoover | chapter = Morphological behavior of inorganic precipitation systems | s2cid = 84764520 }}</ref><ref>{{cite news|last1=Agresti|last2=House|last3=Jögi|last4=Kudryavstev|last5=McKeegan|last6=Runnegar|last7=Schopf|last8=Wdowiak|title=Detection and geochemical characterization of Earth's earliest life|date=December 3, 2008|publisher=NASA|url=http://astrobiology.ucla.edu/pages/res3e.html|work=NASA Astrobiology Institute|access-date=January 15, 2013|url-status=dead|archive-url=https://web.archive.org/web/20130123132429/http://astrobiology.ucla.edu/pages/res3e.html|archive-date=January 23, 2013}}</ref><ref>{{cite journal | title = Evidence of Archean life: Stromatolites and microfossils | journal = Precambrian Research | date = April 28, 2007 | first1 = J. William | last1 = Schopf | first2 = Anatoliy B. | last2 = Kudryavtsev | first3 = Andrew D. | last3 = Czaja | first4 = Abhishek B. | last4 = Tripathi | volume = 158 | issue = 3–4 | pages = 141–155 | url = http://www.cornellcollege.edu/geology/courses/greenstein/paleo/schopf_07.pdf | access-date = January 15, 2013 | doi = 10.1016/j.precamres.2007.04.009 | bibcode = 2007PreR..158..141S | archive-url = https://web.archive.org/web/20121224202951/http://www.cornellcollege.edu/geology/courses/greenstein/paleo/schopf_07.pdf | archive-date = December 24, 2012 | url-status = dead }}</ref> Interpretation of morphology is notoriously subjective, and its use alone has led to numerous errors of interpretation.<ref name=morphology/>
Dark streaks can be seen in the images below, as seen from Mars Global Surveyor.
<gallery>
Image:Layers in a crater in Arabia.JPG|Layers in ] in Arabia. Layers may form from ], the wind, or by deposition under water. The craters on the left are pedestal craters. ]s are seen to originate from certain layers (you may need to click on image to see the streaks).
Image:Tikonravev Crater Floor.JPG|Tikonravev Crater floor in ]. Click on image to see dark slope streaks and layers.
Image:Dark streaks in Diacria.JPG|Dark streaks in ].
Image:Dark Streaks in Crater.JPG|Dark Streaks in ]. Crater is about the size of Earth's ] in ].
</gallery>


== Geomorphic evidence ==
Some parts of Mars show ]. This occurs when materials are deposited on the floor of a stream then become resistant to erosion, perhaps by cementation. Later the area may be buried. Eventually erosion removes the covering layer. The former streams become visible since they are resistant to erosion. Mars Global Surveyor found several examples of this process.<ref>{{cite journal | last1=Malin | year = 2010 | page=1 | volume=5 | journal=The Mars Journal| title= An overview of the 1985–2006 Mars Orbiter Camera science investigation | doi = 10.1555/mars.2010.0001 |bibcode = 2010IJMSE...5....1M }}</ref> Many inverted streams have been discovered in various regions of Mars, especially in the ],<ref>{{cite journal | doi = 10.1016/j.icarus.2009.04.003 | last1 = Zimbelman | first1 = J. | last2 = Griffin | first2 = L. | author-separator =, | author-name-separator= | year = 2010 | title = HiRISE images of yardangs and sinuous ridges in the lower member of the Medusae Fossae Formation, Mars | url = | journal=Icarus | volume = 205 | pages = 198–210 | bibcode=2010Icar..205..198Z}}</ref> ],<ref name="ReferenceB">{{cite journal | doi = 10.1016/j.icarus.2009.03.030 | last1 = Newsom | first1 = H. | year = 2010 | last2 = Lanza | first2 = Nina L. | last3 = Ollila | first3 = Ann M. | last4 = Wiseman | first4 = Sandra M. | last5 = Roush | first5 = Ted L. | last6 = Marzo | first6 = Giuseppe A. | last7 = Tornabene | first7 = Livio L. | last8 = Okubo | first8 = Chris H. | last9 = Osterloo | first9 = Mikki M. | title = Inverted channel deposits on the floor of Miyamoto crater, Mars | url = | journal=Icarus | volume = 205 | pages = 64–72 | bibcode=2010Icar..205...64N}}</ref> and the Juventae Plateau.<ref name="10.1016/j.icarus.2009.04.017" /><ref name="sciencedirect.com">{{cite web|url=http://www.sciencedirect.com/science/journal/00191035 |title=Icarus, Volume 210, Issue 2, Pages 539–1000 (December 2010) |publisher=ScienceDirect |accessdate=December 19, 2010}}</ref>
=== Lakes and river valleys ===
]. These streams begin at the top of a ridge then run together.]]
{{see also|Lakes on Mars}}
The 1971 ] spacecraft caused a revolution in our ideas about water on Mars. Huge river valleys were found in many areas. Images showed that floods of water broke through dams, carved deep valleys, eroded grooves into bedrock, and traveled thousands of kilometers.<ref name="Floods 2015"/> Areas of branched streams, in the southern hemisphere, suggested that rain once fell.<ref name="Raeburn" /><ref name="Moore" /> The numbers of recognised valleys has increased through time. Research published in June 2010 mapped 40,000 river valleys on Mars, roughly quadrupling the number of river valleys that had previously been identified.<ref name=third /> Martian water-worn features can be classified into two distinct classes: 1) dendritic (branched), terrestrial-scale, widely distributed, ]-age ] and 2) exceptionally large, long, single-thread, isolated, ]-age ]. Recent work suggests that there may also be a class of currently enigmatic, smaller, younger (] to ]) channels in the mid-latitudes, perhaps associated with the occasional local melting of ice deposits.<ref name="Berman">{{cite journal |last1=Berman |first1=Daniel C. |last2=Crown |first2=David A. |last3=Bleamaster |first3=Leslie F. |date=2009 |pages=77–95 |volume=200 |issue=1 |journal=Icarus |title=Degradation of mid-latitude craters on Mars |doi=10.1016/j.icarus.2008.10.026 |bibcode=2009Icar..200...77B}}</ref><ref name="Fassett">{{cite journal |last1=Fassett |first1=Caleb I. |last2=Head |first2=James W. |date=2008 |pages=61–89 |volume=195 |issue=1 |journal=Icarus |title=The timing of martian valley network activity: Constraints from buffered crater counting |doi=10.1016/j.icarus.2007.12.009 |bibcode=2008Icar..195...61F}}</ref>


] elevation data. Flow was from bottom left to right. Image is approx. 1600&nbsp;km across. The channel system extends another 1200&nbsp;km south of this image to ].]]
=== Mars Pathfinder ===
] found temperatures varied on a diurnal cycle. It was coldest just before sunrise (about −78 Celsius) and warmest just after Mars noon (about −8 Celsius). These extremes occurred near the ground which both warmed up and cooled down fastest. At this location, the highest temperature never reached the freezing point of water (0 °C), so Mars Pathfinder confirmed that where it landed it is too cold for liquid water to exist. However, water could exist as a liquid if it were mixed with various salts.<ref name="ReferenceC">{{cite journal | doi = 10.1038/nature07978 | last1 = Fairen | first1 = A. | last2 = Davila | year = 2009 | first2 = AF | last3 = Gago-Duport | first3 = L | last4 = Amils | first4 = R | last5 = McKay | first5 = CP | title = Stability against freezing of aqueous solutions on early Mars | url = | journal=Nature | volume = 459 | issue = 7245| pages = 401–404 | pmid = 19458717 |bibcode = 2009Natur.459..401F }}</ref>


Some parts of Mars show ]. This occurs when sediments are deposited on the floor of a stream and then become resistant to erosion, perhaps by cementation. Later the area may be buried. Eventually, erosion removes the covering layer and the former streams become visible since they are resistant to erosion.<ref>{{cite web | url=https://www.uahirise.org/hipod/PSP_002424_1765 | title=HiRISE &#124; HiPOD: 29 Jul 2023 | access-date=July 31, 2023 | archive-date=July 31, 2023 | archive-url=https://web.archive.org/web/20230731120813/https://www.uahirise.org/hipod/PSP_002424_1765 | url-status=live }}</ref> Mars Global Surveyor found several examples of this process.<ref>{{cite journal |last=Malin |first=Michael C. |date=2010 |pages=1–60 |volume=5 |journal=The Mars Journal |title=An overview of the 1985–2006 Mars Orbiter Camera science investigation |doi=10.1555/mars.2010.0001 |bibcode=2010IJMSE...5....1M|s2cid=128873687 }}</ref><ref>{{cite web |url=http://hiroc.lpl.arizona.edu/images/PSP/diafotizo.php?ID=PSP_002279_1735 |title=Sinuous Ridges Near Aeolis Mensae |publisher=University of Arizona |date=January 31, 2007 |access-date=October 8, 2009 |archive-url=https://web.archive.org/web/20160305025124/http://hiroc.lpl.arizona.edu/images/PSP/diafotizo.php?ID=PSP_002279_1735 |archive-date=March 5, 2016 |url-status=dead }}</ref> Many inverted streams have been discovered in various regions of Mars, especially in the ],<ref>{{cite journal |doi=10.1016/j.icarus.2009.04.003 |last1=Zimbelman |first1=J. |last2=Griffin |first2=L. |date=2010 |title=HiRISE images of yardangs and sinuous ridges in the lower member of the Medusae Fossae Formation, Mars |journal=Icarus |volume=205 |issue=1 |pages=198–210 |bibcode=2010Icar..205..198Z}}</ref> ],<ref name="ReferenceB">{{cite journal |doi=10.1016/j.icarus.2009.03.030 |last1=Newsom |first1=H. |last2=Lanza |first2=Nina L. |last3=Ollila |first3=Ann M. |last4=Wiseman |first4=Sandra M. |last5=Roush |first5=Ted L. |last6=Marzo |first6=Giuseppe A. |last7=Tornabene |first7=Livio L. |last8=Okubo |first8=Chris H. |last9=Osterloo |first9=Mikki M. |last10=Hamilton |first10=Victoria E. |last11=Crumpler |first11=Larry S. |date=2010 |title=Inverted channel deposits on the floor of Miyamoto crater, Mars |journal=Icarus |volume=205 |issue=1 |pages=64–72 |bibcode=2010Icar..205...64N}}</ref> ],<ref>{{cite journal |doi=10.1016/j.icarus.2013.11.007 |last1=Morgan |first1=A. M. |last2=Howard |first2=A. D. |last3=Hobley |first3=D. E. J. |last4=Moore |first4=J. M. |last5=Dietrich |first5=W. E. |last6=Williams |first6=R. M. E. |last7=Burr |first7=D. M. |last8=Grant |first8=J. A. |last9=Wilson |first9=S. A. |last10=Matsubara |first10=Y. |date=2014 |title=Sedimentology and climatic environment of alluvial fans in the martian Saheki crater and a comparison with terrestrial fans in the Atacama Desert |journal=Icarus |volume=229 |pages=131–156 |bibcode=2014Icar..229..131M |url=https://repository.si.edu/bitstream/handle/10088/21823/nasm_201440.pdf |access-date=July 23, 2019 |archive-date=July 20, 2018 |archive-url=https://web.archive.org/web/20180720144834/https://repository.si.edu/bitstream/handle/10088/21823/nasm_201440.pdf |url-status=live }}</ref> and the Juventae Plateau.<ref name=Weitz /><ref name="Icarus Vol 210" />
Surface pressures varied diurnally over a 0.2 millibar range, but showed 2 daily minima and two daily maxima. The average daily pressure decreased from about 6.75 millibars to a low of just under 6.7 millbars, corresponding to when the maximum amount of carbon dioxide had condensed on the south pole. The pressure on the Earth is generally close to 1000 millibars, so the pressure on Mars is very low. The pressures measured by Pathfinder would not permit water or ice to exist on the surface. But, if ice were insulated with a layer of soil, it could last a long time.<ref>, NASA</ref>


]. Location is ].]]
Other observations were consistent with water being present in the past. Some of the rocks at the Mars Pathfinder site leaned against each other in a manner geologists term imbricated. It is believed strong flood waters in the past pushed the rocks around until they faced away from the flow. Some pebbles were rounded, perhaps from being tumbled in a stream. Parts of the ground are crusty, maybe due to cementing by a fluid containing minerals.<ref name="Golombek, M 1997"/>
A variety of lake basins have been discovered on Mars.<ref name="Cabrol, N 2010" /> Some are comparable in size to the largest lakes on Earth, such as the ], ], and ]. Lakes that were fed by valley networks are found in the southern highlands. There are places that are closed depressions with river valleys leading into them. These areas are thought to have once contained lakes; one is in ] that had its overflow move through ] into ], explored by the ] ]. Another is near ] and Loire Vallis.<ref>{{cite journal |doi=10.1006/icar.2000.6465 |last1=Goldspiel |first1=J. |last2=Squires |first2=S. |date=2000 |title=Groundwater sapping and valley formation on Mars |journal=Icarus |volume=148 |issue=1 |pages=176–192 |bibcode=2000Icar..148..176G}}</ref> Some lakes are thought to have formed by precipitation, while others were formed from groundwater.<ref name="Irwin III 2005" /><ref name="Fassett2008" /> Lakes are estimated to have existed in the Argyre basin,<ref name="lpi.usra.edu"/><ref name="Heisinger2002" /> the Hellas basin,<ref name="Moore2001" /> and maybe in ].<ref name="http" /><ref name="Carr">{{cite book |title=The Surface of Mars |series=Cambridge Planetary Science |publisher=Cambridge University Press |number=6 |isbn=978-0-511-26688-1 |first=Michael H. |last=Carr <!-- United States Geological Survey, Menlo Park -->}}</ref><ref>{{cite journal |doi=10.1016/0019-1035(87)90086-8 |last1=Nedell |first1=S. |last2=Squyres |first2=Steven W. |last3=Andersen |first3=David W. |date=1987 |title=Origin and evolution of the layered deposits in the Valles Marineris, Mars |journal=Icarus |volume=70 |pages=409–441 |bibcode=1987Icar...70..409N |issue=3}}</ref> It is likely that at times in the Noachian, many craters hosted lakes. These lakes are consistent with a cold, dry (by Earth standards) hydrological environment somewhat like that of the ] of the western USA during the ].<ref>{{cite journal |last1=Matsubara |first1=Yo |first2=Alan D. |last2=Howard |first3=Sarah A. |last3=Drummond |title=Hydrology of early Mars: Lake basins |journal=Journal of Geophysical Research: Planets |issue=116.E4 |year=2011|volume=116 |doi=10.1029/2010JE003739 |bibcode=2011JGRE..116.4001M }}</ref>


Research from 2010 suggests that Mars also had lakes along parts of the equator. Although earlier research had showed that Mars had a warm and wet early history that has long since dried up, these lakes existed in the ] Epoch, a much later period. Using detailed images from NASA's ], the researchers speculate that there may have been increased volcanic activity, meteorite impacts or shifts in Mars' orbit during this period to warm Mars' atmosphere enough to melt the abundant ice present in the ground. Volcanoes would have released gases that thickened the atmosphere for a temporary period, trapping more sunlight and making it warm enough for liquid water to exist. In this study, channels were discovered that connected lake basins near ]. When one lake filled up, its waters overflowed the banks and carved the channels to a lower area where another lake would form.<ref>{{cite web |url=https://www.sciencedaily.com/releases/2012/01/100104092452.htm |title=Spectacular Mars images reveal evidence of ancient lakes |publisher=Sciencedaily.com |date=January 4, 2010 |access-date=February 28, 2018 |archive-url=https://web.archive.org/web/20160823210537/https://www.sciencedaily.com/releases/2012/01/100104092452.htm |archive-date=August 23, 2016 |url-status=dead }}</ref><ref>{{cite journal |doi=10.1130/G30579.1 |last1=Gupta |first1=Sanjeev |last2=Warner |first2=Nicholas |last3=Kim |first3=Rack |last4=Lin |first4=Yuan |last5=Muller |first5=Jan |last6=-1#Jung- |first6=Shih- |date=2010 |title=Hesperian equatorial thermokarst lakes in Ares Vallis as evidence for transient warm conditions on Mars |journal=Geology |volume=38 |issue=1 |pages=71–74|bibcode=2010Geo....38...71W }}</ref> These dry lakes would be targets to look for evidence (]s) of past life.
There was evidence of clouds and maybe fog.<ref name="Golombek, M 1997">{{cite journal | doi = 10.1126/science.278.5344.1743 | last1 = Golombek | first1 = M. | last2 = Cook | year = 1997 | first2 = RA | last3 = Economou | first3 = T | last4 = Folkner | first4 = WM | last5 = Haldemann | first5 = AF | last6 = Kallemeyn | first6 = PH | last7 = Knudsen | first7 = JM | last8 = Manning | first8 = RM | last9 = Moore | first9 = HJ | title = Overview of the Mars Pathfinder Mission and Assessment of Landing Site Predictions | url = | journal=Science | volume = 278 | issue = 5344| pages = 1743–1748 | pmid = 9388167 |bibcode = 1997Sci...278.1743G }}</ref>


On September 27, 2012, NASA scientists announced that the ] found direct evidence for an ancient ] in ], suggesting an ancient "vigorous flow" of water on Mars.<ref name="NASA-20120927" /><ref name="NASA-20120927a" /><ref name="AP-20120927" /><ref name="ancient life">{{cite news |title=NASA Rover Finds Conditions Once Suited for Ancient Life on Mars |date=March 12, 2013 |url=http://www.nasa.gov/mission_pages/msl/news/msl20130312.html |publisher=NASA |access-date=June 16, 2013 |archive-date=July 3, 2013 |archive-url=https://web.archive.org/web/20130703035324/http://www.nasa.gov/mission_pages/msl/news/msl20130312.html |url-status=dead }}</ref> In particular, analysis of the now dry streambed indicated that the water ran at {{convert|3.3|km/h|m/s|abbr=on}},<ref name="NASA-20120927" /> possibly at hip-depth. Proof of running water came in the form of rounded pebbles and gravel fragments that could have only been weathered by strong liquid currents. Their shape and orientation suggests long-distance transport from above the rim of the crater, where a channel named ] feeds into the ].
=== Mars Odyssey ===
{{Main|Evidence of water on Mars from Mars Odyssey}}
Mars Odyssey found much evidence for water on Mars in the form of pictures and with a spectrometer it proved that much of the ground is loaded with ice. In July 2003, at a conference in California, it was announced that the Gamma Ray Spectrometer (GRS) on board the ] had discovered huge amounts of water over vast areas of Mars. Mars has enough ice just beneath the surface to fill Lake Michigan twice.<ref name="mars.jpl.nasa.gov"/> In both hemispheres, from 55 degrees latitude to the poles, Mars has a high density of ice just under the surface; one kilogram of soil contains about 500 g of water ice. But, close to the equator, there is only 2 to 10% of water in the soil.<!---<ref name="space.com"/>---><ref name="Feildman, T. 2004"/> Scientists believe that much of this water is locked up in the chemical structure of minerals, such as ] and ]s. Previous studies with infrared spectroscopes have provided evidence of small amounts of chemically or physically bound water.<ref>{{cite journal | doi = 10.1006/icar.1993.1141 | last1 = Murche | first1 = S. ''et al.'' | year = 1993 | title = Spatial Variations in the Spectral Properties of Bright Regions on Mars | url = | journal=Icarus | volume = 105 | pages = 454–468 | bibcode=1993Icar..105..454M | issue = 2}}</ref><ref>{{cite web|url=http://marswatch.tn.cornell.edu/burns.html |title=Home Page for Bell (1996) Geochemical Society paper |publisher=Marswatch.tn.cornell.edu |accessdate=December 19, 2010}}</ref> The Viking landers detected low levels of chemically bound water in the Martian soil.<ref name="Arvidson, R 1989"/> It is believed that although the upper surface only contains a percent or so of water, ice may lie just a few feet deeper. Some areas, ], ], and ] contain large amounts of water.<!---<ref name="space.com"/>---><ref>{{cite journal | doi = 10.1126/science.1073541 | last1 = Feldman | first1 = WC| last2 = Boynton | year = 2002 | first2 = WV | last3 = Tokar | first3 = RL | last4 = Prettyman | first4 = TH | last5 = Gasnault | first5 = O | last6 = Squyres | first6 = SW | last7 = Elphic | first7 = RC | last8 = Lawrence | first8 = DJ | last9 = Lawson | first9 = SL | title = Global Distribution of Neutrons from Mars: Results from Mars Odyssey | url = | journal=Science | volume = 297 | issue = 5578| pages = 75–78 | pmid = 12040088 |bibcode = 2002Sci...297...75F }}</ref> Analysis of the data suggest that the southern hemisphere may have a layered structure.<ref>{{cite journal | doi = 10.1126/science.1073616 | last1 = Mitrofanov | first1 = I. | last2 = Anfimov | year = 2002 | first2 = D | last3 = Kozyrev | first3 = A | last4 = Litvak | first4 = M | last5 = Sanin | first5 = A | last6 = Tret'yakov | first6 = V | last7 = Krylov | first7 = A | last8 = Shvetsov | first8 = V | last9 = Boynton | first9 = W | title = Maps of Subsurface Hydrogen from the High Energy Neutron Detector, Mars Odyssey | url = | journal=Science | volume = 297 | issue = 5578| pages = 78–81 | pmid = 12040089 |bibcode = 2002Sci...297...78M }}</ref> Both of the poles showed buried ice, but the north pole had none close to it because it was covered over by seasonal carbon dioxide (dry ice). When the measurements were gathered, it was winter at the north pole so carbon dioxide had frozen on top of the water ice.<ref name="mars.jpl.nasa.gov"/> There may be much more water further below the surface; the instruments aboard the Mars Odyssey are only able to study the top meter or so of soil. If all holes in the soil were filled by water, this would correspond to a global layer of water 0.5 to 1.5&nbsp;km deep.<ref>{{cite journal | doi = 10.1126/science.1073722 | last1 = Boynton | first1 = W. | last2 = Feldman | year = 2002 | first2 = WC | last3 = Squyres | first3 = SW | last4 = Prettyman | first4 = TH | last5 = Bruckner | first5 = J | last6 = Evans | first6 = LG | last7 = Reedy | first7 = RC | last8 = Starr | first8 = R | last9 = Arnold | first9 = JR | title = Distribution of Hydrogen in the Near Surface of Mars: Evidence for Subsurface Ice Deposits | url = | journal=Science | volume = 297 | issue = 5578| pages = 81–85 | pmid = 12040090 |bibcode = 2002Sci...297...81B }}</ref>
The ] confirmed the initial findings of the Mars Odyssey.<ref name="Arvidson, R. 2008">{{cite journal | last1=Arvidson | first1=P. H. | year= 2008 | last2=Tamppari | first2=L. | last3=Arvidson | first3=R. E. | last4=Bass | first4=D. | last5=Blaney | first5=D. | last6=Boynton | first6=W. | last7=Carswell | first7=A. | last8=Catling | first8=D. | last9=Clark | first9=B. |title= Introduction to special section on the phoenix mission: Landing site characterization experiments, mission overviews, and expected science |journal=J. Geophysical Research |volume= 113 |doi = 10.1029/2008JE003083 | bibcode=2008JGRE..11300A18S}}</ref> It found ice a few inches below the surface and the ice is at least 8&nbsp;inches deep. When the ice is exposed to the Martian atmosphere it slowly sublimates. In fact, some of the ice was exposed by the landing rockets of the craft.<ref>{{cite web|url=http://www.space.com/scienceastronomy/090702-phoenix-soil.html |title=The Dirt on Mars Lander Soil Findings |publisher=SPACE.com |accessdate=December 19, 2010}}</ref>


] is a theorized ancient lake with a surface area of roughly 1.1&nbsp;million square kilometers.<ref>{{Cite journal |last1=Parker |first1=Timothy J. |last2=Currey |first2=Donald R. |date=April 2001 |title=Extraterrestrial coastal geomorphology |url=https://doi.org/10.1016/S0169-555X(00)00089-1 |journal=Geomorphology |volume=37 |issue=3–4 |pages=303–328 |doi=10.1016/s0169-555x(00)00089-1 |bibcode=2001Geomo..37..303P |issn=0169-555X}}</ref><ref>{{Cite journal |last1=de Pablo |first1=M.A. |last2=Druet |first2=M. |title=Description, Origin and Evolution of a Basin in Sirenum Terrae, Mars, Including Atlantis Chaos: a Preliminary Study. |url=https://www.lpi.usra.edu/meetings/lpsc2002/pdf/1032.pdf |journal=Lunar and Planetary Science Conference XXXIII 11-15 March, 2002 |date=2002 |page=1032 |bibcode=2002LPI....33.1032D |id=abstract no.1032}}</ref><ref>{{Cite journal |last=de Pablo |first=M.A. |title=Mola Topographic Data Analysis of the Atlantis Paleolake Basin, Sirenum Terrae, Mars |url=https://www.lpi.usra.edu/meetings/sixthmars2003/pdf/3037.pdf |journal=Sixth International Conference on Mars. 20–25 July, 2003 |date=2003 |page=3037 |location=Pasadena, California |bibcode=2003mars.conf.3037D |id=abstract #3037}}</ref> Its maximum depth is 2,400 meters and its volume is 562,000&nbsp;km<sup>3</sup>. It was larger than the largest landlocked sea on Earth, the ], and contained more water than all the other Martian lakes together. The Eridania sea held more than nine times as much water as all of North America's ].<ref>{{cite magazine|url=https://www.astrobio.net/also-in-news/mars-study-yields-clues-possible-cradle-life/|title=Mars Study Yields Clues to Possible Cradle of Life |magazine=Astrobiology Magazine|date=October 8, 2017 |archive-url=https://web.archive.org/web/20171011233107/https://www.astrobio.net/also-in-news/mars-study-yields-clues-possible-cradle-life/ |archive-date=2017-10-11 |url-status=usurped}}</ref><ref>{{cite web|url=http://www.sci-news.com/space/mars-eridania-basin-vast-sea-05301.html|author=<!-- Staff writer(s); no by-line -->|title=Mars' Eridania Basin Once Held Vast Sea|website=Sci-News.com|date=October 9, 2017|access-date=6 June 2022|archive-date=April 22, 2023|archive-url=https://web.archive.org/web/20230422115652/http://www.sci-news.com/space/mars-eridania-basin-vast-sea-05301.html|url-status=live}}</ref><ref name="ReferenceC">{{cite journal | last1 = Michalski | first1 = J. |display-authors=etal | year = 2017 | title = Ancient hydrothermal seafloor deposits in Eridania basin on Mars | journal = Nature Communications | volume = 8 | page = 15978 | bibcode = 2017NatCo...815978M | doi = 10.1038/ncomms15978 | pmid = 28691699 | pmc = 5508135 }}</ref> The upper surface of the lake was assumed to be at the elevation of valley networks that surround the lake; they all end at the same elevation, suggesting that they emptied into a lake.<ref>{{cite journal | last1 = Irwin | first1 = R. |display-authors=etal | year = 2004 | title = Geomorphology of Ma'adim Vallis, Mars, and associated paleolake basins | journal = Journal of Geophysical Research: Planets | volume = 109 | issue = E12| page = E12009 | doi=10.1029/2004je002287 | bibcode=2004JGRE..10912009I| s2cid = 12637702 | doi-access = free }}</ref><ref>{{cite journal | last1 = Hynek | first1 = B. |display-authors=etal | year = 2010 | title = Updated global map of Martian valley networks and implications for climate and hydrologic processes | journal = Journal of Geophysical Research | volume = 115 | issue = E9| page = E09008 | doi=10.1029/2009je003548 | bibcode=2010JGRE..115.9008H| doi-access = free }}</ref> Research on this basin with CRISM found thick deposits, greater than 400 meters thick, that contained the minerals ], talc-saponite, Fe-rich ] (for example, ]-]), Fe- and Mg-serpentine, Mg-Fe-Ca-] and probable Fe-]. The Fe-sulfide probably formed in deep water from water heated by ]es. Such a process, classified as ] may have been a place where life on Earth began.<ref name="ReferenceC"/>
]. ]]
Thousands of images returned from Odyssey support the idea that Mars once had great amounts of water flowing across its surface. Some pictures show patterns of branching valleys. Others show layers that may have formed under lakes. Deltas have been identified.<ref name="Irwin III 2005">{{cite journal | last1= Irwin | first1= Rossman P. | last2= Howard | first2= Alan D. | last3= Craddock | first3= Robert A. | last4= Moore | first4= Jeffrey M. | title= An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development | journal=Journal of Geophysical Research | volume= 110 | year= 2005 | doi = 10.1029/2005JE002460 | bibcode=2005JGRE..11012S15I}}</ref>
For many years researchers believed that glaciers existed under a layer of insulating rocks.<ref name="Head, J. 2005">{{cite journal | doi = 10.1038/nature03359 | last1 = Head | first1 = J. | year = 2005 | last2 = Neukum | first2 = G. | last3 = Jaumann | first3 = R. | last4 = Hiesinger | first4 = H. | last5 = Hauber | first5 = E. | last6 = Carr | first6 = M. | last7 = Masson | first7 = P. | last8 = Foing | first8 = B. | last9 = Hoffmann | first9 = H. | title = Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars | url = | journal=Nature | volume = 434 | issue = 7031| pages = 346–350 | pmid=15772652|bibcode = 2005Natur.434..346H }}</ref><ref name="marstoday.com">{{cite web|url=http://www.marstoday.com/news/viewpr.html?pid=18050 |title=Mars' climate in flux: Mid-latitude glaciers &#124; Mars Today – Your Daily Source of Mars News |publisher=Mars Today |date=October 17, 2005 |accessdate=December 19, 2010}}</ref><ref name="news.brown.edu">{{cite web|author=Richard Lewis |url=http://news.brown.edu/pressreleases/2008/04/martian-glaciers |title=Glaciers Reveal Martian Climate Has Been Recently Active &#124; Brown University Media Relations |publisher=News.brown.edu |date=April 23, 2008 |accessdate=December 19, 2010}}</ref><ref name="Plaut, J. 2008">{{cite journal | last1=Plaut | first1=Jeffrey J. | last2=Safaeinili | first2=Ali | last3=Holt | first3=John W. | last4=Phillips | first4=Roger J. | last5=Head | first5=James W. | last6=Seu | first6=Roberto | last7=Putzig | first7=Nathaniel E. | last8=Frigeri | first8=Alessandro | title=Radar Evidence for Ice in Lobate Debris Aprons in the Mid-Northern Latitudes of Mars | doi = 10.1029/2008GL036379 | year=2009 | volume=36 | journal=Geophysical Research Letters | url=http://www.planetary.brown.edu/pdfs/3733.pdf | bibcode=2009GeoRL..3602203P | issue=2}}</ref><ref name="Holt, J. 2008">{{cite journal | bibcode = 2008LPI....39.2441H |year=2008 | title= Radar Sounding Evidence for Ice within Lobate Debris Aprons near Hellas Basin, Mid-Southern Latitudes of Mars |journal=Lunar and Planetary Science |volume= XXXIX |url=http://www.lpi.usra.edu/meetings/lpsc2008/pdf/2441.pdf | author1 = Holt | first1 = J. W. | last2 = Safaeinili | first2 = A. | last3 = Plaut | first3 = J. J. | last4 = Young | first4 = D. A. | last5 = Head | first5 = J. W. | last6 = Phillips | first6 = R. J. | last7 = Campbell | first7 = B. A. | last8 = Carter | first8 = L. M. | last9 = Gim | first9 = Y. | page = 2441 }}</ref> ] is one example of these rock-covered glaciers. They are found on the floors of some channels. Their surfaces have ridged and grooved materials that deflect around obstacles. Some glaciers on the Earth show such features. Lineated floor deposits may be related to ]s, which have been proven to contain large amounts of ice by orbiting radar.<ref name="Plaut, J. 2008"/><ref name="Holt, J. 2008"/><ref name="planetary.brown.edu">{{cite journal | last1=Plaut | first1=Jeffrey J. | last2=Safaeinili | first2=Ali | last3=Holt | first3=John W. | last4=Phillips | first4=Roger J. | last5=Head | first5=James W. | last6=Seu | first6=Roberto | last7=Putzig | first7=Nathaniel E. | last8=Frigeri | first8=Alessandro | title=Radar evidence for ice in lobate debris aprons in the mid-northern latitudes of Mars | url=http://www.planetary.brown.edu/pdfs/3733.pdf | journal=Geophysical Research Letters | volume=36 | year=2009 | doi = 10.1029/2008GL036379 | bibcode=2009GeoRL..3602203P | issue=2}}</ref>
The pictures below, taken with the ] instrument on board the Mars Odyssey, show examples of features that are associated with water present in the present or past.<ref>{{cite web|url=http://themis.asu.edu/zoom-20021022a |title=Reull Vallis (Released 22 October 2002) &#124; Mars Odyssey Mission THEMIS |publisher=Themis.asu.edu |accessdate=December 19, 2010}}</ref>
<gallery>
Image:Reull Vallis lineated deposits.JPG|] with lineated floor deposits. Click on image to see relationship to other features. Floor deposits are believed to be formed from ice movement. Location is ].
Image:Wikiauquakuh.JPG|]. At one time a dark layer covered the whole area, now only a few pieces remain as ]. Click on image to see layers. Layers may have formed from deposition on the bottom of lakes.
Image:Channels near Warrego in Thaumasia.JPG|Channels near ]. These branched channels are strong evidence for flowing water on Mars, perhaps during a much warmer period.
Image:Semeykin Crater Drainage.JPG|] Drainage. Click on image to see details of beautiful drainage system. Location is ].
Image:Erosion features in Ares Vallis.JPG|Erosion features in ] – the streamlined shape was probably formed by running water.
Image:Delta in Lunae Palus.jpg|Delta in ].
Image:Athabasca Valles.JPG|] showing source of its water, Cerberus Fossae. Note streamlined islands which show direction of flow to south. Athabasca Valles is in the ].
Image:Melas Chasma channels.JPG|Branching channels on floor of Melas Chasma. Image is in ].
</gallery>
<gallery>
Image:Dao Vallis.JPG|], as seen by ]. Click on image to see relationship of Dao Vallis to other nearby features
</gallery>


<gallery class="center" widths="190px" heights="180px">
Dao Vallis begins near a large volcano, called Hadriaca Patera, so it is thought to have received water when hot ] melted huge amounts of ice in the frozen ground. The partially circular depressions on the left side of the channel in the image above suggests that groundwater sapping also contributed water.<ref name="themis.asu.edu">{{cite web|url=http://themis.asu.edu/zoom-20020807a |title=Dao Vallis (Released 7 August 2002) &#124; Mars Odyssey Mission THEMIS |publisher=Themis.asu.edu |accessdate=December 19, 2010}}</ref>
PIA22059 fig1eridaniadepths.jpg|Map showing estimated water depth in different parts of Eridania Sea.<br>This map is about 530 miles across.
In some areas large river valleys begin with a landscape feature called "Chaos" or Chaotic Terrain." It is thought that the ground collapsed, as huge amounts of water were suddenly released. Examples of Chaotic terrain, as imaged by THEMIS, are shown below.
PIA22058 hireseridanaregion.jpg|Deep-basin deposits from the floor of Eridania Sea. The mesas on the floor are there because they were protected against intense erosion by deep water/ice cover. ] measurements show minerals may be from seafloor hydrothermal deposits.
<gallery>
PIA22060 hireseridania.jpg|Diagram showing how volcanic activity may have caused deposition of minerals on floor of Eridania Sea. Chlorides were deposited along the shoreline by evaporation.
Image:Blocks in Aram.JPG|Blocks in Aram showing possible source of water. The ground collapsed when large amounts of water were released. The large blocks probably still contain some water ice. Location is ].
Image:Canyons and Mesas of Aureum Chaos in Oxia Palus.JPG|Huge canyons in ]. Click on image to see the gullies which may have formed from recent flows of water. Gullies are rare at this latitude. Location is ].
</gallery> </gallery>


=== Phoenix === === Lake deltas ===
].]]
The ] lander confirmed the existence of large amounts of water ice in the northern regions of Mars.<ref name="Arvidson, R. 2008"/> This finding was predicted by theory.<ref>{{cite journal | last1 = Mellon | first1 = M. | last2 = Jakosky | first2 = B. | author-separator =, | author-name-separator= | year = 1993 | title = Geographic variations in the thermal and diffusive stability of ground ice on Mars | url = | journal=J. Geographical Research | volume = 98 | pages = 3345–3364 | doi = 10.1029/92JE02355 | bibcode = 1993JGR....98.3345M }}</ref>
Researchers have found a number of examples of ]s that formed in Martian lakes.<ref name="ReferenceA">{{cite journal |last1=Di Achille |first1=Gaetano |last2=Hynek |first2=Brian M. |title=Ancient ocean on Mars supported by global distribution of deltas and valleys |journal=Nature Geoscience |volume=3 |pages=459–463 |date=2010 |doi=10.1038/ngeo891 |bibcode=2010NatGe...3..459D |issue=7}}</ref> Finding deltas is a major sign that Mars once had a lot of liquid water. Deltas usually require deep water over a long period of time to form. Also, the water level needs to be stable to keep ] from washing away. Deltas have been found over a wide geographical range,<ref name="Irwin III 2005" /> though there is some indication that deltas may be concentrated around the edges of the putative former ].<ref>{{cite journal | last1 = Di Achille | first1 = Gaetano | last2 = Hynek | first2 = Brian M. | year = 2010 | title = Ancient ocean on Mars supported by global distribution of deltas and valleys | journal = Nature Geoscience | volume = 3 | issue = 7| pages = 459–463 | doi=10.1038/ngeo891 | bibcode=2010NatGe...3..459D}}</ref>
and was measured from orbit by the Mars Odyssey instruments.<ref name="Feildman, T. 2004"/>
On June 19, 2008, NASA announced that dice-sized clumps of bright material in the "Dodo-Goldilocks" trench, dug by the robotic arm, had vaporized over the course of four days, strongly implying that the bright clumps were composed of water ice which ] following exposure. Even though ] also sublimates under the conditions present, it would do so at a rate much faster than observed.<ref name="Press"/><ref name="Rayl"/><ref name="Confirmation of Water on Mars"/>


=== Groundwater ===
On July 31, 2008, NASA announced that ''Phoenix'' confirmed the presence of water ice on Mars. During the initial heating cycle of a new sample, the Thermal and Evolved-Gas Analyzer's (TEGA) mass spectrometer detected water vapor when the sample temperature reached 0 °C.<ref>{{Cite news
<!--This section should probably also contain info on chemical evidence for past water both from rovers and satellite wiggle-matching, e.g., "blueberries"-->
| last = Johnson | first = John
{{Main|Groundwater on Mars}}
| title = There's water on Mars, NASA confirms
] rising up gradually.]]
| work=Los Angeles Times
| date = August 1, 2008
| url = http://www.latimes.com/news/science/la-sci-phoenix1-2008aug01,0,3012423.story
| accessdate =August 1, 2008}}</ref>
Liquid water cannot exist on the surface of Mars with its present low atmospheric pressure, except at the lowest elevations for short periods.<ref>{{Cite journal
| journal=Journal of Geophysical Research
| date= May 7, 2005
| last= Heldmann et al.
| first= Jennifer L.
| title= Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions
| url= http://daleandersen.seti.org/Dale_Andersen/Science_articles_files/Heldmann%20et%20al.2005.pdf
| volume=110
| pages=Eo5004
| doi=10.1029/2004JE002261
| accessdate=September 14, 2008
| format= PDF
| postscript = <!-- Bot inserted parameter. Either remove it; or change its value to "." for the cite to end in a ".", as necessary. -->{{inconsistent citations}}
| bibcode=2005JGRE..11005004H}} 'conditions such as now occur on Mars, outside of the temperature-pressure stability regime of liquid water' ... 'Liquid water is typically stable at the lowest elevations and at low latitudes on the planet because the atmospheric pressure is greater than the vapor pressure of water and surface temperatures in equatorial regions can reach 273 K for parts of the day '</ref><ref>{{Cite journal
| journal=Geophysical Research Letters
| volume = 33
| pages = L11201
| date=June 3, 2006
| last=Kostama
| first=V.-P.
| last2=Kreslavsky
| first2=M. A.
| last3=Head
| first3=J. W.
| title=Recent high-latitude icy mantle in the northern plains of Mars: Characteristics and ages of emplacement
| url=http://www.agu.org/pubs/crossref/2006/2006GL025946.shtml
| doi=10.1029/2006GL025946
| accessdate=August 12, 2007
| postscript=<!-- Bot inserted parameter. Either remove it; or change its value to "." for the cite to end in a ".", as necessary. -->{{inconsistent citations}}
| bibcode=2006GeoRL..3311201K
| issue=11}} 'Martian high-latitude zones are covered with a smooth, layered ice-rich mantle'</ref>


By 1979 it was thought that ] formed in single, catastrophic ruptures of subsurface water reservoirs, possibly sealed by ice, discharging colossal quantities of water across an otherwise arid Mars surface.<ref>{{cite journal |last=Carr |first=M. H. |date=1979 |title=Formation of Martian flood features by release of water from confined aquifers |url=http://www.es.ucsc.edu/~rcoe/eart206/Carr_MarsFloodFeatures_JGR79.pdf |journal=Journal of Geophysical Research |volume=84 |pages=2995–3007 |bibcode=1979JGR....84.2995C |doi=10.1029/JB084iB06p02995 |access-date=June 16, 2013 |archive-date=September 24, 2015 |archive-url=https://web.archive.org/web/20150924002006/http://www.es.ucsc.edu/~rcoe/eart206/Carr_MarsFloodFeatures_JGR79.pdf |url-status=dead }}</ref><ref>{{cite journal |doi=10.1016/0019-1035(74)90101-8 |last1=Baker |first1=V. |last2=Milton |first2=D. |date=1974 |title=Erosion by Catastrophic Floods on Mars and Earth |journal=Icarus |volume=23 |issue=1 |pages=27–41 |bibcode=1974Icar...23...27B}}</ref> In addition, evidence in favor of heavy or even catastrophic flooding is found in the ] in the ].<ref>{{cite web |url=http://www.msss.com/mars_images/moc/2004/09/27/ |title=Mars Global Surveyor MOC2-862 Release |publisher=Malin Space Science Systems |access-date=January 16, 2012 |archive-url=https://web.archive.org/web/20090412041936/http://www.msss.com/mars_images/moc/2004/09/27/ |archive-date=April 12, 2009 |url-status=dead }}</ref><ref name="DOInature">{{cite journal |doi=10.1038/nature05594 |title=Meridiani Planum and the global hydrology of Mars |date=2007 |last1=Andrews-Hanna |first1=Jeffrey C. |last2=Phillips |first2=Roger J. |last3=Zuber |first3=Maria T. |journal=Nature |volume=446 |issue=7132 |pages=163–136 |pmid=17344848 |bibcode=2007Natur.446..163A |s2cid=4428510 }}</ref> Many outflow channels begin at ] or ] features, providing evidence for the rupture that could have breached a subsurface ice seal.<ref name="Carr" />
Results published in the journal Science after the mission ended reported that chloride, bicarbonate, magnesium, sodium potassium, calcium, and possibly sulfate were detected in the samples. Perchlorate (ClO<sub>4</sub>), a strong oxidizer, was confirmed to be in the soil. The chemical when mixed with water can greatly lower freezing points, in a manner similar to how salt is applied to roads to melt ice. Perchlorate may be allowing small amounts of liquid water to form on Mars today. Gullies, which are common in certain areas of Mars, may have formed from perchlorate melting ice and causing water to erode soil on steep slopes.<ref>{{cite journal | last1 = Hecht | first1 = MH| year = 2009 | last2 = Kounaves | first2 = SP | last3 = Quinn | first3 = RC | last4 = West | first4 = SJ | last5 = Young | first5 = SM | last6 = Ming | first6 = DW | last7 = Catling | first7 = DC | last8 = Clark | first8 = BC | last9 = Boynton | first9 = WV | title = Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site | url = | journal=Science | volume = 325 | issue = 5936| pages = 64–67 | pmid = 19574385 | doi = 10.1126/science.1172466 |bibcode = 2009Sci...325...64H }}</ref>


The branching ] of Mars are not consistent with formation by sudden catastrophic release of groundwater, both in terms of their dendritic shapes that do not come from a single outflow point, and in terms of the discharges that apparently flowed along them.<ref>{{cite journal |last1=Irwin |last2=Rossman |first2=P. |first3=Robert A. |last3=Craddock |first4=Alan D. |last4=Howard |title=Interior channels in Martian valley networks: Discharge and runoff production |journal=Geology |volume=33 |issue=6 |date=2005 |pages=489–492 |doi=10.1130/g21333.1|bibcode=2005Geo....33..489I |s2cid=5663347 }}</ref> Instead, some authors have argued that they were formed by slow seepage of groundwater from the subsurface essentially as springs.<ref name="Jakosky1999">{{cite journal |last=Jakosky |first=Bruce M. |date=1999 |title=Water, Climate, and Life |journal=Science |volume=283 |issue=5402 |pages=648–649 |doi=10.1126/science.283.5402.648 |pmid=9988657|s2cid=128560172 }}</ref> In support of this interpretation, the upstream ends of many valleys in such networks begin with ] or "amphitheater" heads, which on Earth are typically associated with groundwater seepage. There is also little evidence of finer scale channels or valleys at the tips of the channels, which some authors have interpreted as showing the flow appeared suddenly from the subsurface with appreciable discharge, rather than accumulating gradually across the surface.<ref name="Carr" /> Others have disputed the link between amphitheater heads of valleys and formation by groundwater for terrestrial examples,<ref>{{cite journal |last=Lamb |first=Michael P. |display-authors=etal |title=Can springs cut canyons into rock? |journal=Journal of Geophysical Research: Planets |issue=111.E7 |year=2006 |volume=111 |doi=10.1029/2005JE002663 |bibcode=2006JGRE..111.7002L |url=https://authors.library.caltech.edu/15925/ |access-date=June 23, 2022 |archive-date=April 22, 2023 |archive-url=https://web.archive.org/web/20230422115651/https://authors.library.caltech.edu/15925/ |url-status=dead }}</ref> and have argued that the lack of fine scale heads to valley networks is due to their removal by ] or ].<ref name="Carr" /> Most authors accept that most valley networks were at least partly influenced and shaped by groundwater seep processes.
Additionally, during 2008 and early 2009, a debate emerged within NASA over the presence of 'blobs' which appeared on photos of the vehicle's landing struts, which have been variously described as being either water droplets or 'clumps of frost'.<ref name="NYTimes20090316"/> Due to the lack of consensus within the Phoenix science project, the issue had not been raised in any NASA news conferences.<ref name="NYTimes20090316">Chang, Kenneth (2009) , ''New York Times'' (online), March 16, 2009, retrieved April 4, 2009;</ref> One scientist posited that the lander's thrusters splashed a pocket of brine from just below the Martian surface onto the landing strut during the vehicle's landing. The salts would then have absorbed water vapor from the air, which would have explained how they appeared to grow in size during the first 44 Martian days before slowly evaporating as Mars temperature dropped.<ref name="NYTimes20090316"/><ref>{{cite news| url=http://articles.latimes.com/2009/mar/14/nation/na-marswater12 }} {{Dead link|date=October 2010|bot=RjwilmsiBot}}</ref> Some images even suggest that some of the droplets darkened, then moved and merged; this is strong physical evidence that they were liquid.<ref name="Sciencedaily.com"/><ref name="ISBN 978-1-60598-176-5"/><ref name="Renno2009" /><ref>{{cite web|url=http://www.astrobio.net/index.php?option=com_retrospection&task=detail&id=3350 |title=Astrobiology Top 10: Too Salty to Freeze |publisher=Astrobio.net |accessdate=December 19, 2010}}</ref>
<gallery widths="150px" heights="150px" style="clear:both; margin-left:auto; margin-right:auto;">
Image:Ice_sublimating_in_the_Dodo-Goldilocks_trench.gif|Dice-sized clumps of bright material in the enlarged "Dodo-Goldilocks" trench vanished over the course of four days, implying that they were composed of ice which ] following exposure.<ref name=Press/>
Image:Evaporating ice on Mars Phoenix lander image.jpg|Color versions of the photos showing ice sublimation, with the lower left corner of the trench enlarged in the insets in the upper right of the images.


] in Burns Cliff in ] are thought to have been controlled by flow of shallow groundwater.<ref name="BurnsCliff">{{cite journal |last1=Grotzinger |first1=J. P. |first2=R. E. |last2=Arvidson |first3=J. F. |last3=Bell III |first4=W. |last4=Calvin |first5=B. C. |last5=Clark |first6=D. A. |last6=Fike |first7=M. |last7=Golombek |first8=R. |last8=Greeley |first9=A. |last9=Haldemann |first10=K. E. |last10=Herkenhoff |first11=B. L. |last11=Jolliff |first12=A. H. |last12=Knoll |first13=M. |last13=Malin |first14=S. M. |last14=McLennan |first15=T. |last15=Parker |first16=L. |last16=Soderblom |first17=J. N. |last17=Sohl-Dickstein |first18=S. W. |last18=Squyres |first19=N. J. |last19=Tosca |first20=W. A. |last20=Watters |title=Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum |journal=Earth and Planetary Science Letters |volume=240 |issue=1 |date=November 25, 2005 |pages=11–72 |issn=0012-821X |doi=10.1016/j.epsl.2005.09.039 |bibcode=2005E&PSL.240...11G}}</ref>]]
</gallery>


] also played a vital role in controlling broad scale sedimentation patterns and processes on Mars.<ref name="Michalski">{{cite journal |title=Groundwater activity on Mars and implications for a deep biosphere |journal=Nature Geoscience |date=January 20, 2013 |first1=Joseph R. |last1=Michalski |first2=Paul B. |last2=Niles |first3=Javier |last3=Cuadros |first4=John |last4=Parnell |first5=A. Deanne |last5=Rogers |first6=Shawn P. |last6=Wright |volume=6 |pages=133–138 |doi=10.1038/ngeo1706 |quote=Here we present a conceptual model of subsurface habitability of Mars and evaluate evidence for groundwater upwelling in deep basins. |bibcode=2013NatGe...6..133M |issue=2}}</ref> According to this hypothesis, groundwater with dissolved minerals came to the surface, in and around craters, and helped to form layers by adding minerals—especially sulfate—and ].<ref name="BurnsCliff" /><ref name=Zuber /><ref>{{cite journal |last1=Andrews-Hanna |first1=J. C. |first2=M. T. |last2=Zuber |first3=R. E. |last3=Arvidson |first4=S. M. |last4=Wiseman |date=2010 |title=Early Mars hydrology: Meridiani playa deposits and the sedimentary record of Arabia Terra |journal=Journal of Geophysical Research |volume=115 |issue=E6 |page=E06002 |doi=10.1029/2009JE003485 |bibcode=2010JGRE..115.6002A|doi-access=free |hdl=1721.1/74246 |hdl-access=free }}</ref><ref>{{cite journal |last=McLennan |first=S. M. |display-authors=etal |date=2005 |title=Provenance and diagenesis of the evaporitebearing Burns formation, Meridiani Planum, Mars |journal=Earth and Planetary Science Letters |volume=240 |issue=1 |pages=95–121 |doi=10.1016/j.epsl.2005.09.041 |bibcode=2005E&PSL.240...95M}}</ref><ref>{{cite journal |last1=Squyres |first1=S. W. |first2=A. H. |last2=Knoll |date=2005 |title=Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars |journal=Earth and Planetary Science Letters |volume=240 |issue=1 |pages=1–10 |doi=10.1016/j.epsl.2005.09.038 |bibcode=2005E&PSL.240....1S}}.</ref><ref>{{cite journal |last=Squyres |first=S. W. |display-authors=etal |date=2006 |title=Two years at Meridiani Planum: Results from the Opportunity rover |journal=Science |volume=313 |issue=5792 |pages=1403–1407 |doi=10.1126/science.1130890 |url=https://eprints.utas.edu.au/2614/1/Science2007.pdf |bibcode=2006Sci...313.1403S |pmid=16959999 |s2cid=17643218 |access-date=March 16, 2019 |archive-date=August 31, 2021 |archive-url=https://web.archive.org/web/20210831003806/https://eprints.utas.edu.au/2614/1/Science2007.pdf |url-status=live }}.</ref> In other words, some layers may have been formed by groundwater rising up depositing minerals and cementing existing, loose, ] sediments. The hardened layers are consequently more protected from ]. A study published in 2011 using data from the ], show that the same kinds of sediments exist in a large area that includes ].<ref>{{cite conference |first1=M. |last1=Wiseman |first2=J. C. |last2=Andrews-Hanna |first3=R. E. |last3=Arvidson |first4=J. F. |last4=Mustard |first5=K. J. |last5=Zabrusky |title=Distribution of Hydrated Sulfates Across Arabia Terra Using CRISM Data: Implications for Martian Hydrology |url=https://www.lpi.usra.edu/meetings/lpsc2011/pdf/2133.pdf |conference=42nd Lunar and Planetary Science Conference |date=2011 |access-date=October 3, 2018 |archive-date=September 18, 2021 |archive-url=https://web.archive.org/web/20210918073811/https://www.lpi.usra.edu/meetings/lpsc2011/pdf/2133.pdf |url-status=live }}</ref> It has been argued that areas that are rich in sedimentary rocks are also those areas that most likely experienced groundwater upwelling on a regional scale.<ref>{{cite journal |last1=Andrews-Hanna |first1=Jeffrey C. |first2=Kevin W. |last2=Lewis |title=Early Mars hydrology: 2. Hydrological evolution in the Noachian and Hesperian epochs |journal=Journal of Geophysical Research: Planets |volume=116 |issue=E2 |page=E2 |date=2011 |doi=10.1029/2010je003709 |bibcode=2011JGRE..116.2007A|s2cid=17293290 |doi-access=free }}</ref>
For about as far as the camera can see, the land is flat, but shaped into polygons between 2–3 meters in diameter and are bounded by troughs that are 20&nbsp;cm to 50&nbsp;cm deep. These shapes are due to ice in the soil expanding and contracting due to major temperature changes.
<gallery widths="150px" heights="150px" perrow="3" style="clear:both; margin-left:auto; margin-right:auto;">
Image:Phoenix_Sol_0_horizon.jpg| Comparison between polygons photographed by ''Phoenix'' on ]...
Image:PSP 008301 2480 cut a.jpg |&nbsp;... and as photographed (in false color) from ]...
Image:Patterned_ground_devon_island.jpg |&nbsp;... with ] on ] in the Canadian ], on ].
</gallery>


In February 2019, European scientists published geological evidence of an ancient planet-wide groundwater system that was, arguably, connected to a putative vast ocean.<ref name="ESA-20190228">{{cite news |author=ESA Staff |title=First Evidence of 'Planet-Wide Groundwater System' on Mars Found |url=https://www.esa.int/Our_Activities/Space_Science/Mars_Express/First_evidence_of_planet-wide_groundwater_system_on_Mars |date=28 February 2019 |work=] |access-date=28 February 2019 |archive-date=September 15, 2019 |archive-url=https://web.archive.org/web/20190915103854/http://www.esa.int/Our_Activities/Space_Science/Mars_Express/First_evidence_of_planet-wide_groundwater_system_on_Mars |url-status=live }}</ref><ref name="FTR-20190228">{{cite news |last=Houser |first=Kristin |title=First Evidence of 'Planet-Wide Groundwater System' on Mars Found |url=https://futurism.com/the-byte/mars-groundwater-system-planet-wide |date=28 February 2019 |work=Futurism.com |access-date=28 February 2019 |archive-date=January 19, 2021 |archive-url=https://web.archive.org/web/20210119124513/https://futurism.com/the-byte/mars-groundwater-system-planet-wide |url-status=live }}</ref><ref>{{Cite journal | doi=10.1029/2018JE005802| pmid=31007995| pmc=6472477| title=Geological Evidence of Planet-Wide Groundwater System on Mars| journal=Journal of Geophysical Research: Planets| volume=124| issue=2| pages=374–395| year=2019| last1=Salese| first1=Francesco| last2=Pondrelli| first2=Monica| last3=Neeseman| first3=Alicia| last4=Schmidt| first4=Gene| last5=Ori| first5=Gian Gabriele| bibcode=2019JGRE..124..374S}}</ref><ref>{{Cite web|url = https://www.leonarddavid.com/planet%E2%80%90wide-groundwater-system-on-mars-new-geological-evidence/|title = Mars: Planet-Wide Groundwater System – New Geological Evidence|date = February 19, 2019|access-date = March 2, 2019|archive-date = August 18, 2020|archive-url = https://web.archive.org/web/20200818025504/https://www.leonarddavid.com/planet%E2%80%90wide-groundwater-system-on-mars-new-geological-evidence/|url-status = live}}</ref> In September 2019, researchers reported that the '']'' lander uncovered unexplained ], and ] consistent with a planet-wide reservoir of liquid water deep underground.<ref name="NG-20190920">{{cite news |last=Andrews |first=Robin George |title=Mysterious magnetic pulses discovered on Mars |url=https://www.nationalgeographic.com/science/2019/09/mars-insight-feels-mysterious-magnetic-pulsations-at-midnight/ |archive-url=https://web.archive.org/web/20190920141718/https://www.nationalgeographic.com/science/2019/09/mars-insight-feels-mysterious-magnetic-pulsations-at-midnight/ |url-status=dead |archive-date=September 20, 2019 |date=20 September 2019 |work=] |access-date=20 September 2019 }}</ref>
The microscope showed that the soil on top of the polygons is composed of flat particles (probably a type of clay) and rounded particles. Clay is a mineral that forms from other minerals when water is available. So, finding clay proves the existence of past water.<ref>{{cite journal | last1= Smith | first1= PH | last2= Tamppari | first2= LK | last3= Arvidson | first3= RE | last4= Bass | first4= D | last5= Blaney | first5= D | last6= Boynton | first6= WV | last7= Carswell | first7= A | last8= Catling | first8= DC | last9= Clark | first9= BC | title= H<sub>2</sub>O at the Phoenix Landing Site | journal=Science | volume= 325 | issue= 5936| pages=58–61 | year= 2009 | pmid =19574383 | doi= 10.1126/science.1172339 |bibcode = 2009Sci...325...58S }}</ref> Ice is present a few inches below the surface in the middle of the polygons, and along its edges, the ice is at least 8&nbsp;inches deep. When the ice is exposed to the Martian atmosphere it slowly sublimates.<ref>{{cite web|url=http://www.space.com/scienceastronomy/090702-phoenix-soil.html |title=The Dirt on Mars Lander Soil Findings |publisher=Space.com |accessdate=December 19, 2010}}</ref>


=== Mars ocean hypothesis ===
Snow was observed to fall from cirrus clouds. The clouds formed at a level in the atmosphere that was around −65 °C, so the clouds would have to be composed of water-ice, rather than carbon dioxide-ice (dry ice) because the temperature for forming carbon dioxide ice is much lower—less than −120 °C. As a result of mission observations, it is now believed that water ice (snow) would have accumulated later in the year at this location.<ref name="Witeway2009" /> The highest temperature measured during the mission was −19.6 °C, while the coldest was −97.7 °C. So, in this region the temperature remained far below the freezing point (0°) of water. Bear in mind that the mission took place in the heat of the Martian summer.<ref>{{cite web|url=http://www.asc-csa.gc.ca/eng/media/news_releases/2009/0702.asp |title=CSA – News Release |publisher=Asc-csa.gc.ca |date=July 2, 2009 |accessdate=December 19, 2010}}</ref>
{{Main|Mars ocean hypothesis}}
]
The Mars ocean hypothesis proposes that the ] basin was the site of an ocean of liquid water at least once,<ref name="Baker" /> and presents evidence that nearly a third of the ] of Mars was covered by a liquid ocean early in the planet's ].<ref name="Cabrol, N 2010" /><ref name="Clifford">{{cite journal |doi=10.1006/icar.2001.6671 |last1=Clifford |first1=S. M. |last2=Parker |first2=T. J. |date=2001 |title=The Evolution of the Martian Hydrosphere: Implications for the Fate of a Primordial Ocean and the Current State of the Northern Plains |journal=Icarus |volume=154 |issue=1 |pages=40–79 |bibcode=2001Icar..154...40C|s2cid=13694518 }}</ref> This ocean, dubbed '''Oceanus Borealis''',<ref name="Baker" /> would have filled the Vastitas Borealis basin in the northern hemisphere, a region that lies {{convert|4-5|km}} below the mean planetary elevation. Two major putative shorelines have been suggested: a higher one, dating to a time period of approximately 3.8&nbsp;billion years ago and concurrent with the formation of the ] in the Highlands, and a lower one, perhaps correlated with the younger ]. The higher one, the 'Arabia shoreline', can be traced all around Mars except through the Tharsis volcanic region. The lower, the 'Deuteronilus', follows the ] formation.<ref name="Carr" />


A study in June 2010 concluded that the more ancient ocean would have covered 36% of Mars.<ref name="ReferenceA" /><ref name="third" /> Data from the Mars Orbiter Laser Altimeter (MOLA), which measures the altitude of all terrain on Mars, was used in 1999 to determine that the ] for such an ocean would have covered about 75% of the planet.<ref name="Smith">{{cite journal |last=Smith |first=D. |display-authors=etal |date=1999 |title=The Gravity Field of Mars: Results from Mars Global Surveyor |journal=Science |volume=286 |issue=5437 |pages=94–97 |doi=10.1126/science.286.5437.94 |bibcode=1999Sci...286...94S |url=http://seismo.berkeley.edu/~rallen/eps122/reading/Smithetal1999.pdf |pmid=10506567 |access-date=December 19, 2010 |archive-date=March 5, 2016 |archive-url=https://web.archive.org/web/20160305005726/http://seismo.berkeley.edu/~rallen/eps122/reading/Smithetal1999.pdf |url-status=dead }}</ref> Early Mars would have required a warmer climate and denser atmosphere to allow liquid water to exist at the surface.<ref name="ReadandLewis">{{cite book |isbn=978-3-540-40743-0 |last1=Read |first1=Peter L. |first2=S. R. |last2=Lewis |title=The Martian Climate Revisited: Atmosphere and Environment of a Desert Planet |publisher=Praxis |location=Chichester, UK |date=2004 |url=http://www.praxis-publishing.co.uk/9783540407430.htm |format=Paperback |access-date=December 19, 2010 |archive-date=July 24, 2011 |archive-url=https://web.archive.org/web/20110724101309/http://www.praxis-publishing.co.uk/9783540407430.htm |url-status=dead }}</ref><ref>{{cite web |url=http://www.astrobio.net/pressrelease/3322/martian-north-once-covered-by-ocean |title=Martian North Once Covered by Ocean |work=Astrobiology Magazine |access-date=December 19, 2010|date=November 26, 2009 |archive-url=https://web.archive.org/web/20110604121418/http://www.astrobio.net/pressrelease/3322/martian-north-once-covered-by-ocean |archive-date=2011-06-04 |url-status=usurped}}</ref> In addition, the large number of valley networks strongly supports the possibility of a ] on the planet in the past.<ref name="Zuber">{{cite journal |doi=10.1038/447785a |last=Zuber |first=Maria T. |date=2007 |title=Planetary Science: Mars at the tipping point |journal=Nature |volume=447 |issue=7146 |pages=785–786 |pmid=17568733 |bibcode=2007Natur.447..785Z |s2cid=4427572 }}</ref><ref>{{cite web |url=http://www.space.com/scienceastronomy/091123-mars-ocean.html |title=New Map Bolsters Case for Ancient Ocean on Mars |publisher=SPACE.com |date=November 23, 2009 |access-date=November 24, 2009 |archive-date=March 15, 2010 |archive-url=https://web.archive.org/web/20100315193249/http://www.space.com/scienceastronomy/091123-mars-ocean.html |url-status=live }}</ref>
Interpretation of the data transmitted from the craft was published in the journal Science. As per the peer reviewed data the site had a wetter and warmer climate in the recent past. Finding calcium carbonate in the Martian soil leads scientists to believe that the site had been wet or damp in the geological past. During seasonal or longer period diurnal cycles water may have been present as thin films. The tilt or obliquity of Mars changes far more than the Earth; hence times of higher humidity are probable.<ref>{{cite journal | last1 = Boynton | first1 = WV| year = 2009 | last2 = Ming | first2 = DW | last3 = Kounaves | first3 = SP | last4 = Young | first4 = SM | last5 = Arvidson | first5 = RE | last6 = Hecht | first6 = MH | last7 = Hoffman | first7 = J | last8 = Niles | first8 = PB | last9 = Hamara | first9 = DK | title = Evidence for Calcium Carbonate at the Mars Phoenix Landing Site | url = | journal=Science | volume = 325 | issue = 5936| pages = 61–64 | pmid = 19574384 | doi = 10.1126/science.1172768 | bibcode=2009Sci...325...61B}}</ref> The data also confirms the presence of the chemical perchlorate. Perchlorate makes up a few tenths of a percent of the soil samples. Perchlorate is used as food by some bacteria on Earth.<ref>{{Cite news|authorlink= | title=Audio Recording of Phoenix Media Telecon for Aug. 5, 2008 | date=August 5, 2008 | publisher=NASA | url =http://www.jpl.nasa.gov/news/phoenix/podcast-phx20080805.php | work=Jet Propulsion Laboratory | accessdate =July 14, 2009 }}</ref> Another paper claims that the previously detected snow could lead to a buildup of water ice.


The existence of a primordial Martian ocean remains controversial among scientists, and the interpretations of some features as 'ancient shorelines' has been challenged.<ref name="2003JGRE..108.5042C">{{cite journal |last1=Carr |first1=M. |last2=Head |first2=J. |date=2003 |title=Oceans on Mars: An assessment of the observational evidence and possible fate |journal=Journal of Geophysical Research |volume=108 |issue=E5 |page=5042 |bibcode=2003JGRE..108.5042C |doi=10.1029/2002JE001963 |s2cid=16367611 |doi-access=free }}</ref><ref>{{cite web |url=http://astrobiology.nasa.gov/articles/mars-ocean-hypothesis-hits-the-shore/ |title=Mars Ocean Hypothesis Hits the Shore |work=NASA Astrobiology |publisher=NASA |date=January 26, 2001 |url-status=dead |archive-url=https://web.archive.org/web/20120220081803/http://astrobiology.nasa.gov/articles/mars-ocean-hypothesis-hits-the-shore/ |archive-date=February 20, 2012 }}</ref> One problem with the conjectured 2-billion-year-old (2&nbsp;]) shoreline is that it is not flat—i.e., does not follow a line of constant gravitational potential. This could be due to a change in distribution in Mars' mass, perhaps due to volcanic eruption or meteor impact;<ref>{{cite journal |last1=Perron |first2=J. |last2=Taylor |display-authors=etal |title=Evidence for an ancient Martian ocean in the topography of deformed shorelines |journal=Nature |volume=447 |issue=7146 |date=2007 |pages=840–843 |doi=10.1038/nature05873 |pmid=17568743|bibcode=2007Natur.447..840P |s2cid=4332594 }}</ref> the Elysium volcanic province or the massive Utopia basin that is buried beneath the northern plains have been put forward as the most likely causes.<ref name="Zuber" />
In 2010 an analysis of the isotope ratios of Oxygen in the Phoenix data suggested that "liquid water has been present on the Martian surface recently enough and abundantly enough to affect the composition of the current atmosphere"<ref></ref>.


In March 2015, scientists stated that evidence exists for an ancient Martian ocean, likely in the planet's northern hemisphere and about the size of Earth's ], or approximately 19% of the Martian surface. This finding was derived from the ratio of water and ] in the modern Martian atmosphere compared to the ratio found on Earth. Eight times as much deuterium was found at Mars than exists on Earth, suggesting that ancient Mars had significantly higher levels of water. Results from the ] rover had previously found a high ratio of deuterium in ], though not significantly high enough to suggest the presence of an ocean. Other scientists caution that this new study has not been confirmed, and point out that Martian climate models have not yet shown that the planet was warm enough in the past to support bodies of liquid water.<ref name="NYT-20150305">{{cite news |url=https://www.nytimes.com/2015/03/06/science/mars-had-an-ocean-scientists-say-pointing-to-new-data.html |title=Mars Had an Ocean, Scientists Say, Pointing to New Data |work=] |last=Kaufman |first=Marc |date=March 5, 2015 |access-date=March 5, 2015 |archive-date=March 7, 2020 |archive-url=https://web.archive.org/web/20200307000937/https://www.nytimes.com/2015/03/06/science/mars-had-an-ocean-scientists-say-pointing-to-new-data.html |url-status=live }}</ref>
===Mars Rovers===
The Mars Rovers ] and ] found a great deal of evidence for past water on Mars. Designed to last only three months, both were still operating after more than six years. Although ''Spirit'' got trapped in a sand pit, ''Opportunity'' continues to provide scientific discovery.


Additional evidence for a northern ocean was published in May 2016, describing how some of the surface in Ismenius Lacus quadrangle was altered by two ]s. The tsunamis were caused by asteroids striking the ocean. Both were thought to have been strong enough to create 30&nbsp;km diameter craters. The first tsunami picked up and carried boulders the size of cars or small houses. The backwash from the wave formed channels by rearranging the boulders. The second came in when the ocean was 300&nbsp;m lower. The second carried a great deal of ice which was dropped in valleys. Calculations show that the average height of the waves would have been 50&nbsp;m, but the heights would vary from 10&nbsp;m to 120&nbsp;m. Numerical simulations show that in this particular part of the ocean two impact craters of the size of 30&nbsp;km in diameter would form every 30 million years. The implication here is that a great northern ocean may have existed for millions of years. One argument against an ocean has been the lack of shoreline features. These features may have been washed away by these tsunami events. The parts of Mars studied in this research are ] and northwestern ]. These tsunamis affected some surfaces in the Ismenius Lacus quadrangle and in the ].<ref>{{cite press release|url=http://astrobiology.com/2016/05/ancient-tsunami-evidence-on-mars-reveals-life-potential.html|title=Ancient Tsunami Evidence on Mars Reveals Life Potential|website=Astrobiology|agency=Cornell University|date=May 20, 2016|access-date=May 30, 2016|archive-date=June 11, 2024|archive-url=https://web.archive.org/web/20240611060734/https://astrobiology.com/2016/05/ancient-tsunami-evidence-on-mars-reveals-life-potential.html|url-status=live}}</ref><ref>{{cite journal|title=Tsunami waves extensively resurfaced the shorelines of an early Martian ocean|first1=J. Alexis P.|last1=Rodriguez|first2=Alberto G.|last2=Fairén|first3=Kenneth L.|last3=Tanaka|first4=Mario|last4=Zarroca|first5=Rogelio|last5=Linares|first6=Thomas|last6=Platz|first7=Goro|last7=Komatsu|first8=Hideaki|last8=Miyamoto|first9=Jeffrey S.|last9=Kargel|first10=Jianguo|last10=Yan|first11=Virginia|last11=Gulick|first12=Kana|last12=Higuchi|first13=Victor R.|last13=Baker|first14=Natalie|last14=Glines|date=May 19, 2016|journal=Scientific Reports|volume=6|issue=1|pages=25106|doi=10.1038/srep25106|pmid=27196957|pmc=4872529|bibcode=2016NatSR...625106R}}</ref><ref>{{cite press release |agency=Cornell University |title=Ancient tsunami evidence on Mars reveals life potential |work=ScienceDaily |date=May 19, 2016 |url=https://www.sciencedaily.com/releases/2016/05/160519101756.htm |access-date=February 28, 2018 |archive-date=October 9, 2021 |archive-url=https://web.archive.org/web/20211009114213/https://www.sciencedaily.com/releases/2016/05/160519101756.htm |url-status=live }}</ref>
The ] landed in what was thought to be a huge lake bed. However, the lake bed had been covered over with lava flows, so evidence of past water was initially hard to detect. As the mission progressed and the Rover continued to move along the surface more and more clues to past water were found.


In July 2019, support was reported for an ] on Mars that may have been formed by a possible ] source resulting from a ] creating ].<ref name="NYT-20190730">{{cite news |last=Andrews |first=Robin George |title=When a Mega-Tsunami Drowned Mars, This Spot May Have Been Ground Zero |url=https://www.nytimes.com/2019/07/30/science/mars-tsunami-crater.html |date=July 30, 2019 |work=] |access-date=July 31, 2019 |archive-date=December 14, 2021 |archive-url=https://web.archive.org/web/20211214174217/https://www.nytimes.com/2019/07/30/science/mars-tsunami-crater.html |url-status=live }}</ref><ref name="JGRP-20190626">{{cite journal |last=Costard |first=F. |display-authors=et al. |title=The Lomonosov Crater Impact Event: A Possible Mega-Tsunami Source on Mars |date=June 26, 2019 |journal=] |volume=124 |issue=7 |pages=1840–1851 |doi=10.1029/2019JE006008 |bibcode=2019JGRE..124.1840C |hdl=20.500.11937/76439 |s2cid=198401957 |hdl-access=free }}</ref>
On March 5, 2004, NASA announced that ''Spirit'' had found hints of water history on Mars in a rock dubbed "Humphrey". Raymond Arvidson, the McDonnell University Professor and chair of Earth and planetary sciences at ], reported during a NASA press conference: "If we found this rock on Earth, we would say it is a volcanic rock that had a little fluid moving through it." In contrast to the rocks found by the twin rover ''Opportunity'', this one was formed from ] and then acquired bright material in small crevices, which look like crystallized minerals. If this interpretation holds true, the minerals were most likely dissolved in water, which was either carried inside the rock or interacted with it at a later stage, after it formed.<ref>{{cite web|url=http://marsrovers.jpl.nasa.gov/newsroom/pressreleases/20040305a.html |title=Mars Exploration Rover Mission: Press Releases |publisher=Marsrovers.jpl.nasa.gov |date=March 5, 2004 |accessdate=December 19, 2010}}</ref>


In January 2022, a study about the climate 3 Gy ago on Mars shows that an ocean is stable with a water cycle that is closed.<ref>{{cite journal |last1=Schmidt |first1=Frédéric |last2=Way |first2=Michael|display-authors=et al.|title=Circumpolar ocean stability on Mars 3 Gy ago |journal=Proceedings of the National Academy of Sciences |date=2022 |volume=119 |issue=4 |doi=10.1073/pnas.2112930118 |pmid=35042794 |pmc=8795497 |bibcode=2022PNAS..11912930S |doi-access=free |arxiv=2310.00461 }}</ref> They estimate a return water flow, in form of ice in glacier, from the icy highlands to the ocean is in magnitude less than the Earth at the last glacial maximum. This simulation includes for the first time a circulatin of the ocean. They demonstrate that the ocean's circulation prevent the ocean to freeze. These also shows that simulations are in agreement with observed geomorphological features identified as ancient glacial valleys.
By Sol 390 (Mid-February 2005), as ''Spirit'' was advancing towards "Larry's Lookout", by driving up the hill in reverse, it investigated some targets along the way, including the soil target, "Paso Robles", which contained the highest amount of salt found on the red planet. The soil also contained a high amount of ] in its composition, however not nearly as high as another rock sampled by ''Spirit'', "Wishstone". Squyres said of the discovery, "We're still trying to work out what this means, but clearly, with this much salt around, water had a hand here".


=== Evidence for recent flows ===
As Spirit traveled with a dead wheel in December 2007, pulling the dead wheel behind, the wheel scraped off the upper layer of the martian soil, uncovering a patch of ground that scientists say shows evidence of a past environment that would have been perfect for microbial life. It is similar to areas on Earth where water or steam from hot springs came into contact with volcanic rocks. On Earth, these are locations that tend to teem with bacteria, said rover chief scientist ]. "We're really excited about this," he told a meeting of the American Geophysical Union (AGU). The area is extremely rich in ] – the main ingredient of window glass. The researchers have now concluded that the bright material must have been produced in one of two ways.<ref>{{cite web|url=http://www.nasa.gov/mission_pages/mer/mer-20070521.html |title=NASA - Mars Rover Spirit Unearths Surprise Evidence of Wetter Past |publisher=Nasa.gov |date=2007-05-21 |accessdate=2013-02-10}}</ref> One: hot-spring deposits produced when water dissolved silica at one location and then carried it to another (i.e. a geyser). Two: acidic steam rising through cracks in rocks stripped them of their mineral components, leaving silica behind. "The important thing is that whether it is one hypothesis or the other, the implications for the former habitability of Mars are pretty much the same," Squyres explained to BBC News. Hot water provides an environment in which ]s can thrive and the precipitation of that silica entombs and preserves them. Squyres added, "You can go to ]s and you can go to ]s and at either place on Earth it is teeming with life – ].<ref Name="Amos">{{cite news| last = Amos | first = Jonathan | title = Mars robot unearths microbe clue | work=NASA says its robot rover Spirit has made one of its most significant discoveries on the surface of Mars. |publisher=BBC News | date = December 11, 2007 | url = http://news.bbc.co.uk/2/hi/science/nature/7137793.stm | accessdate =December 12, 2007 }}</ref><ref Name="20071210a">{{cite web| last = Bertster | first = Guy | title = Mars Rover Investigates Signs of Steamy Martian Past | work=Press Release | publisher=Jet Propulsion Laboratory, Pasadena, California | date = December 10, 2007 | url = http://marsrovers.jpl.nasa.gov/newsroom/pressreleases/20071210a.html | accessdate =December 12, 2007 }}</ref>
{{Main|Seasonal flows on warm Martian slopes}}
{{See also|Gully (Mars)}}
].<ref>Stillman, D., et al. 2017. Characteristics of the numerous and widespread recurring slope lineae (RSL) in Valles Marineris, Mars. Icarus. Volume 285. Pages 195-210</ref>]]
]
]


Pure liquid water cannot exist in a stable form on the surface of Mars with its present low atmospheric pressure and low temperature because it would boil, except at the lowest elevations for a few hours.<ref name="Kostama" /><ref name="flows" /> So, a geological mystery commenced in 2006 when observations from NASA's '']'' revealed ] deposits that were not there ten years prior, possibly caused by flowing liquid ] during the warmest months on Mars.<ref name="Impact Cratering Rate">{{cite journal |title=Present-Day Impact Cratering Rate and Contemporary Gully Activity on Mars |journal=Science |date=December 8, 2006 |first1=Michael C. |last1=Malin |first2=Kenneth S. |last2=Edgett |first3=Liliya V. |last3=Posiolova |first4=Shawn M. |last4=McColley |first5=Eldar Z. Noe |last5=Dobrea |volume=314 |issue=5805 |pages=1573–1577 |doi=10.1126/science.1135156 |pmid=17158321 |bibcode=2006Sci...314.1573M|s2cid=39225477 }}</ref><ref name="Head 2008 PNAS">{{cite journal |pmid=18725636 |date=2008 |last1=Head |first1=J. W. |last2=Marchant |first2=D. R |last3=Kreslavsky |first3=M. A. |title=Formation of gullies on Mars: Link to recent climate history and insolation microenvironments implicate surface water flow origin |volume=105 |issue=36 |pages=13258–13263 |doi=10.1073/pnas.0803760105 |pmc=2734344 |journal=] |bibcode=2008PNAS..10513258H|doi-access=free }}</ref> The images were of two craters in ] and ] that appear to show the presence of flows (wet or dry) on Mars at some point between 1999 and 2001.<ref name="Impact Cratering Rate" /><ref>{{cite news |url=https://www.thetimes.co.uk/article/water-has-been-flowing-on-mars-within-past-five-years-nasa-says-srm2hk5hxd0 |title=Water has been flowing on Mars within past five years, Nasa says |work=] |location=London |first=Mark |last=Henderson |date=December 7, 2006 |access-date=June 6, 2022 |archive-date=April 22, 2023 |archive-url=https://web.archive.org/web/20230422115651/https://www.thetimes.co.uk/article/water-has-been-flowing-on-mars-within-past-five-years-nasa-says-srm2hk5hxd0 |url-status=live }}</ref><ref>{{cite journal |last1=Malin |first1=Michael C. |last2=Edgett |first2=Kenneth S. |date=2000 |title=Evidence for Recent Groundwater Seepage and Surface Runoff on Mars |journal=Science |volume=288 |issue=5475 |pages=2330–2335 |doi=10.1126/science.288.5475.2330 |pmid=10875910 |bibcode=2000Sci...288.2330M|s2cid=14232446 }}</ref>
] was directed to a site that had displayed large amounts of hematite from orbit. Hematite often forms from water. When Opportunity landed, layered rocks and marble-like hematite ]s ("blueberries") were easily visible. In its years of continuous operation, Opportunity sent back much evidence that a wide area on Mars was soaked in liquid water.


There is disagreement in the scientific community as to whether or not gullies are formed by liquid water. While some scientists believe that most gullies are formed by liquid water formed from snow or ice melting,<ref>{{Cite journal |last=Christensen |first=Philip R. |date=2003-02-19 |title=Formation of recent martian gullies through melting of extensive water-rich snow deposits |url=http://dx.doi.org/10.1038/nature01436 |journal=Nature |volume=422 |issue=6927 |pages=45–48 |doi=10.1038/nature01436 |pmid=12594459 |bibcode=2003Natur.422...45C |issn=0028-0836 |access-date=April 11, 2024 |archive-date=June 11, 2024 |archive-url=https://web.archive.org/web/20240611060735/https://www.nature.com/articles/nature01436 |url-status=live }}</ref><ref>{{Cite journal |last1=Rai Khuller |first1=Aditya |last2=Russel Christensen |first2=Philip |date=February 2021 |title=Evidence of Exposed Dusty Water Ice within Martian Gullies |url=http://dx.doi.org/10.1029/2020je006539 |journal=Journal of Geophysical Research: Planets |volume=126 |issue=2 |doi=10.1029/2020je006539 |bibcode=2021JGRE..12606539R |issn=2169-9097 |access-date=April 11, 2024 |archive-date=June 11, 2024 |archive-url=https://web.archive.org/web/20240611060736/https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020JE006539 |url-status=live }}</ref><ref>{{cite journal |last1=Dickson |first1=J. L. |last2=Palumbo |first2=A. M. |last3=Head |first3=J. W. |last4=Kerber |first4=L. |last5=Fassett |first5=C. I. |last6=Kreslavsky |first6=M. A. |year=2023 |title=Gullies on Mars could have formed by melting of water ice during periods of high obliquity |journal=Science |volume=380 |issue=6652 |pages=1363–1367 |bibcode=2023Sci...380.1363D |doi=10.1126/science.abk2464 |pmid=37384686 |s2cid=259287608 |doi-access=free}}</ref> other scientists believe that gullies are formed by dry flows possibly lubricated by sublimating carbon dioxide that forms from freezing of the martian atmosphere.<ref>{{Cite journal |last1=Dundas |first1=Colin M. |last2=McEwen |first2=Alfred S. |last3=Diniega |first3=Serina |last4=Hansen |first4=Candice J. |last5=Byrne |first5=Shane |last6=McElwaine |first6=Jim N. |date=2017-11-27 |title=The formation of gullies on Mars today |url=http://dx.doi.org/10.1144/sp467.5 |journal=Geological Society, London, Special Publications |volume=467 |issue=1 |pages=67–94 |doi=10.1144/sp467.5 |issn=0305-8719|hdl=10150/633371 |hdl-access=free }}</ref><ref name="ICRS-20170928"/><ref>{{cite journal |doi=10.1016/j.icarus.2009.09.009 |last1=Kolb |first1=K. |last2=Pelletier |date=2010 |first2=Jon D. |last3=McEwen |first3=Alfred S. |title=Modeling the formation of bright slope deposits associated with gullies in Hale Crater, Mars: Implications for recent liquid water |journal=Icarus |volume=205 |issue=1 |pages=113–137 |bibcode=2010Icar..205..113K}}</ref>
During a press conference in March 2006, mission scientists discussed their conclusions about the bedrock, and the evidence for the presence of liquid water during their formation. They presented the following reasoning to explain the small, elongated voids in the rock visible on the surface and after grinding into it (see last two images below).<ref name="marsrovers">{{cite web|url=http://marsrovers.jpl.nasa.gov/newsroom/pressreleases/20040302a.html|title=Opportunity Rover Finds Strong Evidence Meridiani Planum Was Wet|accessdate=July 8, 2006}}</ref> These voids are consistent with features known to geologists as "]s". These are formed when crystals form inside a rock matrix and are later removed through erosive processes, leaving behind voids. Some of the features in this picture are "disk-like", which is consistent with certain types of crystals, notably sulfate minerals. Additionally, mission members presented first data from the ] taken at the bedrock site. The iron spectrum obtained from the rock ''El Capitan'' shows strong evidence for the mineral ]. This mineral contains ] ions, which indicates the presence of water when the minerals were formed. Mini-TES data from the same rock showed that it consists of a considerable amount of sulfates. Sulfates also contain water.
<center><gallery>
Image:Opportunity photo of Mars outcrop rock.jpg|Close up of a rock outcrop.
Image:Opp layered sol17-B017R1 br.jpg|Thin Rock layers, not all parallel to each other
Image:Xpe First Opp RAT-B032R1 br.jpg|Section of hole created by RAT
Image:17-jg-03-mi2-B035R1_br.jpg|Voids or "vugs" inside the rock
</gallery></center>


Some studies attest that gullies forming in the southern highlands could not be formed by water due to improper conditions. The low pressure, non-geothermal, colder regions would not give way to liquid water at any point in the year but would be ideal for solid carbon dioxide. The carbon dioxide melting in the warmer summer would yield liquid carbon dioxide which would then form the gullies.<ref>{{cite journal |last=Hoffman |first=Nick |title=Active polar gullies on Mars and the role of carbon dioxide |journal=Astrobiology |volume=2 |issue=3 |date=2002 |pages=313–323 |doi=10.1089/153110702762027899 |pmid=12530241|bibcode=2002AsBio...2..313H }}</ref><ref>{{cite journal |last1=Musselwhite |first1=Donald S. |first2=Timothy D. |last2=Swindle |first3=Jonathan I. |last3=Lunine |title=Liquid CO2 breakout and the formation of recent small gullies on Mars |journal=Geophysical Research Letters |volume=28 |issue=7 |date=2001 |pages=1283–1285 |doi=10.1029/2000gl012496 |bibcode=2001GeoRL..28.1283M|doi-access=free }}</ref> Even if gullies are carved by flowing water at the surface, the exact source of the water and the mechanisms behind its motion are not understood.<ref name="hirise2">{{cite journal |last1=McEwen |first1=Alfred. S. |last2=Ojha |first2=Lujendra |last3=Dundas |first3=Colin M. |date=June 17, 2011 |title=Seasonal Flows on Warm Martian Slopes |journal=Science |volume=333 |issue=6043 |pages=740–743 |publisher=American Association for the Advancement of Science |doi=10.1126/science.1204816 |issn=0036-8075 |bibcode=2011Sci...333..740M |pmid=21817049|s2cid=10460581 }}</ref>
] found evidence for water in the Columbia Hills of Gusev crater. In the Clovis group of rocks the ](MB) detected ].<ref>Klingelhofer, G., et al. (2005) Lunar Planet. Sci. XXXVI abstr. 2349</ref> Goethite forms only in the presence of water, so its discovery is the first direct evidence of past water in the Columbia Hills's rocks. In addition, the MB spectra of rocks and outcrops displayed a strong decline in olivine presence,<ref>Schroder, C., et al. (2005) European Geosciences Union, General Assembly, Geophysical Research abstr., Vol. 7, 10254, 2005</ref>
although the rocks probably once contained much olivine.<ref>Morris,S., et al. Mossbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit’s journal through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills. J. Geophys. Res: 111</ref> Olivine is a marker for the lack of water because it easily decomposes in the presence of water. Sulfate was found, and it needs water to form. Other rock groups also contained sulfates. One type of soil, called Paso Robles, from the Columbia Hills, may be an evaporate deposit because it contains large amounts of sulfur, ], ], and ].<ref>Ming,D., et al. 2006 Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars. J. Geophys. Res.111</ref> In addition, the MB found that much of the iron in Paso Robles soil was of the oxidized, Fe<sup>+++</sup> form, which would happen if water had been present.<ref>Bell, J (ed.) The Martian Surface. 2008. Cambridge University Press. ISBN 978-0-521-86698-9</ref>


In August 2011, NASA announced the discovery of current seasonal changes on steep slopes below rocky outcrops near crater rims in the Southern hemisphere. These dark streaks, now called ] (RSL), were seen to grow downslope during the warmest part of the Martian Summer, then to gradually fade through the rest of the year, recurring cyclically between years.<ref name="NASA-20131210" /> The researchers suggested these marks were consistent with salty water (]s) flowing downslope and then evaporating, possibly leaving some sort of residue.<ref>{{cite web |url=http://www.nasa.gov/mission_pages/MRO/news/mro20110804.html |title=NASA Spacecraft Data Suggest Water Flowing on Mars |publisher=] |date=August 4, 2011 |access-date=August 4, 2011 |archive-date=March 4, 2016 |archive-url=https://web.archive.org/web/20160304075750/http://www.nasa.gov/mission_pages/MRO/news/mro20110804.html |url-status=dead }}</ref><ref name="SeasonalFlowsScience">{{cite journal| last1=McEwen| first1=Alfred| last2=Lujendra| first2=Ojha| last3=Dundas| first3=Colin| last4=Mattson| first4=Sarah| last5=Bryne| first5=S| last6=Wray| first6=J.| last7=Cull| first7=Selby| last8=Murchie| first8=Scott| last9=Thomas| first9=Nicholas| last10=Gulick| first10=Virginia| title=Seasonal Flows On Warm Martian Slopes| journal=Science| date=August 5, 2011| volume=333| issue=6043| pages=743| doi=10.1126/science.1204816| pmid=21817049| df=mdy-all| bibcode=2011Sci...333..740M| s2cid=10460581}}</ref> The CRISM spectroscopic instrument has since made direct observations of hydrous salts appearing at the same time that these recurrent slope lineae form, confirming in 2015 that these lineae are produced by the flow of liquid brines through shallow soils. The lineae contain hydrated chlorate and ] salts ({{chem|Cl|O|4}}<sup>−</sup>), which contain liquid water molecules.<ref>{{Cite web| title = NASA Finds 'Definitive' Liquid Water on Mars|url = http://news.nationalgeographic.com/2015/09/150928-mars-liquid-water-confirmed-surface-streaks-space-astronomy/|archive-url = https://web.archive.org/web/20150930194303/http://news.nationalgeographic.com/2015/09/150928-mars-liquid-water-confirmed-surface-streaks-space-astronomy/|url-status = dead|archive-date = September 30, 2015|website = National Geographic News|access-date = September 30, 2015|first1 = Nadia|last1 = Drake|author1-link = Nadia Drake |date = September 28, 2015}}</ref> The lineae flow downhill in Martian summer, when the temperature is above {{convert|-23|C|F K}}.<ref>{{Cite web|title = Water Flows on Mars Today, NASA Announces|url = http://www.scientificamerican.com/article/water-flows-on-mars-today-nasa-announces/|access-date = September 30, 2015|first = Clara|last = Moskowitz|website = ]|archive-date = May 15, 2021|archive-url = https://web.archive.org/web/20210515071020/https://www.scientificamerican.com/article/water-flows-on-mars-today-nasa-announces/|url-status = live}}</ref> However, the source of the water remains unknown.<ref name="Ojhaetal2015" /><ref>{{Cite web|url = https://www.youtube.com/watch?v=bDv4FRHI3J8|title = NASA News Conference: Evidence of Liquid Water on Today's Mars|date = September 28, 2015|publisher = NASA|access-date = September 30, 2015|archive-date = October 1, 2015|archive-url = https://web.archive.org/web/20151001113935/https://www.youtube.com/watch?v=bDv4FRHI3J8|url-status = live}}</ref><ref>{{Cite web|title = NASA Confirms Evidence That Liquid Water Flows on Today's Mars|url = http://www.nasa.gov/press-release/nasa-confirms-evidence-that-liquid-water-flows-on-today-s-mars/|access-date = September 30, 2015|date = September 28, 2015|archive-date = January 4, 2022|archive-url = https://web.archive.org/web/20220104123015/https://www.nasa.gov/press-release/nasa-confirms-evidence-that-liquid-water-flows-on-today-s-mars/|url-status = live}}</ref> However, neutron spectrometer data by the '']'' orbiter obtained over one decade, was published in December 2017, and shows no evidence of water (hydrogenated regolith) at the active sites, so its authors also support the hypotheses of either short-lived atmospheric water vapour deliquescence, or dry granular flows.<ref name="ICRS-20170928" /> They conclude that liquid water on today's Mars may be limited to traces of dissolved moisture from the atmosphere and thin films, which are challenging environments for life as it is currently known.<ref name="jpl.nasa.gov">{{cite web |url=https://www.jpl.nasa.gov/news/news.php?release=2017-299 |title=Recurring Martian Streaks: Flowing Sand, Not Water? |work=JPL NASA News |publisher=Jet Propulsion Laboratory, NASA |date=November 20, 2017 |access-date=December 18, 2017 |archive-date=November 9, 2020 |archive-url=https://web.archive.org/web/20201109033737/https://www.jpl.nasa.gov/news/news.php?release=2017-299 |url-status=live }}</ref>
After Spirit stopped working scientists studied old data from the Miniature Thermal Emission Spectrometer, or ] and confirmed the presence of large amounts of ]-rich rocks, which means that regions of the planet may have once harbored water. The carbonates were discovered in an outcrop of rocks called "Comanche."<ref>{{cite web|url=http://www.sciencedaily.com/releases/2010/06/100603140959.htm |title=Outcrop of long-sought rare rock on Mars found |doi=10.1126/science.1189667 |publisher=Sciencedaily.com |date=2010-06-04 |accessdate=2013-02-10}}</ref><ref>
Richard V. Morris, Steven W. Ruff, Ralf Gellert, Douglas W. Ming, Raymond E. Arvidson, Benton C. Clark, D. C. Golden, Kirsten Siebach, Göstar Klingelhöfer, Christian Schröder, Iris Fleischer, Albert S. Yen, Steven W. Squyres. Identification of Carbonate-Rich Outcrops on Mars by the Spirit Rover. ''Science'', June 3, 2010 {{doi|10.1126/science.1189667}}</ref>


An alternative scenario is a Knudsen pump effect, from photophoretic when shadows occurs in a granular material.<ref name='Scmhidt Knudsen pump 2017'>{{cite journal | doi = 10.1038/ngeo2917 | volume=10 | title=Formation of recurring slope lineae on Mars by rarefied gas-triggered granular flows | year=2017 | journal=Nature Geoscience | pages=270–273 | last1 = Schmidt | first1 = Frédéric | last2 = Andrieu | first2 = François | last3 = Costard | first3 = François | last4 = Kocifaj | first4 = Miroslav | last5 = Meresescu | first5 = Alina G.| issue=4 | arxiv = 1802.05018 | bibcode=2017NatGe..10..270S | s2cid=55016186 }}</ref> The authors demonstrated that the RSLs stopped at an angle of 28° in Garni crater, in agreement with dry granular avalanche. In addition, the authors pointed out several limitations of the wet hypothesis, such as the fact that the detection of water was only indirect (salt detection but not water).
On September 27, 2012, ] announced that the '']'' found evidence for an ancient ] suggesting a "vigorous flow" of water on Mars.<ref name="NASA-20120927" /><ref name="NASA-20120927a" /><ref name="AP-20120927" />
{{Multiple image |direction=horizontal |align=center |width=250 |image1=PIA16158-Mars Curiosity Rover-Water-AlluvialFan.jpg |image2=PIA16156-Mars Curiosity Rover-Water-AncientStreambed.jpg |image3=PIA16189 fig1-Curiosity Rover-Rock Outcrops-Mars and Earth.jpg |caption1=] and related ] near the ] landing ellipse and ] (noted by +). |caption2="]" ] on Mars - an ancient ] viewed by the ] (September 14, 2012) () (). |caption3="]" ] on Mars - compared with a terrestrial ] - suggesting water "vigorously" flowing in a ]. |footer=<center>'']'' on the way to ] (September 26, 2012).</center> |header=Evidence of ] on ]<ref name="NASA-20120927">{{cite web|last1=Brown |first1=Dwayne |last2=Cole |first2=Steve |last3=Webster |first3=Guy |last4=Agle |first4=D.C.|title=NASA Rover Finds Old Streambed On Martian Surface|url=http://www.nasa.gov/home/hqnews/2012/sep/HQ_12-338_Mars_Water_Stream.html |date=September 27, 2012|publisher=] |accessdate=September 28, 2012 }}</ref><ref name="NASA-20120927a">{{cite web|author=] |title=NASA's Curiosity Rover Finds Old Streambed on Mars - video (51:40)|url=http://www.youtube.com/watch?v=fYo31XjoXOk |date=September 27, 2012 |publisher=]television|accessdate=September 28, 2012 }}</ref><ref name="AP-20120927">{{cite news |last=Chang|first=Alicia |title=Mars rover Curiosity finds signs of ancient stream|url=http://apnews.excite.com/article/20120927/DA1IDOO00.html|date=September 27, 2012 |agency=Associated Press|accessdate=September 27, 2012 }}</ref> }}
On December 3, 2012, NASA reported that '']'' performed its first extensive ], revealing the presence of water molecules, ] and ] in the ].<ref name="NASA-20121203">{{cite web |last=Brown |first=Dwayne |last2=Webster |first2=Guy |last3=Jones |first3=Nance Neal |title=NASA Mars Rover Fully Analyzes First Martian Soil Samples|url=http://mars.jpl.nasa.gov/msl/news/whatsnew/index.cfm?FuseAction=ShowNews&NewsID=1399 |date=December 3, 3012|publisher=] |accessdate=December 3, 2012 }}</ref><ref name="NYT-20121203">{{cite web |last=Chang|first=Ken |title=Mars Rover Discovery Revealed|url=http://thelede.blogs.nytimes.com/2012/12/03/mars-rover-discovery-revealed |date=December 3, 2012|work=] |accessdate=December 3, 2012 }}</ref>


== Present water ==
On March 18, 2013, NASA reported evidence from instruments on the ] of ], likely hydrated ], in several ] including the broken fragments of ] and ] as well as in ] and ] in other rocks like ] and ].<ref name="NASA-20130318">{{cite web|last1=Webster |first1=Guy |last2=Brown |first2=Dwayne|title=Curiosity Mars Rover Sees Trend In Water Presence|url=http://mars.jpl.nasa.gov/msl/news/whatsnew/index.cfm?FuseAction=ShowNews&NewsID=1446 |date=March 18, 2013|work=] |accessdate=March 20, 2013 }}</ref><ref name="BBC-20130319">{{cite web |last=Rincon|first=Paul|title=Curiosity breaks rock to reveal dazzling white interior|url=http://www.bbc.co.uk/news/science-environment-21340279 |date=March 19, 2013|publisher=]|accessdate=March 19, 2013 }}</ref><ref name="MSN-20130120">{{cite web |author=Staff|title=Red planet coughs up a white rock, and scientists freak out|url=http://now.msn.com/white-mars-rock-called-tintina-found-by-curiosity-rover |date=March 20, 2013|work=] |accessdate=March 20, 2013 }}</ref> Analysis using the rover's ] provided evidence of subsurface water, amounting to as much as 4% water content, down to a depth of {{convert|60|cm|ft|abbr=on}}, in the rover's traverse from the '']'' site to the ''Yellowknife Bay'' area in the ] terrain.<ref name="NASA-20130318" />
{{multiple image
|align=right
|direction=vertical
|width=200
|image1=Water equivalent hydrogen abundance in the lower latitudes of Mars 01.jpg
|image2=Water equivalent hydrogen abundance in the high latitudes of Mars.jpg
|caption2=Proportion of water ice present in the upper meter of the Martian surface for lower (top) and higher (bottom) latitudes. The percentages are derived through stoichiometric calculations based on epithermal neutron fluxes. These fluxes were detected by the Neutron Spectrometer aboard the 2001 Mars Odyssey spacecraft.}}
{{See also|Groundwater on Mars}}
A significant amount of surface ] has been observed globally by the ] neutron spectrometer and ]<ref name="Boynton2007">{{cite journal |last=Boynton |first=W. V. |display-authors=etal |date=2007 |title=Concentration of H, Si, Cl, K, Fe, and Th in the low and mid latitude regions of Mars |journal=] |volume=112 |issue=E12 |pages=E12S99 |doi=10.1029/2007JE002887 |bibcode=2007JGRE..11212S99B|doi-access=free }}</ref> and the ] High Resolution Stereo Camera (HRSC).<ref>{{Cite web|title=Mars Express|url=https://www.esa.int/Science_Exploration/Space_Science/Mars_Express|access-date=2022-01-21|website=www.esa.int|language=en|archive-date=January 21, 2022|archive-url=https://web.archive.org/web/20220121174039/https://www.esa.int/Science_Exploration/Space_Science/Mars_Express|url-status=live}}</ref> This hydrogen is thought to be incorporated into the molecular structure of ice, and through ] calculations the observed fluxes have been converted into concentrations of water ice in the upper meter of the Martian surface. This process has revealed that ice is both widespread and abundant on the present surface. Below 60 degrees of latitude, ice is concentrated in several regions, particularly around the ] volcanoes, ], and northwest of ], and exists in concentrations up to 18% ice in the subsurface. Above 60 degrees latitude, ice is highly abundant. Polewards on 70 degrees of latitude, ice concentrations exceed 25% almost everywhere, and approach 100% at the poles.<ref>{{cite journal |last1=Feldman |first1=W. C. |last2=Prettyman |first2=T. H. |last3=Maurice |first3=S. |last4=Plaut |first4=J. J. |last5=Bish |first5=D. L. |last6=Vaniman |first6=D. T. |last7=Tokar |first7=R. L. |date=2004 |title=Global distribution of near-surface hydrogen on Mars |journal=Journal of Geophysical Research |volume=109 |issue=E9 |page=E9 |id=E09006 |doi=10.1029/2003JE002160 |bibcode=2004JGRE..109.9006F|doi-access=free }}</ref> The ] and ] radar sounding instruments have also confirmed that individual surface features are ice rich. Due to the known instability of ice at current Martian surface conditions, it is thought that almost all of this ice is covered by a thin layer of rocky or dusty material.


The Mars Odyssey neutron spectrometer observations indicate that if all the ice in the top meter of the Martian surface were spread evenly, it would give a Water Equivalent Global layer (WEG) of at least ≈{{convert|14|cm}}—in other words, the globally averaged Martian surface is approximately 14% water.<ref name=Feldman2004>{{cite journal |last=Feldman |first=W. C. |display-authors=etal |date=2004 |title=Global distribution of near-surface hydrogen on Mars|journal= Journal of Geophysical Research|doi=10.1029/2003JE002160 |bibcode=2004JGRE..109.9006F |volume=109 |issue=E9|pages=E09006 |doi-access=free }}</ref> The water ice currently locked in both Martian poles corresponds to a WEG of {{convert|30|m}}, and geomorphic evidence favors significantly larger quantities of ] over geologic history, with WEG as deep as {{convert|500|m}}.<ref name="ChristensenIceBudget">{{cite journal |last=Christensen |first=P. R. |date=2006 |title=Water at the Poles and in Permafrost Regions of Mars |journal=Elements |issue=2 |volume=3 |pages=151–155|doi=10.2113/gselements.2.3.151 |bibcode=2006Eleme...2..151C }}</ref><ref name="Feldman2004" /> It is thought that part of this past water has been lost to the deep subsurface, and part to space, although the detailed mass balance of these processes remains poorly understood.<ref name="Carr" /> The current atmospheric reservoir of water is important as a conduit allowing gradual migration of ice from one part of the surface to another on both seasonal and longer timescales, but it is insignificant in volume, with a WEG of no more than {{convert|10|μm}}.<ref name="Feldman2004" />
=== Mars Reconnaissance Orbiter ===

{{Main|Evidence of water on Mars found by Mars Reconnaissance Orbiter}}
It is possible that liquid water could also exist on the surface of Mars through the formation of ]s suggested by the abundance of hydrated salts.<ref>{{Cite journal |last1=Chevrier |first1=Vincent F. |last2=Rivera-Valentin |first2=Edgard G. |date=November 2012 |title=Formation of recurring slope lineae by liquid brines on present-day Mars: LIQUID BRINES ON MARS |journal=Geophysical Research Letters |language=en |volume=39 |issue=21 |pages=n/a |doi=10.1029/2012GL054119|s2cid=1077206 |doi-access=free }}</ref><ref>{{Cite journal |last1=Gough |first1=R.V. |last2=Primm |first2=K.M. |last3=Rivera-Valentín |first3=E.G. |last4=Martínez |first4=G.M. |last5=Tolbert |first5=M.A. |date=March 2019 |title=Solid-solid hydration and dehydration of Mars-relevant chlorine salts: Implications for Gale Crater and RSL locations |url=https://linkinghub.elsevier.com/retrieve/pii/S0019103518304469 |journal=Icarus |language=en |volume=321 |pages=1–13 |doi=10.1016/j.icarus.2018.10.034 |bibcode=2019Icar..321....1G |s2cid=106323485 |access-date=May 13, 2022 |archive-date=July 7, 2022 |archive-url=https://web.archive.org/web/20220707162400/https://linkinghub.elsevier.com/retrieve/pii/S0019103518304469 |url-status=live }}</ref> Brines are significant on Mars because they can stabilize liquid water at lower temperatures than pure water on its own.<ref name=":0">{{Cite journal |last1=Chevrier |first1=Vincent F. |last2=Altheide |first2=Travis S. |date=2008-11-18 |title=Low temperature aqueous ferric sulfate solutions on the surface of Mars |journal=Geophysical Research Letters |language=en |volume=35 |issue=22 |pages=L22101 |doi=10.1029/2008GL035489 |bibcode=2008GeoRL..3522101C |s2cid=97468338 |issn=0094-8276|doi-access=free }}</ref><ref>{{Cite journal |last1=Chevrier |first1=Vincent F. |last2=Hanley |first2=Jennifer |last3=Altheide |first3=Travis S. |date=2009-05-20 |title=Stability of perchlorate hydrates and their liquid solutions at the Phoenix landing site, Mars |journal=Geophysical Research Letters |language=en |volume=36 |issue=10 |pages=L10202 |doi=10.1029/2009GL037497 |bibcode=2009GeoRL..3610202C |s2cid=42150205 |issn=0094-8276|doi-access=free }}</ref> Pure liquid water is unstable on the surface of the planet, as it is subjected to freezing, evaporation, and boiling.<ref name=":0" /> Similar to how salt is applied to roads on Earth to prevent them from icing over, briny mixtures of water and salt on Mars may have low enough freezing points to lead to stable liquid at the surface. Given the complex nature of the Martian ], mixtures of salts are known to change the stability of brines.<ref>{{Cite journal |last1=Gough |first1=R.V. |last2=Chevrier |first2=V.F. |last3=Tolbert |first3=M.A. |date=May 2014 |title=Formation of aqueous solutions on Mars via deliquescence of chloride–perchlorate binary mixtures |url=https://linkinghub.elsevier.com/retrieve/pii/S0012821X14000752 |journal=Earth and Planetary Science Letters |language=en |volume=393 |pages=73–82 |doi=10.1016/j.epsl.2014.02.002 |bibcode=2014E&PSL.393...73G |access-date=May 13, 2022 |archive-date=July 7, 2022 |archive-url=https://web.archive.org/web/20220707055829/https://linkinghub.elsevier.com/retrieve/pii/S0012821X14000752 |url-status=live }}</ref> Modeling the ] of salt mixtures can be used to test for brine stability and can help us determine if liquid brines are present on the surface of Mars. The composition of the Martian regolith, determined by the ] lander, can be used to constrain these models and give an accurate representation of how brines may actually form on the planet.<ref>{{Cite journal |last1=Hecht |first1=M. H. |last2=Kounaves |first2=S. P. |last3=Quinn |first3=R. C. |last4=West |first4=S. J. |last5=Young |first5=S. M. M. |last6=Ming |first6=D. W. |last7=Catling |first7=D. C. |last8=Clark |first8=B. C. |last9=Boynton |first9=W. V. |last10=Hoffman |first10=J. |last11=DeFlores |first11=L. P. |date=2009-07-03 |title=Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site |url=https://www.science.org/doi/10.1126/science.1172466 |journal=Science |language=en |volume=325 |issue=5936 |pages=64–67 |doi=10.1126/science.1172466 |pmid=19574385 |bibcode=2009Sci...325...64H |s2cid=24299495 |issn=0036-8075 |access-date=May 13, 2022 |archive-date=May 13, 2022 |archive-url=https://web.archive.org/web/20220513184052/https://www.science.org/doi/10.1126/science.1172466 |url-status=live }}</ref><ref>{{Cite journal |last1=Kounaves |first1=Samuel P. |last2=Hecht |first2=Michael H. |last3=Kapit |first3=Jason |last4=Quinn |first4=Richard C. |last5=Catling |first5=David C. |last6=Clark |first6=Benton C. |last7=Ming |first7=Douglas W. |last8=Gospodinova |first8=Kalina |last9=Hredzak |first9=Patricia |last10=McElhoney |first10=Kyle |last11=Shusterman |first11=Jennifer |date=May 2010 |title=Soluble sulfate in the martian soil at the Phoenix landing site: SULFATE AT THE PHOENIX LANDING SITE |url=http://doi.wiley.com/10.1029/2010GL042613 |journal=Geophysical Research Letters |language=en |volume=37 |issue=9 |pages=n/a |doi=10.1029/2010GL042613|bibcode=2010GeoRL..37.9201K |s2cid=12914422 }}</ref> Results of these models give ] values for various salts at different temperatures, where the lower the water activity, the more stable the brine. At temperatures between 208 K and 253 K, ] salts exhibit the lowest water activity values, and below 208 K ] salts exhibit the lowest values. Results of modeling show that the aforementioned complex mixtures of salts do not significantly increase the stability of brines, indicating that brines may not be a significant source of liquid water at the surface of Mars.<ref>{{Cite journal |last=Chevrier |first=Vincent |date=2022 |title=Limited stability of multi-component brines on the surface of Mars |journal=The Planetary Science Journal|volume=3 |issue=5 |page=125 |doi=10.3847/PSJ/ac6603 |bibcode=2022PSJ.....3..125C |s2cid=249227810 |doi-access=free }}</ref>
The ]'s ] instrument has taken many images that strongly suggest that Mars has had a rich history of water-related processes. A major discovery was finding evidence of hot springs. These may have contained life and may now contain well-preserved fossils of life.

Research, in the January 2010 issue of ''Icarus'', described strong evidence for sustained precipitation in the area around Valles Marineris.<ref name="10.1016/j.icarus.2009.04.017">{{cite journal | doi = 10.1016/j.icarus.2009.04.017 | last1 = Weitz | first1 = C. | last2 = Milliken | year = 2010 | first2 = R.E. | last3 = Grant | first3 = J.A. | last4 = McEwen | first4 = A.S. | last5 = Williams | first5 = R.M.E. | last6 = Bishop | first6 = J.L. | last7 = Thomson | first7 = B.J. | title = Mars Reconnaissance Orbiter observations of light-toned layered deposits and associated fluvial landforms on the plateaus adjacent to Valles Marineris | url = | journal=Icarus | volume = 205 | pages = 73–102 | bibcode = 2010Icar..205...73W }}</ref><ref name="sciencedirect.com"/> The types of minerals there are associated with water. Also, the high density of small branching channels indicates a great deal of precipitation because they are similar to stream channels on the Earth.
=== Polar ice caps ===
], as seen by ]. These springs may be good places to look for evidence of past life because hot springs can preserve evidence of life forms for a long time. Location is ]. ]]
{{Main|Martian polar ice caps}}
<gallery>
] acquired this image of the Martian north polar ice cap in early northern summer.]]
Image:Ius Channels.jpg|Channels near the rim of Ius Chasma, as seen by HiRISE. The pattern and high density of these channels support precipitation as the source of the water. Location is ].

Image:Inverted terrain in Parana Valles.JPG|Example of inverted terrain in Parana Valles region, as seen by HiRISE under the HiWish program.
The existence of ice in the Martian northern (]) and southern (]) polar caps has been known since the time of ] orbiter.<ref>{{Cite journal|last=Cutts|first=James A.|date=1973-07-10|title=Nature and origin of layered deposits of the Martian polar regions|journal=Journal of Geophysical Research|language=en|volume=78|issue=20|pages=4231–4249|doi=10.1029/JB078i020p04231|bibcode=1973JGR....78.4231C}}</ref> However, the amount and purity of this ice were not known until the early 2000s. In 2004, the ] radar sounder on the European '']'' satellite confirmed the existence of relatively clean ice in the south polar ice cap that extends to a depth of {{convert|3.7|km|mi}} below the surface.<ref name="NASAwater">{{cite web |publisher=NASA |date=March 15, 2007 |title=Mars' South Pole Ice Deep and Wide |work=NASA News & Media Resources |url=http://www.nasa.gov/mission_pages/mars/news/mars-20070315.html |access-date=March 18, 2013 |archive-date=December 8, 2021 |archive-url=https://web.archive.org/web/20211208131250/http://www.nasa.gov/mission_pages/mars/news/mars-20070315.html |url-status=dead }}</ref><ref name="Plaut2007">{{cite journal |last=Plaut |first=J. J. |display-authors=etal |title=Subsurface Radar Sounding of the South Polar Layered Deposits of Mars |journal=Science |date=March 15, 2007 |doi=10.1126/science.1139672 |volume=316 |issue=5821 |pages=92–95 |pmid=17363628|bibcode=2007Sci...316...92P |s2cid=23336149 |doi-access=free }}</ref> Similarly, the SHARAD radar sounder on board the '']'' observed the base of the north polar cap 1.5 – 2&nbsp;km beneath the surface. Together, the volume of ice present in the Martian north and south polar ice caps is similar to that of the ].<ref>{{Cite journal|last=Byrne|first=Shane|date=2009|title=The Polar Deposits of Mars|journal=Annual Review of Earth and Planetary Sciences|volume=37|issue=1|pages=535–560|doi=10.1146/annurev.earth.031208.100101|bibcode=2009AREPS..37..535B|s2cid=54874200}}</ref> ]
Image:Antoniadi Crater Stream Channels.JPG|Inverted Stream Channels in ]. Location is ].

</gallery>
An even larger ice sheet on south polar region sheet is suspected to have retreated in ancient times (]), that may have contained 20 million km<sup>3</sup> of water ice, which is equivalent to a layer 137 m deep over the entire planet.<ref>Scanlon, K., et al. 2018. The Dorsa Argentea Formation and the Noachian-Hesperian climate transition. Icarus: 299, 339–363.</ref><ref>Head, J, S. Pratt. 2001. Extensive Hesperian-aged south polar ice sheet on Mars: Evidence for massive melting and retreat, and lateral flow and pending of meltwater. J. Geophys. Res.-Planet, 106 (E6), 12275-12299.</ref>
Some places on Mars show ]. In these locations, a stream bed appears as a raised feature, instead of a depression. The inverted former stream channels may be caused by the deposition of large rocks or due to cementation of loose materials. In either case erosion would erode the surrounding land and consequently leave the old channel as a raised ridge because the ridge will be more resistant to erosion. Images below, taken with HiRISE show sinuous ridges that are old channels that have become inverted.<ref>{{cite web|url=http://hiroc.lpl.arizona.edu/images/PSP/diafotizo.php?ID=PSP_002279_1735 |title=HiRISE &#124; Sinuous Ridges Near Aeolis Mensae |publisher=Hiroc.lpl.arizona.edu |date=January 31, 2007 |accessdate=December 19, 2010}}</ref>

Both polar caps reveal abundant internal layers of ice and dust when examined with images of the spiral-shaped troughs that cut through their volume, and the subsurface radar measurements showed that these layers extend continuously across the ice sheets. This layering contains a record of past climates on Mars, just how Earth's ice sheets have a record for Earth's climate. Reading this record is not straightforward however,<ref>{{cite journal|last1=Fishbaugh|first1=KE|last2=Byrne|first2=Shane|last3=Herkenhoff|first3=Kenneth E.|last4=Kirk|first4=Randolph L.|last5=Fortezzo|first5=Corey|last6=Russell|first6=Patrick S.|last7=McEwen|first7=Alfred|date=2010|title=Evaluating the meaning of "layer" in the Martian north polar layered depsoits and the impact on the climate connection|url=http://www.lpl.arizona.edu/~shane/publications/fishbaugh_etal_icarus_2010.pdf|journal=Icarus|volume=205|issue=1|pages=269–282|bibcode=2010Icar..205..269F|doi=10.1016/j.icarus.2009.04.011|access-date=January 19, 2012|archive-date=July 6, 2021|archive-url=https://web.archive.org/web/20210706110813/https://www.lpl.arizona.edu/~shane/publications/fishbaugh_etal_icarus_2010.pdf|url-status=live}}</ref> so, many researchers have studied this layering not only to understand the structure, history, and flow properties of the caps,<ref name="Carr" /> but also to understand the evolution of climate on Mars.<ref>{{Cite web|url=https://eos.org/research-spotlights/how-mars-got-its-layered-north-polar-cap|title=How Mars Got Its Layered North Polar Cap|website=Eos|date=February 8, 2017|language=en-US|access-date=2019-09-26|archive-date=November 10, 2021|archive-url=https://web.archive.org/web/20211110122705/https://eos.org/research-spotlights/how-mars-got-its-layered-north-polar-cap|url-status=live}}</ref><ref>{{Cite web|url=https://eos.org/editor-highlights/peeling-back-the-layers-of-the-climate-of-mars|title=Peeling Back the Layers of the Climate of Mars|website=Eos|date=July 18, 2019|language=en-US|access-date=2019-09-26|archive-date=December 5, 2021|archive-url=https://web.archive.org/web/20211205213045/https://eos.org/editor-highlights/peeling-back-the-layers-of-the-climate-of-mars|url-status=live}}</ref>

Surrounding the polar caps are many smaller ice sheets inside craters, some of which lie under thick deposits of sand or martian dust.<ref>{{Cite journal|last1=Conway|first1=Susan J.|last2=Hovius|first2=Niels|last3=Barnie|first3=Talfan|last4=Besserer|first4=Jonathan|last5=Le Mouélic|first5=Stéphane|last6=Orosei|first6=Roberto|last7=Read|first7=Natalie Anne|date=2012-07-01|title=Climate-driven deposition of water ice and the formation of mounds in craters in Mars' north polar region|journal=Icarus|volume=220|issue=1|pages=174–193|doi=10.1016/j.icarus.2012.04.021|issn=0019-1035|bibcode=2012Icar..220..174C|s2cid=121435046|url=https://hal-insu.archives-ouvertes.fr/insu-02276816/file/HAL_Conway_icarus_2012.pdf|access-date=October 14, 2019|archive-date=September 18, 2021|archive-url=https://web.archive.org/web/20210918070138/https://hal-insu.archives-ouvertes.fr/insu-02276816/file/HAL_Conway_icarus_2012.pdf|url-status=live}}</ref><ref>{{Cite web|url=https://phys.org/news/2019-09-ice-islands-mars-pluto-reveal.html|title=Ice islands on Mars and Pluto could reveal past climate change|website=phys.org|language=en-us|access-date=2019-09-26|archive-date=October 9, 2021|archive-url=https://web.archive.org/web/20211009114210/https://phys.org/news/2019-09-ice-islands-mars-pluto-reveal.html|url-status=live}}</ref> Particularly, the {{convert|81.4|km|mi}} wide ], is estimated to contain approximately {{convert|2200|km3|mi3}} of water ice exposed to the surface.<ref name="DLR">{{cite web |title=A winter wonderland in red and white – Korolev Crater on Mars |url=https://www.dlr.de/content/en/articles/news/2018/4/20181220_korolev-crater-on-mars.html |website=German Aerospace Center (DLR) |access-date=20 December 2018 |archive-date=October 17, 2020 |archive-url=https://web.archive.org/web/20201017062246/https://www.dlr.de/content/en/articles/news/2018/4/20181220_korolev-crater-on-mars.html |url-status=live }}</ref> Korolev's floor lies about {{convert|2|km|mi}} below the rim, and is covered by a {{convert|1.8|km|mi}} deep central mound of permanent water ice, up to {{convert|60|km|mi}} in diameter.<ref name="DLR"/><ref name="TG1218">{{cite news|url=https://www.theguardian.com/science/2018/dec/21/mars-express-beams-back-images-of-ice-filled-korolev-crater|newspaper=The Guardian|access-date=December 21, 2018|title=Mars Express beams back images of ice-filled Korolev crater|date=December 21, 2018|first1=Ian|last1=Sample|archive-date=February 8, 2020|archive-url=https://web.archive.org/web/20200208045902/https://www.theguardian.com/science/2018/dec/21/mars-express-beams-back-images-of-ice-filled-korolev-crater|url-status=live}}</ref>

===={{anchor|Subglacial liquid water}}Subglacial liquid water====
{{main|Subglacial lakes on Mars}}
] subglacial water body (reported July 2018).]]
The existence of subglacial lakes on Mars was hypothesised when modelling of ] in ] showed that this lake could have existed before the Antarctic glaciation, and that a similar scenario could potentially have occurred on Mars.<ref>{{cite journal |url=http://www.agu.org/journals/je/v106/iE01/2000JE001254/2000JE001254.pdf |last1=Duxbury |first1=N. S. |last2=Zotikov |first2=I. A. |last3=Nealson |first3=K. H. |last4=Romanovsky |first4=V. E. |last5=Carsey |first5=F. D. |title=A numerical model for an alternative origin of Lake Vostok and its exobiological implications for Mars |doi=10.1029/2000JE001254 |date=2001 |page=1453 |volume=106 |issue=E1 |journal=Journal of Geophysical Research |bibcode=2001JGR...106.1453D|doi-access=free }}</ref> In July 2018, scientists from the ] reported the detection of such a ] on Mars, {{convert|1.5|km|0}} below the ], and spanning {{convert|20|km|-1}} horizontally, the first evidence for a stable body of liquid water on the planet.<ref name="SCI-20180725">{{cite journal |author=Orosei, R. |display-authors=etal |title=Radar evidence of subglacial liquid water on Mars |date=July 25, 2018 |journal=] |volume=361 |issue=6401 |pages=490–493 |doi=10.1126/science.aar7268 |pmid=30045881 |arxiv=2004.04587 |bibcode=2018Sci...361..490O |hdl=11573/1148029 |s2cid=206666385 |hdl-access=free }}</ref><ref name="NYT-20180725">{{cite news |last1=Chang |first1=Kenneth |last2=Overbye |first2=Dennis |author-link2=Dennis Overbye |title=A Watery Lake Is Detected on Mars, Raising the Potential for Alien Life – The discovery suggests that watery conditions beneath the icy southern polar cap may have provided one of the critical building blocks for life on the red planet. |url=https://www.nytimes.com/2018/07/25/science/mars-liquid-alien-life.html |date=July 25, 2018 |work=] |access-date=July 25, 2018 |archive-date=July 25, 2018 |archive-url=https://web.archive.org/web/20180725205154/https://www.nytimes.com/2018/07/25/science/mars-liquid-alien-life.html |url-status=live }}</ref><ref>{{cite web |title=Huge reservoir of liquid water detected under the surface of Mars |url=https://www.eurekalert.org/pub_releases/2018-07/aaft-hro072318.php |work=] |date=July 25, 2018 |access-date=July 25, 2018 |archive-date=July 25, 2018 |archive-url=https://web.archive.org/web/20180725163215/https://www.eurekalert.org/pub_releases/2018-07/aaft-hro072318.php |url-status=live }}</ref><ref>{{cite news |title=Liquid water 'lake' revealed on Mars |url=https://www.bbc.co.uk/news/science-environment-44952710 |work=BBC News |date=July 25, 2018 |access-date=July 25, 2018 |archive-date=July 25, 2018 |archive-url=https://web.archive.org/web/20180725141308/https://www.bbc.co.uk/news/science-environment-44952710 |url-status=live }}</ref> The evidence for this ] was deduced from a bright spot in the radar echo sounding data of the ] radar on board the European '']'' orbiter,<ref name="Suppl material"> {{Webarchive|url=https://web.archive.org/web/20220709092553/https://www.science.org/doi/10.1126/science.aar7268 |date=July 9, 2022 }} for: {{cite journal | doi = 10.1126/science.aar7268 | pmid=30045881 | volume=361 | title=Radar evidence of subglacial liquid water on Mars | year=2018 | journal=Science | pages=490–493 | last1 = Orosei | first1 = R | last2 = Lauro | first2 = SE | last3 = Pettinelli | first3 = E | last4 = Cicchetti | first4 = A | last5 = Coradini | first5 = M | last6 = Cosciotti | first6 = B | last7 = Di Paolo | first7 = F | last8 = Flamini | first8 = E | last9 = Mattei | first9 = E | last10 = Pajola | first10 = M | last11 = Soldovieri | first11 = F | last12 = Cartacci | first12 = M | last13 = Cassenti | first13 = F | last14 = Frigeri | first14 = A | last15 = Giuppi | first15 = S | last16 = Martufi | first16 = R | last17 = Masdea | first17 = A | last18 = Mitri | first18 = G | last19 = Nenna | first19 = C | last20 = Noschese | first20 = R | last21 = Restano | first21 = M | last22 = Seu | first22 = R | issue=6401 | arxiv=2004.04587 | bibcode = 2018Sci...361..490O| doi-access = free }}</ref> collected between May 2012 and December 2015. The detected lake is centred at 193°E, 81°S, a flat area that does not exhibit any peculiar topographic characteristics but is surrounded by higher ground, except on its eastern side where there is a depression.<ref name="SCI-20180725"/> The ] radar on board NASA's '']'' has seen no sign of the lake. The operating frequencies of SHARAD are designed for higher resolution, but lower penetration depth, so if the overlying ice contains a significant amount of silicates, it is unlikely that SHARAD will be able to detect the putative lake.

On 28 September 2020, the MARSIS discovery was confirmed, using new data, and reanalysing all the data with a new technique. These new radar studies report three more subglacial lakes on Mars. All are {{convert|1.5|km|mi|abbr=on}} below the ]. The size of the first lake found, and the largest, has been corrected to {{convert|30|km|mi|abbr=on}} wide. It is surrounded by 3 smaller lakes, each a few kilometres wide.<ref name="NatAstro">{{cite journal |last1=Lauro |first1=Sebastian Emanuel |last2=Pettinelli |first2=Elena |last3=Caprarelli |first3=Graziella |last4=Guallini |first4=Luca |last5=Rossi |first5=Angelo Pio |last6=Mattei |first6=Elisabetta |last7=Cosciotti |first7=Barbara |last8=Cicchetti |first8=Andrea |last9=Soldovieri |first9=Francesco |last10=Cartacci |first10=Marco |last11=Di Paolo |first11=Federico |last12=Noschese |first12=Raffaella |last13=Orosei |first13=Roberto |title=Multiple subglacial water bodies below the south pole of Mars unveiled by new MARSIS data |journal=Nature Astronomy |date=28 September 2020 |volume=5 |pages=63–70 |doi=10.1038/s41550-020-1200-6 |arxiv=2010.00870 |bibcode=2021NatAs...5...63L |s2cid=222125007 |language=en |issn=2397-3366}}</ref>
]
Because the temperature at the base of the polar cap is estimated to be {{convert|205|K}}, scientists assume that the water may remain liquid through the antifreeze effect of magnesium and calcium ]s.<ref name="SCI-20180725"/><ref>{{cite news |url=https://www.bbc.com/news/science-environment-44952710 |title=Liquid water 'lake' revealed on Mars |first=Mary |last=Halton |work=BBC News |date=July 25, 2018 |access-date=July 25, 2018 |archive-date=July 25, 2018 |archive-url=https://web.archive.org/web/20180725141646/https://www.bbc.com/news/science-environment-44952710 |url-status=live }}</ref> The {{convert|1.5|km|adj=on}} ice layer covering the lake is composed of water ice with 10 to 20% admixed dust, and seasonally covered by a {{convert|1|m|ftin|adj=mid|-thick}} layer of {{CO2}} ice.<ref name="SCI-20180725"/> Since the raw-data coverage of the south polar ice cap is limited, the discoverers stated that "there is no reason to conclude that the presence of subsurface water on Mars is limited to a single location."<ref name="SCI-20180725"/>

In 2019, a study was published that explored the physical conditions necessary for such a lake to exist.<ref>{{Cite journal|last1=Sori|first1=Michael M.|last2=Bramson|first2=Ali M.|date=2019|title=Water on Mars, With a Grain of Salt: Local Heat Anomalies Are Required for Basal Melting of Ice at the South Pole Today|journal=Geophysical Research Letters|language=en|volume=46|issue=3|pages=1222–1231|doi=10.1029/2018GL080985|issn=1944-8007|bibcode=2019GeoRL..46.1222S|hdl=10150/633584|s2cid=134166238 |hdl-access=free}}</ref> The study calculated the amount of geothermal heat necessary to reach temperatures under which a liquid water and perchlorate mix would be stable under the ice. The authors concluded that "even if there are local concentrations of large amounts of perchlorate salts at the base of the south polar ice, typical Martian conditions are too cold to melt the ice&nbsp;... a local heat source within the crust is needed to increase the temperatures, and a magma chamber within 10 km of the ice could provide such a heat source. This result suggests that if the liquid water interpretation of the observations is correct, magmatism on Mars may have been active extremely recently."

China's Zhurong rover that studied Utopia Planitia region of Mars found a shift in sand dunes at around the same time as layers in the North polar region changed. Researchers believe that the tilt of Mars changed at that time and produced changes in the winds at Zhurong's landing site and in the layers in the ice cap.<ref>Liu, J., et al. 2023. "Martian dunes indicative of wind regime shift in line with end of ice age". ''Nature''. {{doi|10.1038/s41586-023-06206-1}}</ref>


If a liquid lake does indeed exist, its salty water may also be mixed with soil to form a sludge.<ref name="RTE2018-07-25a">{{cite web|title=Giant liquid water lake found under Martian ice|url=https://www.rte.ie/news/2018/0725/981031-mars-lake/|date=July 25, 2018|access-date=July 26, 2018|website=]|archive-date=July 25, 2021|archive-url=https://web.archive.org/web/20210725160157/https://www.rte.ie/news/2018/0725/981031-mars-lake/|url-status=live}}</ref> The lake's high levels of salt would present difficulties for most lifeforms. On Earth, organisms called ]s exist that thrive in extremely salty conditions, though not in dark, cold, concentrated perchlorate solutions.<ref name="RTE2018-07-25a" /> Nevertheless, halotolerant organisms might be able to cope with enhanced perchlorate concentrations by drawing on physiological adaptations similar to those observed in the yeast '']'' exposed in lab experiments to increasing ] concentrations.<ref>{{Cite journal |last1=Heinz |first1=Jacob |last2=Doellinger |first2=Joerg |last3=Maus |first3=Deborah |last4=Schneider |first4=Andy |last5=Lasch |first5=Peter |last6=Grossart |first6=Hans-Peter |last7=Schulze-Makuch |first7=Dirk |date=2022-08-10 |title=Perchlorate-specific proteomic stress responses of Debaryomyces hansenii could enable microbial survival in Martian brines |journal=Environmental Microbiology |volume=24 |issue=11 |language=en |pages=1462–2920.16152 |doi=10.1111/1462-2920.16152 |pmid=35920032 |issn=1462-2912|doi-access=free |bibcode=2022EnvMi..24.5051H }}</ref>
Using data from ], ] and the ], scientists have found widespread deposits of chloride minerals. Usually chlorides are the last minerals to come out of solution. A picture below shows some deposits within the ]. Evidence suggests that the deposits were formed from the evaporation of mineral-enriched waters. Lakes may have been scattered over large areas of the Martian surface. ]s, ]s, and ] should precipitate out ahead of them. Sulfates and silica have been discovered by the Mars Rovers. Places with chloride minerals may have once held various life forms. Furthermore, such areas should preserve traces of ancient life.<ref name="Osterloo2008" />


=== Ground ice and subsurface ice ===
Rocks on Mars have been found to frequently occur as layers, called strata, in many different places. Layers form by various ways. Volcanoes, wind, or water can produce layers.<ref>{{cite web|url=http://hirise.lpl.arizona.edu?PSP_008437_1750 |title=HiRISE &#124; High Resolution Imaging Science Experiment |publisher=Hirise.lpl.arizona.edu?psp_008437_1750 |accessdate=December 19, 2010}}</ref> Many places on Mars show rocks arranged in layers.<ref>Grotzinger, J. and R. Milliken (eds.) 2012. Sedimentary Geology of Mars. SEPM</ref> Scientists are happy about finding layers on Mars since layers may have formed under large bodies of water. Sometimes the layers display different colors. Light-toned rocks on Mars have been associated with hydrated minerals like sulfates. Instruments on orbiting spacecraft have detected ] (also called phyllosilicates) in some layers.<ref name="Itv.com"/> Scientists are excited about finding hydrated minerals such as sulfates and clays on Mars because they are usually formed in the presence of water.<ref>{{cite web|url=http://themis.asu.edu/features/nilosyrtis |title=Target Zone: Nilosyrtis? &#124; Mars Odyssey Mission THEMIS |publisher=Themis.asu.edu |accessdate=December 19, 2010}}</ref>
{{See also|Groundwater on Mars}}
Below are a few of the many examples of layers that have been studied with HiRISE.
For many years, various scientists have suggested that some Martian surfaces look like ] regions on Earth.<ref name="Kieffer1992" /> By analogy with these terrestrial features, it has been argued for many years that these may be regions of ]. This would suggest that frozen water lies right beneath the surface.<ref name="ICRS-20170928">{{cite journal |author=Wilson, Jack T. |display-authors=etal |title=Equatorial locations of water on Mars: Improved resolution maps based on Mars Odyssey Neutron Spectrometer data |date=January 2018 |journal=] |doi=10.1016/j.icarus.2017.07.028 |bibcode=2018Icar..299..148W |volume=299 |pages=148–160|arxiv=1708.00518 |s2cid=59520156 }}</ref><ref name="SP-20171002">{{cite web |last=Howell |first=Elizabeth |title=Water Ice Mystery Found at Martian Equator |url=https://www.space.com/38330-water-ice-mystery-at-mars-equator.html |date=October 2, 2017 |work=] |access-date=October 2, 2017 |archive-date=November 11, 2021 |archive-url=https://web.archive.org/web/20211111082320/https://www.space.com/38330-water-ice-mystery-at-mars-equator.html |url-status=live }}</ref> A common feature in the higher latitudes, ], can occur in a number of shapes, including stripes and polygons. On the Earth, these shapes are caused by the freezing and thawing of soil.<ref>{{cite web |url=http://www.spaceref.com/news/viewnews.html?id=494 |title=Polygonal Patterned Ground: Surface Similarities Between Mars and Earth |publisher=SpaceRef |date=September 28, 2002}}</ref> There are other types of evidence for large amounts of frozen water under the surface of Mars, such as ], which rounds sharp topographical features.<ref>{{cite journal |doi=10.1016/0019-1035(89)90078-X |last=Squyres |first=S. |date=1989 |title=Urey Prize Lecture: Water on Mars |journal=Icarus |volume=79 |pages=229–288 |bibcode=1989Icar...79..229S |issue=2}}</ref> Evidence from Mars Odyssey's ] and direct measurements with the ] lander have corroborated that many of these features are intimately associated with the presence of ground ice.<ref name="Scalloped terrains in the Peneus an">{{cite journal |doi=10.1016/j.icarus.2009.06.005 |last1=Lefort |first1=A. |last2=Russell |date=2010 |first2=P.S. |last3=Thomas |first3=N. |title=Scalloped terrains in the Peneus and Amphitrites Paterae region of Mars as observed by HiRISE |journal=Icarus |volume=205 |issue=1 |pages=259–268 |bibcode=2010Icar..205..259L}}</ref>
]. Picture from HiRISE. ]]

<gallery>
].<ref name='exposed ice 2018'/> The scene is about 500 meters wide. The scarp drops about 128 meters from the level ground. The ice sheets extend from just below the surface to a depth of 100 meters or more.<ref>{{cite journal | year = 2018| title = Exposed subsurface ice sheets in the Martian mid-latitudes| journal = Science | volume = 359| issue = 6372| pages = 199–201| doi = 10.1126/science.aao1619 | last1 = Dundas | first1 = Colin M. | last2 = Bramson | first2 = Ali M. | last3 = Ojha | first3 = Lujendra | last4 = Wray | first4 = James J. | last5 = Mellon | first5 = Michael T. | last6 = Byrne | first6 = Shane | last7 = McEwen | first7 = Alfred S. | last8 = Putzig | first8 = Nathaniel E. | last9 = Viola | first9 = Donna | last10 = Sutton | first10 = Sarah | last11 = Clark | first11 = Erin | last12 = Holt | first12 = John W. | pmid = 29326269 | bibcode = 2018Sci...359..199D| doi-access = free }}</ref>]]
Image:Becquerel Crater layers.JPG|] layers. Click on image to see fault. Location is ].

Image:Asimov Layers Close-up.JPG|Close-up of layers in west slope of Asimov Crater. Shadows show the overhang. Some of the layers are much more resistant to erosion, so they stick out. Location is ].
In 2018, using the HiRISE camera on board the ] (MRO), researchers found at least eight eroding slopes showing exposed water ice sheets as thick as 100 meters, covered by a layer of about 1 or 2 meters thick of ].<ref name='exposed ice 2018'> {{Webarchive|url=https://web.archive.org/web/20190617060621/https://www.jpl.nasa.gov/news/news.php?feature=7038 |date=June 17, 2019 }}. NASA Press Release. January 11, 2018.</ref><ref> {{Webarchive|url=https://web.archive.org/web/20180128062432/http://www.sciencemag.org/news/2018/01/ice-cliffs-spotted-mars |date=January 28, 2018 }}. ''Science News''. Paul Voosen. January 11, 2018.</ref> The sites are at latitudes from about 55 to 58 degrees, suggesting that there is shallow ground ice under roughly a third of the Martian surface.<ref name='exposed ice 2018'/> This image confirms what was previously detected with the spectrometer on ], the ground-penetrating radars on MRO and on ], and by the ] ''in situ'' excavation.<ref name='exposed ice 2018'/> These ice layers hold easily accessible clues about Mars' climate history and make frozen water accessible to future robotic or human explorers.<ref name='exposed ice 2018'/> Some researchers suggested these deposits could be the remnants of glaciers that existed millions of years ago when the planet's spin axis and orbit were different. (See section ] below.) A more detailed study published in 2019 discovered that water ice exists at latitudes north of 35°N and south of 45°S, with some ice patches only a few centimeters from the surface covered by dust. Extraction of water ice at these conditions would not require complex equipment.<ref>{{cite journal |url=https://www.hou.usra.edu/meetings/ninthmars2019/pdf/6027.pdf |title=Widespread Shallow Water Ice on Mars at High and Mid Latitudes |journal=] |first1=Sylvain |last1=Piqueux |first2=Jennifer |last2=Buz |first3=Christopher S. |last3=Edwards |first4=Joshua L. |last4=Bandfield |first5=Armin |last5=Kleinböhl |first6=David M. |last6=Kass |first7=Paul O. |last7=Hayne |doi=10.1029/2019GL083947 |date=December 10, 2019 |s2cid=212982895 |access-date=December 12, 2019 |archive-date=September 18, 2021 |archive-url=https://web.archive.org/web/20210918070202/https://www.hou.usra.edu/meetings/ninthmars2019/pdf/6027.pdf |url-status=live }}</ref><ref>{{cite web |url=https://www.jpl.nasa.gov/news/news.php?feature=7557 |title=NASA's Treasure Map for Water Ice on Mars |date=2019-12-10 |publisher=Jet Propulsion Laboratory |access-date=December 12, 2019 |archive-date=June 29, 2021 |archive-url=https://web.archive.org/web/20210629003318/https://www.jpl.nasa.gov/news/news.php?feature=7557 |url-status=live }}</ref>
Image:Pedestaltop22919.jpg|Dark slope streaks near the top of a pedestal crater, as seen by HiRISE under the ].

<gallery class="center" widths="380px" heights="360px">
File:ESP 025840 2240-3icecrater.gif|Ice disappearing after being exposed by impact.
</gallery> </gallery>

Much of the surface of Mars is covered by a thick smooth mantle that is thought to be a mixture of ice and dust.<ref name="Head, J. 2003">{{cite journal| last1= Head| first1= James W.| last2= Mustard| first2= John F.| last3= Kreslavsky| first3= Mikhail A.| last4= Milliken| first4= Ralph E.| last5= Marchant| first5= David R.| title= Recent ice ages on Mars |journal=Nature| volume= 426| issue= 6968 |pages= 797–802| year= 2003| pmid= 14685228 | doi = 10.1038/nature02114 }}</ref> This ice-rich mantle, a few yards thick, smoothes the land. But in places it displays a bumpy texture, resembling the surface of a basketball. Because there are few craters on this mantle, the mantle is relatively young. The images below, all taken with HiRISE, show a variety of views of this smooth mantle.
<gallery class="center" widths="380px" heights="360px">
<gallery>
File:50345 1230icelayersangular.jpg|Close view of wall of triangular depression, as seen by HiRISE layers are visible in the wall. These layers contain ice. The lower layers are tilted, while layers near the surface are more or less horizontal. Such an arrangement of layers is called an "angular ]".<ref>{{Cite journal |last1=Dundas |first1=Colin M. |last2=Bramson |first2=Ali M. |last3=Ojha |first3=Lujendra |last4=Wray |first4=James J. |last5=Mellon |first5=Michael T. |last6=Byrne |first6=Shane |last7=McEwen |first7=Alfred S. |last8=Putzig |first8=Nathaniel E. |last9=Viola |first9=Donna |last10=Sutton |first10=Sarah |last11=Clark |first11=Erin |last12=Holt |first12=John W. |date=2018-01-12 |title=Exposed subsurface ice sheets in the Martian mid-latitudes |url=https://www.science.org/doi/10.1126/science.aao1619 |journal=Science |language=en |volume=359 |issue=6372 |pages=199–201 |doi=10.1126/science.aao1619 |pmid=29326269 |bibcode=2018Sci...359..199D |issn=0036-8075}}</ref>
Image:Niger Vallis hirise.JPG|] with features typical of this latitude. Chevron pattern results from movement of ice-rich material. Click on image to see chevron pattern and mantle. Location is ].
File:ESP 053867 2245hotejecta.jpg|Impact crater that may have formed in ice-rich ground, as seen by HiRISE under ] Location is the ].
Image:Dissected Mantle.JPG|Dissected Mantle with layers. Location is ].
File:53867 2245hotejectamargin.jpg|Close view of impact crater that may have formed in ice-rich ground, as seen by HiRISE under HiWish program. Note that the ] seems lower than the surroundings. The hot ejecta may have caused some of the ice to go away, thus lowering the level of the ejecta.
Image:Layered mantle in Icaria Planum.JPG|Layers in mantle deposit, as seen by HiRISE, under the ]. Mantle was probably formed from snow and dust falling during a different climate. Location is ].
File:Icemaplargelabeled454arrows.jpg|Map of near surface ice
</gallery>
The mantle is thought to result from frequent, major climate changes. Changes in Mars's orbit and tilt cause significant changes in the distribution of water ice from polar regions down to latitudes equivalent to Texas. During certain climate periods water vapor leaves polar ice and enters the atmosphere. The water returns to the ground at lower latitudes as deposits of frost or snow mixed generously with dust. The atmosphere of Mars contains a great deal of fine dust particles.<ref>Head, J. et al. 2008. Formation of gullies on Mars: Link to recent climate history and insolation microenvironments implicate surface water flow origin. PNAS: 105. 13258-13263.</ref> Water vapor condenses on the particles, then they fall down to the ground due to the additional weight of the water coating. When ice at the top of the mantling layer goes back into the atmosphere, it leaves behind dust, which insulates the remaining ice.<ref name="sciencedaily.com­">MLA NASA/Jet Propulsion Laboratory (2003, December 18). Mars May Be Emerging From An Ice Age. ScienceDaily. Retrieved February 19, 2009, from http://www.sciencedaily.com­ /releases/2003/12/031218075443.htmAds by GoogleAdvertise</ref>
HiRISE has carried out many observations of gullies that are assumed to have been caused by recent flows of liquid water. Many gullies are imaged over and over to see if any changes occur. Some repeat observations of gullies have displayed changes that some scientists argue were caused by liquid water over the period of just a few years.<ref>{{cite journal | doi = 10.1126/science.1135156 | last1 = Malin | first1 = M. | last2 = Edgett | year = 2006 | first2 = KS | last3 = Posiolova | first3 = LV | last4 = McColley | first4 = SM | last5 = Dobrea | first5 = EZ | title = Present-day impact cratering rate and contemporary gully activity on Mars | url = | journal=Science | volume = 314 | issue = 5805| pages = 1573–1577 | pmid = 17158321 |bibcode = 2006Sci...314.1573M }}</ref> Others say the flows were merely dry flows.<ref>{{cite journal | doi = 10.1016/j.icarus.2009.09.009 | last1 = Kolb | first1 = K. | last2 = Pelletier | year = 2010 | first2 = Jon D. | last3 = McEwen | first3 = Alfred S. | title = Modeling the formation of bright slope deposits associated with gullies in Hale Crater, Mars: Implications for recent liquid water | url = | journal=Icarus | volume = 205 | pages = 113–137 |bibcode = 2010Icar..205..113K }}</ref> These were first discovered by the Mars Global Surveyor.
Below are some of the many hundreds of gullies that have been studied with HiRISE.
<gallery>
Image:ESP_020012gulliescropped.jpg|Gullies near Newton Crater, as seen by HiRISE, under the ]. Place where there was an old glacier is labeled. Image from Phaethontis quadrangle.
Image:Gullies near Newton Crater.jpg|Gullies near Newton Crater, as seen by HiRISE under the HiWish Program.
Image:Gullies in Terra Sirenum.jpg|Gullies in a crater in ], as seen by HiRISE under the HiWish Program.
Image:21845gulliespatt.jpg|Close-up of gully showing multiple channels and patterned ground, as seen by HiRISE under the HiWish program.
</gallery> </gallery>
Of interest from the days of the ] Orbiters are piles of material surrounding cliffs. These deposits of rock debris are called ] (LDAs). These features have a convex topography and a gentle slope from cliffs or escarpments; this suggests flow away from the steep source cliff. In addition, lobate debris aprons can show surface lineations just as rock glaciers on the Earth.<ref name="Kieffer1992">{{cite book|author=Hugh H. Kieffer|title=Mars|url=http://books.google.com/books?id=NoDvAAAAMAAJ|accessdate=March 7, 2011|year=1992|publisher=University of Arizona Press|isbn=978-0-8165-1257-7}}</ref> In 2008, research with the Shallow Radar on the ] provided strong evidence that the LDAs in ] and in mid northern latitudes are ]s that are covered with a thin layer of rocks. Radar from the Mars Reconnaissance Orbiter gave a strong reflection from the top and base of LDAs, meaning that pure water ice made up the bulk of the formation (between the two reflections).<ref name="Holt, J. 2008" /><ref name="planetary.brown.edu"/>). The discovery of water ice in LDAs demonstrates that water is found at even lower latitudes. Future colonists on Mars will be able to tap into these ice deposits, instead of having to travel to much higher latitudes. Another major advantage of LDAs over other sources of Martian water is that they can easily detected and mapped from orbit. Below are examples of lobate debris aprons that were studied with HiRISE.
]. ]]
<gallery>
Image:Wide view of Debris Apron.jpg|View of lobate debris apron along a slope. Image located in ].
Image:Face of Lobate Debris Apron.jpg|Place where a lobate debris apron begins. Note stripes which indicate movement. Image located in ].
</gallery>
Research, reported in the journal ''Science'' in September 2009,<ref>{{cite journal | last1 = Byrne | pmid = 19779195 | year = 2009 | first1 = S | last2 = Dundas | first2 = CM | last3 = Kennedy | first3 = MR | last4 = Mellon | first4 = MT | last5 = McEwen | first5 = AS | last6 = Cull | first6 = SC | last7 = Daubar | first7 = IJ | last8 = Shean | first8 = DE | last9 = Seelos | first9 = KD | title = Distribution of mid-latitude ground ice on Mars from new impact craters | journal=Science | volume = 325 | issue = 5948 | pages=1674–1676 | doi = 10.1126/science.1175307 | bibcode = 2009Sci...325.1674B }}</ref> demonstrated that some new craters on Mars show exposed, pure, water ice. After a time, the ice disappears, evaporating into the atmosphere. The ice is only a few feet deep. The ice was confirmed with the Compact Imaging Spectrometer (CRISM) on board the ] (MRO). The ice was found in five locations. Three of the locations are in the ]. These locations are 55.57° N, 150.62° E; 43.28° N, 176.9° E; and 45° N, 164.5° E. Two others are in the ]: 46.7° N, 176.8° E and 46.33° N, 176.9° E.<ref>{{cite web|url=http://www.space.com/scienceastronomy/090924-mars-crater-ice.html |title=Water Ice Exposed in Mars Craters |publisher=SPACE.com |accessdate=December 19, 2010}}</ref><ref>{{dead link|date=December 2010}}</ref><ref>http://nasa.gov/mission/MRO/news/mro20090924.html</ref>
This discovery proves that future colonists on Mars will be able to obtain water from a wide variety of locations. The ice can be dug up, melted, then taken apart to provide fresh ] and ] for rocket fuel. Hydrogen is the powerful fuel used by the ] main engines.
{{Clear}}


====Scalloped topography====
== Columnar jointing ==
{{main|Scalloped topography}}
]]]
Certain regions of Mars display ]-shaped depressions. The depressions are suspected to be the remains of a degrading ice-rich mantle deposit. Scallops are caused by ice ] from frozen soil. The landforms of scalloped topography can be formed by the subsurface loss of water ice by sublimation under current Martian climate conditions. A model predicts similar shapes when the ground has large amounts of pure ice, up to many tens of meters in depth.<ref>Dundas, C.; Bryrne, S.; McEwen, A. (2015). "Modeling the development of martian sublimation thermokarst landforms". ''Icarus'' 262, 154–169.</ref> This mantle material was probably deposited from the atmosphere as ice formed on dust when the climate was different due to changes in the tilt of the Mars pole (see {{section link||Ice ages}}, below).<ref name=":8">{{Cite journal |last=Christensen |first=Philip R. |date=March 2003 |title=Formation of recent martian gullies through melting of extensive water-rich snow deposits |url=https://www.nature.com/articles/nature01436 |journal=Nature |language=en |volume=422 |issue=6927 |pages=45–48 |doi=10.1038/nature01436 |pmid=12594459 |bibcode=2003Natur.422...45C |s2cid=4385806 |issn=1476-4687 |access-date=July 27, 2022 |archive-date=August 9, 2021 |archive-url=https://web.archive.org/web/20210809152410/https://www.nature.com/articles/nature01436 |url-status=live }}</ref><ref name="Head, J. 2003" /><ref name="hirise">{{cite web |url=http://hirise.lpl.arizona.edu/PSP_002917_2175 |title=HiRISE Dissected Mantled Terrain (PSP_002917_2175) |publisher=Arizona University |access-date=December 19, 2010 |archive-date=August 21, 2017 |archive-url=https://web.archive.org/web/20170821043213/https://hirise.lpl.arizona.edu/PSP_002917_2175 |url-status=live }}</ref> The scallops are typically tens of meters deep and from a few hundred to a few thousand meters across. They can be almost circular or elongated. Some appear to have coalesced causing a large heavily pitted terrain to form. The process of forming the terrain may begin with sublimation from a crack. There are often polygonal cracks where scallops form, and the presence of scalloped topography seems to be an indication of frozen ground.<ref name="Icarus Vol 210" /><ref name="Scalloped terrains in the Peneus an"/>
In 2009, ] discovered ] in rocks on Mars.<ref>{{cite journal | doi = 10.1130/G25187A.1 | last1 = Milazzo | first1 = M. | year = 2009 | last2 = Keszthelyi | first2 = L.P. | last3 = Jaeger | first3 = W.L. | last4 = Rosiek | first4 = M. | last5 = Mattson | first5 = S. | last6 = Verba | first6 = C. | last7 = Beyer | first7 = R.A. | last8 = Geissler | first8 = P.E. | last9 = McEwen | first9 = A.S. | title = The discovery of columnar jointing on Mars | url = | journal=Geology | volume = 37 | pages = 171–174 | issue = 2 }}</ref> Such jointing is accepted as having involved water. To make the parallel cracks of columnar jointing, more cooling is necessary, and water is the most logical choice. Scientists calculate that the water was present intermittently for a few months to a few years.<ref>{{cite journal | last1=Milazzo |first1= M. | year= 2003 | title= The formation of columnar joints on Earth and Mars (abstract #2120) | journal=Lunar and Planetary Science |volume=XXXIV | bibcode = 2003LPI....34.2120M | url=http://www.lpi.usra.edu/meetings/lpsc2003/pdf/2120.pdf | last2=Keszthelyi | first2=L. P. | last3=McEwen | first3=A. S. | last4=Jaeger | first4=W. | page=2120 }}</ref>


On November 22, 2016, NASA reported finding a large amount of underground ice in the Utopia Planitia region of Mars.<ref>{{cite web|url=http://www.space.com/34811-mars-ice-more-water-than-lake-superior.html|title=Huge Underground Ice Deposit on Mars Is Bigger Than New Mexico|website=Space.com|date=November 22, 2016|access-date=November 29, 2016|archive-date=January 12, 2018|archive-url=https://web.archive.org/web/20180112181505/https://www.space.com/34811-mars-ice-more-water-than-lake-superior.html|url-status=live}}</ref> The volume of water detected has been estimated to be equivalent to the volume of water in ].<ref name="NASA-20161122"/><ref name="Register-2016"/><ref name="NASA-20161122jpl" />
== Light-toned layered deposits ==
HiRISE has sent back many images of large surface areas that are termed "light-toned layered deposits." These 30–80 meter thick deposits are believed to have been formed from the action of water. They contain evidence of stream channel systems.<ref>{{cite journal | doi = 10.1126/science.1097549 | last1 = Mangold | first1 = C. | last2 = Quantin | year = 2004 | first2 = C | last3 = Ansan | first3 = V | last4 = Delacourt | first4 = C | last5 = Allemand | first5 = P | title = Evidence for precipitation on Mars from dendritic valleys in the Valles Marineris area | url = | journal=Science | volume = 305 | issue = 5680| pages = 78–81 | pmid = 15232103 |bibcode = 2004Sci...305...78M }}</ref> Furthermore, chemical data from the Compact Reconnaissance Imaging Spectrometer orbiting the planet have shown water related mineral forms: opal (hydrated silica) and iron sulfates.<ref>{{cite journal | last1 = Murchie | first1 = Scott | last2 = Roach | first2 = Leah | last3 = Seelos | first3 = Frank | last4 = Milliken | first4 = Ralph | last5 = Mustard | first5 = John | last6 = Arvidson | first6 = Raymond | last7 = Wiseman | first7 = Sandra | last8 = Lichtenberg | first8 = Kimberly | last9 = Andrews-Hanna | first9 = Jeffrey | title = Evidence for the origin of layered deposits in Candor Chasma, Mars, from mineral composition and hydrologic modeling | journal=Journal of Geophysical Research | volume = 114 | year = 2009 | doi = 10.1029/2009JE003343 | bibcode=2009JGRE..11400D05M}}</ref> These can be formed from the action of low temperature acid solutions reacting with basaltic rocks. These features of light-toned layered deposits strongly suggest that there was long lasting precipitation and surface runoff
during the ] epoch of Martian history.<ref name="10.1016/j.icarus.2009.04.017" /><ref>{{cite journal | last1 = Edgett | first1 = E. | year = 2005 | title = The sedimentary rocks of Sinus Meridiani: Five key observations from data acquired by the Mars Global Surveyor and Mars Odyssey orbiters | url = | journal=Mars | volume = 1 | pages = 5–58 | doi = 10.1555/mars.2005.0002 | bibcode = 2005Mars....1....5E }}</ref>


The volume of water ice in the region were based on measurements from the ground-penetrating radar instrument on ], called ]. From the data obtained from SHARAD, “]”, or the dielectric constant was determined. The dielectric constant value was consistent with a large concentration of water ice.<ref>Bramson, A, et al. (2015). "Widespread excess ice in Arcadia Planitia, Mars". ''Geophysical Research Letters'' 42, 6566–6574.</ref><ref>{{cite web |url=https://planetarycassie.com/2016/11/04/widespread-thick-water-ice-found-in-utopia-planitia-mars/ |title=Widespread, Thick Water Ice found in Utopia Planitia, Mars |first=Cassie |last=Stuurman |access-date=November 29, 2016 |url-status=dead |archive-url=https://web.archive.org/web/20161130042608/https://planetarycassie.com/2016/11/04/widespread-thick-water-ice-found-in-utopia-planitia-mars/ |archive-date=November 30, 2016 }}</ref><ref>Stuurman, C., et al. 2016. "SHARAD detection and characterization of subsurface water ice deposits in Utopia Planitia, Mars". ''Geophysical Research Letters'' 43, 9484–9491.</ref>
==Sources of Martian water==
] region on Mars, which contains many volcanoes.]]
Volcanoes give off great amounts of gas when they erupt. The gases are usually water vapor and ]. Estimates put the amount of gas released into the atmosphere as enough to make the Martian atmosphere thicker than the Earth's. The water vapor from the volcanoes could have made enough water to place all of Mars under 120 meters of water.{{Citation needed|date=April 2010}} In addition, all the carbon dioxide released would have raised the temperature of the planet due to the ], by trapping heat in the form of ]. So the eruption of lava on Tharsis could have made Mars Earth-like in the past. With a thicker atmosphere, oceans and/or lakes may have been present.<ref>Hartmann, W. 2003. A Traveler's Guide to Mars. Workman Publishing. NY NY.</ref>


These scalloped features are superficially similar to ], found around the south polar cap. Swiss cheese features are thought to be due to cavities forming in a surface layer of solid ], rather than water ice—although the floors of these holes are probably H<sub>2</sub>O-rich.<ref>{{cite journal |title=A Sublimation Model for the Formation of the Martian Polar Swiss-cheese Features |last1=Byrne |first1=S. |last2=Ingersoll |first2=A. P. |bibcode=2002DPS....34.0301B |volume=34 |date=2002 |page=837 |journal=American Astronomical Society}}</ref>
==Groundwater on Mars==
{{Main|Groundwater on Mars}}
One group of researchers proposed that some of the layers on Mars were caused by groundwater rising to the surface in many places, especially inside of craters. According to the hypothesis, groundwater with dissolved minerals came to the surface, in and later around craters, and helped to form layers by adding minerals (especially sulfate) and cementing sediments. This hypothesis is supported by a groundwater model and by sulfates discovered in a wide area.<ref>Andrews‐Hanna, J. C., R. J. Phillips, and M. T. Zuber (2007), Meridiani Planum and the global hydrology of Mars, Nature, 446, 163–166, {{doi|10.1038/nature05594}}.</ref><ref>Andrews‐Hanna, J. C., M. T. Zuber, R. E. Arvidson, and S. M. Wiseman (2010), Early Mars hydrology: Meridiani playa deposits and the sedimentary record of Arabia Terra, J. Geophys. Res., 115, E06002, {{doi|10.1029/2009JE003485}}.</ref> At first, by examining surface materials with ], scientists discovered that groundwater had repeatedly risen and deposited sulfates.<ref name="marsrovers" /><ref>Grotzinger, J. P., et al. (2005), Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars, Earth Planet. Sci. Lett., 240, 11–72, {{doi|10.1016/j.epsl.2005.09.039}}</ref><ref>McLennan, S. M., et al. (2005), Provenance and diagenesis of the evaporitebearing Burns formation, Meridiani Planum, Mars, Earth Planet. Sci. Lett., 240, 95–121, {{doi|10.1016/j.epsl.2005.09.041}}</ref><ref>Squyres, S. W., and A. H. Knoll (2005), Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars, Earth Planet. Sci. Lett., 240, 1–10, {{doi|10.1016/j.epsl.2005.09.038}}.</ref><ref>Squyres, S. W., et al. (2006), Two years at Meridiani Planum: Results from the Opportunity rover, ''Science'', 313, 1403–1407, {{doi|10.1126/science}}.</ref> Later studies with instruments on board the ] showed that the same kinds of materials exist in a large area that included Arabia.<ref>M. Wiseman, J. C. Andrews-Hanna, R. E. Arvidson3, J. F. Mustard, K. J. Zabrusky DISTRIBUTION OF HYDRATED SULFATES ACROSS ARABIA TERRA USING CRISM DATA: IMPLICATIONS FOR MARTIAN HYDROLOGY. 42nd Lunar and Planetary Science Conference (2011) 2133.pdf</ref>


====Ice patches====
==Evidence of frozen water==


], the water ice precipitated by adhering to ] (observed by the ] lander)]]
===Ice patches===
On July 28, 2005, the ] announced the existence of a crater partially filled with frozen water;<ref name="lake"> July 27, 2005 ] Press release. Retrieved March 17, 2006.</ref> some then interpreted the discovery as an "ice lake".<ref name="BBClake"> July 29, 2005 ] story. Retrieved March 17, 2006.</ref> Images of the crater, taken by the ] on board the ]'s ] spacecraft, clearly show a broad sheet of ice in the bottom of an unnamed crater located on ], a broad plain that covers much of Mars' far northern latitudes, at approximately 70.5° North and 103° East. The crater is 35&nbsp;km wide and about 2&nbsp;km deep. On July 28, 2005, the ] announced the existence of a crater partially filled with frozen water;<ref name="lake">{{cite press release |url=http://www.esa.int/SPECIALS/Mars_Express/SEMGKA808BE_0.html |title=Water ice in crater at Martian north pole |date=July 27, 2005 |publisher=] |access-date=October 8, 2009 |archive-date=October 6, 2012 |archive-url=https://web.archive.org/web/20121006122736/http://www.esa.int/SPECIALS/Mars_Express/SEMGKA808BE_0.html |url-status=live }}</ref> some then interpreted the discovery as an "ice lake".<ref name="BBClake">{{cite news |url=http://news.bbc.co.uk/2/hi/science/nature/4727847.stm |title=Ice lake found on the Red Planet |date=July 29, 2005 |publisher=] |access-date=October 8, 2009 |archive-date=January 13, 2010 |archive-url=https://web.archive.org/web/20100113160825/http://news.bbc.co.uk/2/hi/science/nature/4727847.stm |url-status=live }}</ref> Images of the crater, taken by the ] on board the ]'s ] orbiter, clearly show a broad sheet of ice in the bottom of an unnamed crater located on ], a broad plain that covers much of Mars' far northern latitudes, at approximately 70.5° North and 103° East. The crater is {{convert|35|km}} wide and about {{convert|2|km}} deep. The height difference between the crater floor and the surface of the water ice is about {{convert|200|m}}. ESA scientists have attributed most of this height difference to sand dunes beneath the water ice, which are partially visible. While scientists do not refer to the patch as a "lake", the water ice patch is remarkable for its size and for being present throughout the year. Deposits of water ice and layers of frost have been found in many different locations on the planet.


As more and more of the surface of Mars has been imaged by the modern generation of orbiters, it has become gradually more apparent that there are probably many more patches of ice scattered across the Martian surface. Many of these putative patches of ice are concentrated in the Martian mid-latitudes (≈30–60° N/S of the equator). For example, many scientists think that the widespread features in those latitude bands variously described as "latitude dependent mantle" or "pasted-on terrain" consist of dust- or debris-covered ice patches, which are slowly degrading.<ref name="Carr" /> A cover of debris is required both to explain the dull surfaces seen in the images that do not reflect like ice, and also to allow the patches to exist for an extended period of time without subliming away completely. These patches have been suggested as possible water sources for some of the enigmatic channelized flow features like ] also seen in those latitudes.
The height difference between the crater floor and the surface of the water ice is about 200 metres. ] scientists have attributed most of this height difference to sand dunes beneath the water ice, which are partially visible. While scientists do not refer to the patch as a "lake", the water ice patch is remarkable for its size and for being present throughout the year. Deposits of water ice and layers of frost have been found in many different locations on the planet.


Surface features consistent with existing ] have been discovered in the southern ].<ref name="Cabrol, N 2010">{{cite book |editor-last=Cabrol |editor-first=N. |editor2-first=E. |editor2-last=Grin |date=2010 |title=Lakes on Mars |publisher=Elsevier |location=New York}}</ref> What appear to be plates, ranging in size from {{convert|30|m}} to {{convert|30|km}}, are found in channels leading to a large flooded area. The plates show signs of break up and rotation that clearly distinguish them from lava plates elsewhere on the surface of Mars. The source for the flood is thought to be the nearby geological fault ] that spewed water as well as lava aged some 2 to 10&nbsp;million years. It was suggested that the water exited the ] then pooled and froze in the low, level plains and that such frozen lakes may still exist.<ref name="Murray2007">{{cite journal |last=Murray |first=John B. |display-authors=etal |date=2005 |title=Evidence from the Mars Express High Resolution Stereo Camera for a frozen sea close to Mars' equator |journal=Nature |pmid=15772653 |volume=434 |issue=7031 |pages=352–356 |doi=10.1038/nature03379 |quote=Here we present High Resolution Stereo Camera images from the European Space Agency Mars Express spacecraft that indicate that such lakes may still exist. |bibcode=2005Natur.434..352M|s2cid=4373323 }}</ref><ref>{{cite book |last1=Orosei |first1=R. |last2=Cartacci |first2=M. |last3=Cicchetti |first3=A. |last4=Federico |first4=C. |last5=Flamini |first5=E. |last6=Frigeri |first6=A. |last7=Holt |first7=J. W. |last8=Marinangeli |first8=L. |last9=Noschese |first9=R. |last10=Pettinelli |first10=E. |last11=Phillips |first11=R. J. |last12=Picardi |first12=G. |last13=Plaut |first13=J. J. |last14=Safaeinili |first14=A. |last15=Seu |first15=R. |chapter=Radar subsurface sounding over the putative frozen sea in Cerberus Palus, Mars |title=Proceedings of the XIII Internarional Conference on Ground Penetrating Radar |chapter-url=http://www.lpi.usra.edu/meetings/lpsc2008/pdf/1866.pdf |bibcode=2007AGUFM.P14B..05O |doi=10.1109/ICGPR.2010.5550143 |volume=XXXIX |pages=P14B–05 |journal=Lunar and Planetary Science |date=2008 |isbn=978-1-4244-4604-9 |s2cid=23296246 |access-date=January 5, 2010 |archive-date=March 27, 2009 |archive-url=https://web.archive.org/web/20090327135334/http://www.lpi.usra.edu/meetings/lpsc2008/pdf/1866.pdf |url-status=live }}</ref><ref>{{cite book |title=Mars: an introduction to its interior, surface and atmosphere |last1=Barlow |first1=Nadine G. |publisher=Cambridge University Press |isbn=978-0-521-85226-5|date=2008-01-10 }}</ref>
===Equatorial frozen sea===
Surface features consistent with ] have been discovered in the southern ].<ref name="Cabrol, N 2010">Cabrol, N. and E. Grin (eds.). 2010. Lakes on Mars. Elsevier. NY</ref> What appear to be plates of broken ice, ranging in size from 30&nbsp;m to 30&nbsp;km, are found in channels leading to a flooded area of approximately the same depth and width as the ]. The plates show signs of break up and rotation that clearly distinguish them from lava plates elsewhere on the surface of Mars. The source for the flood is thought to be the nearby geological fault ] which spewed water as well as lava aged some 2 to 10 million years. It was suggested that the water exited the Cerberus Fossae then pooled and froze in the low, level plains.<ref name="Murray2007">{{Cite journal|last=Murray |first=John B. |coauthors=''et al.'' |year=2005 |title=Evidence from the Mars Express High Resolution Stereo Camera for a frozen sea close to Mars' equator |journal=Nature|pmid=15772653 |volume=434 |issue= 7031|pages=352–356 |doi=10.1038/nature03379 |url= |quote= |bibcode = 2005Natur.434..352M }}</ref> Not all scientists agree with these conclusions.<ref name="ISBN 978-0-521-87201-0">ISBN 978-0-521-87201-0</ref><ref>{{cite journal | last1=Orosei | first1=R. | last2=Cartacci | first2=M. | last3=Cicchetti | first3=A. | last4=Noschese | first4=R. | last5=Federico | first5=C. | last6=Frigeri | first6=A. | last7=Flamini | first7=E. | last8=Holt | first8=J. W. | last9=Marinangeli | first9=L. | title=Radar subsurface sounding over the putative frozen sea in Cerberus Palus, Mars | url=http://www.lpi.usra.edu/meetings/lpsc2008/pdf/1866.pdf | format=PDF | bibcode = 2007AGUFM.P14B..05O | doi = 10.1109/ICGPR.2010.5550143 |volume= XXXIX | journal=Lunar and Planetary Science | page=1 |year=2008 | isbn=978-1-4244-4604-9}}</ref><ref>ISBN 978-0-521-85226-5</ref>



===Glaciers===
=== Glaciers ===
{{Main|Glaciers on Mars}} {{Main|Glaciers on Mars}}
]s, deposits of rocks that show how the glacier advanced.]]
]s formed much of the observable surface in large areas of Mars. Much of the area in high latitudes, especially the ], is believed to still contain enormous amounts of water ice.<ref name="Kieffer1992"/><ref>{{cite web|url=http://www.esa.int/SPECIALS/Mars_Express/SEMBS5V681F_0.html |title=ESA – Mars Express – Breathtaking views of Deuteronilus Mensae on Mars |publisher=Esa.int |date=March 14, 2005 |accessdate=December 19, 2010}}</ref> Recent evidence has led many planetary scientists to believe that water ice still exists as glaciers with a thin covering of insulating rock.<ref name="Head, J. 2005"/><ref name="marstoday.com"/><ref name="news.brown.edu"/><ref name="Plaut, J. 2008"/><ref name="Holt, J. 2008"/><ref>{{cite web|url=http://www.uahirise.org/ESP_018857_2225 |title=HiRISE &#124; Glacier? (ESP_018857_2225) |publisher=Uahirise.org |accessdate=December 19, 2010}}</ref> In March 2010, scientists released the results of a radar study of an area called ] that found widespread evidence of ice lying beneath a few meters of rock debris.<ref>{{dead link|date=December 2010}}</ref> Glaciers are believed to be associated with ], many volcanoes,<ref name="ISBN 978-0-521-87201-0"/><ref>{{cite journal | last1 = Shean | first1 = David E. | title = Origin and evolution of a cold-based tropical mountain glacier on Mars: The Pavonis Mons fan-shaped deposit | journal=Journal of Geophysical Research | volume = 110 | year = 2005 | doi = 10.1029/2004JE002360 | bibcode=2005JGRE..11005001S}}</ref> and even some craters. Ridges of debris on the surface of the glaciers show the direction of ice movement. The surface of some glaciers has a rough texture due to sublimation of buried ice. The ice goes directly into a gas (this process is called sublimation) and leaves behind an empty space. Overlying material then collapses into the void.<ref>{{cite web|url=http://hirise.lpl.arizona.edu/PSP_009719_2230 |title=HiRISE &#124; Fretted Terrain Valley Traverse (PSP_009719_2230) |publisher=Hirise.lpl.arizona.edu |accessdate=December 19, 2010}}</ref> Other pictures below show various features that appear to be connected with the existence of glaciers.
Many large areas of Mars either appear to host glaciers, or carry evidence that they used to be present. Much of the areas in high latitudes, especially the ], are suspected to still contain enormous amounts of water ice.<ref name="ISBN 0-8165-1257-4">{{cite book |last1=Strom |first1=R.G. |first2=Steven K. |last2=Croft |first3=Nadine G. |last3=Barlow |title=The Martian Impact Cratering Record, Mars |publisher=University of Arizona Press |isbn=978-0-8165-1257-7 |date=1992 |url-access=registration |url=https://archive.org/details/mars0000unse }}</ref><ref name="Express">{{cite web |url=http://www.esa.int/SPECIALS/Mars_Express/SEMBS5V681F_0.html |title=ESA – Mars Express – Breathtaking views of Deuteronilus Mensae on Mars |publisher=Esa.int |date=March 14, 2005 |access-date=October 9, 2009 |archive-date=October 18, 2012 |archive-url=https://web.archive.org/web/20121018200501/http://www.esa.int/SPECIALS/Mars_Express/SEMBS5V681F_0.html |url-status=live }}</ref> Recent evidence has led many planetary scientists to conclude that water ice still exists as glaciers across much of the Martian mid- and high latitudes, protected from sublimation by thin coverings of insulating rock and/or dust.<ref name="Holt, J. 2008" /><ref name="Plaut, J. 2008" /> An example of this are the glacier-like features called ] in an area called ], which display widespread evidence of ice lying beneath a few meters of rock debris.<ref name="Plaut, J. 2008" /> Glaciers are associated with ], and many volcanoes. Researchers have described glacial deposits on ],<ref name="Hauber, E. 2005">{{cite journal |last=Hauber |first=E. |display-authors=etal |date=2005 |title=Discovery of a flank caldera and very young glacial activity at Hecates Tholus, Mars |journal=Nature |volume=434 |pages=356–61 |pmid=15772654 |issue=7031 |doi=10.1038/nature03423 |bibcode=2005Natur.434..356H|s2cid=4427179 }}</ref> ],<ref name="brown">{{cite journal |last1=Shean |first1=David E. |last2=Head |first2=James W. |last3=Fastook |first3=James L. |last4=Marchant |first4=David R. |title=Recent glaciation at high elevations on Arsia Mons, Mars: Implications for the formation and evolution of large tropical mountain glaciers |page=E03004 |date=2007 |issue=E3 |volume=112 |doi=10.1029/2006JE002761 |journal=Journal of Geophysical Research |bibcode=2007JGRE..112.3004S |doi-access=free }}</ref> ],<ref name="Shean, D. 2005">{{cite journal |last=Shean |first=D. |display-authors=etal |date=2005 |title=Origin and evolution of a cold-based mountain glacier on Mars: The Pavonis Mons fan-shaped deposit |journal=Journal of Geophysical Research |volume=110 |issue=E5 |page=E05001 |doi=10.1029/2004JE002360 |bibcode=2005JGRE..110.5001S|s2cid=14749707 |doi-access=free }}</ref> and ].<ref name="Basilevsky, A. 2006">{{cite journal |last=Basilevsky |first=A. |display-authors=etal |date=2006 |title=Geological recent tectonic, volcanic and fluvial activity on the eastern flank of the Olympus Mons volcano, Mars |journal=Geophysical Research Letters |volume=33 |issue=13 |at=L13201 |doi=10.1029/2006GL026396 |bibcode=2006GeoRL..3313201B|citeseerx=10.1.1.485.770 |s2cid=16847310 }}</ref> Glaciers have also been reported in a number of larger Martian craters in the mid-latitudes and above.
] with lineated floor deposits. Location is ] ]]


Glacier-like features on Mars are known variously as viscous flow features,<ref>{{cite journal |last=Milliken |first=R. |display-authors=etal |date=2003 |title=Viscous flow features on the surface of Mars: Observations from high-resolution Mars Orbiter Camera (MOC) images |journal=Journal of Geophysical Research |volume=108 |issue=E6|page= 5057 | doi = 10.1029/2002je002005 |bibcode=2003JGRE..108.5057M|s2cid=12628857 }}</ref> Martian flow features, lobate debris aprons,<ref name="Plaut, J. 2008" /> or lineated valley fill,<ref name="HeadMarchant2006" /> depending on the form of the feature, its location, the landforms it is associated with, and the author describing it. Many, but not all, small glaciers seem to be associated with gullies on the walls of craters and mantling material.<ref>{{cite journal |doi=10.1016/j.icarus.2004.05.026 |last1=Arfstrom |first1=J. |first2=W. |last2=Hartmann |date=2005 |title=Martian flow features, moraine-like ridges, and gullies: Terrestrial analogs and interrelationships |journal=Icarus |volume=174 |issue=2 |pages=321–35 |bibcode=2005Icar..174..321A}}</ref> The lineated deposits known as lineated valley fill are probably rock-covered glaciers that are found on the floors of most channels within the ] found around ] in the northern hemisphere. Their surfaces have ridged and grooved materials that deflect around obstacles. Lineated floor deposits may be related to ]s, which have been proven to contain large amounts of ice by orbiting radar.<ref name="Holt, J. 2008" /><ref name="Plaut, J. 2008" /> For many years, researchers interpreted that features called 'lobate debris aprons' were glacial flows and it was thought that ice existed under a layer of insulating rocks.<ref name="Richard Lewis" /><ref name="Tropical snow">{{cite journal |last1=Head |first1=J. W. |last2=Neukum |first2=G. |last3=Jaumann |first3=R. |last4=Hiesinger |first4=H. |last5=Hauber |first5=E. |last6=Carr |first6=M. |last7=Masson |first7=P. |last8=Foing |first8=B. |last9=Hoffmann |first9=H. |last10=Kreslavsky |first10=M. |last11=Werner |first11=S. |last12=Milkovich |first12=S. |last13=van Gasselt |first13=S. |author14=HRSC Co-Investigator Team |title=Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars |journal=Nature |volume=434 |issue=7031 |pages=346–350 |date=2005 |pmid=15772652 |doi=10.1038/nature03359 |bibcode=2005Natur.434..346H|s2cid=4363630 }}</ref><ref name="in flux">{{cite web |author=Staff |publisher=Brown University |url=http://www.spaceref.com/news/viewpr.html?pid=18050 |archive-url=https://archive.today/20130618031257/http://www.spaceref.com/news/viewpr.html?pid=18050 |url-status=dead |archive-date=June 18, 2013 |title=Mars' climate in flux: Mid-latitude glaciers |work=Marstoday |date=October 17, 2005 }}</ref> With new instrument readings, it has been confirmed that lobate debris aprons contain almost pure ice that is covered with a layer of rocks.<ref name="Holt, J. 2008" /><ref name="Plaut, J. 2008" />
<gallery>
]. ]]
Image:Evidence of ] in Fretted terrain.JPG|The arrow in the left picture points to a possible valley carved by a glacier. The image on the right shows the valley greatly enlarged in a Mars Global Surveyor image.
Image:Gullies and tongue-shaped glacier.jpg|Gullies and possible remains of old glaciers in a crater in ], north of the large crater Kepler. One suspected glacier, to the right, has the shape of a tongue. Image was taken by the ] under the Public Target program.
Image:Wide view of glacier showing image field.JPG|Glacier as seen by HiRISE under the ]. Area in rectangle is enlarged in the next photo. Zone of accumulation of snow at the top. Glacier is moving down valley, then spreading out on plain. Evidence for flow comes from the many lines on surface. Location is in ] in ].
Image:Glacier close up with hirise.JPG|Enlargement of area in rectangle of the previous image. On Earth, the ridge would be called the terminal moraine of an alpine glacier. Picture taken with HiRISE under the HiWish program. Image from ].
Image:ESP_020319flowcontext.jpg|Context for the next image of the end of a flow feature or glacier. Location is ]. Picture taken with HiRISE under the HiWish program.
Image:ESP_020319flowsclose-up.jpg|Close-up of the area in the box in the previous image. This may be called by some the terminal moraine of a glacier. For scale, the box shows the approximate size of a football field. Image taken with HiRISE under the HiWish program. Location is ].
Image:Glacier moraine in Deuteronilus Mensae.JPG|Possible moraine on the end of a past glacier on a mound in ], as seen by HiRISE, under the HiWish program.
Image:Glacial Cirque in Hellas.JPG|Possible Glacial Cirque in ], as seen by HiRISE, under the HiWish program. Lines are probably due to downhill movement.
Image:ESP020886 with tongue shaped glacier.jpg|Glaciers, as seen by HiRISE, under HiWish program. Glacier on left is thin because it has lost much of its ice. Glacier on the right on the other hand is thick; it still contains a lot of ice that is under a thin layer of dirt and rock. Location is ].
Image:20769flow features .jpg|Remains of glaciers, as seen by HiRISE under the HiWish program. Image from ].
Image:Lobate feature with hiwish.JPG|Probable glacier as seen by HiRISE under HiWish program. Radar studies have found that it is made up of almost completely pure ice. It appears to be moving from the high ground (a mesa) on the right. Location is ].
</gallery>


Moving ice carries rock material, then drops it as the ice disappears. This typically happens at the snout or edges of the glacier. On Earth, such features would be called ]s, but on Mars they are typically known as ''moraine-like ridges'', ''concentric ridges'', or ''arcuate ridges''.<ref>{{cite journal |doi=10.1016/j.icarus.2005.05.011 |last=Berman |first=D. |display-authors=etal |year=2005 |title=The role of arcuate ridges and gullies in the degradation of craters in the Newton Basin region of Mars |journal=Icarus |volume=178 |issue=2 |pages=465–86 |bibcode=2005Icar..178..465B}}</ref> Since ice tends to sublime rather than melt on Mars, and because Mars's low temperatures tend to make glaciers "cold based" (frozen down to their beds, and unable to slide), the remains of these glaciers and the ridges they leave do not appear the exactly same as normal glaciers on Earth. In particular, Martian moraines tend to be deposited without being deflected by the underlying topography, which is thought to reflect the fact that the ice in Martian glaciers is normally frozen down and cannot slide.<ref name="Carr" /> Ridges of debris on the surface of the glaciers indicate the direction of ice movement. The surface of some glaciers have rough textures due to ] of buried ice. The ice evaporates without melting and leaves behind an empty space. Overlying material then collapses into the void.<ref name="fretted">{{cite web |url=http://hirise.lpl.arizona.edu/PSP_009719_2230 |title=Fretted Terrain Valley Traverse |publisher=Hirise.lpl.arizona.edu |access-date=January 16, 2012 |archive-date=October 13, 2017 |archive-url=https://web.archive.org/web/20171013002242/https://hirise.lpl.arizona.edu/PSP_009719_2230 |url-status=live }}</ref> Sometimes chunks of ice fall from the glacier and get buried in the land surface. When they melt, a more or less round hole remains. Many of these "]s" have been identified on Mars.<ref>{{cite web |url=http://hirise.lpl.arizona.edu/PSP_006278_2225 |title=Jumbled Flow Patterns |publisher=Arizona University |access-date=January 16, 2012 |archive-date=August 23, 2016 |archive-url=https://web.archive.org/web/20160823204921/http://hirise.lpl.arizona.edu/PSP_006278_2225 |url-status=live }}</ref>
===Polar ice caps===
] acquired this image of the Martian north polar ice cap in early northern summer.]]
Both the northern polar cap (]) and the southern polar cap (]) are believed to grow in thickness during the winter and partially ] during the summer. Data obtained by the ] satellite made it possible in 2004 to confirm that the southern polar cap has ice at a depth of {{convert|3.7|km|mi}} below the surface<ref name=NASAwater/> with varying contents of frozen water, depending on its latitude; the polar cap is a mixture of CO<sub>2</sub> ice and water ice.<ref name=ESAwater >{{Cite news|authorlink= | title=Water at Martian south pole | date=March 17, 2004 | publisher=European Space Agency (ESA) | url =http://www.esa.int/SPECIALS/Mars_Express/SEMYKEX5WRD_0.html | accessdate =September 11, 2009 }}</ref> The second part comprises steep slopes known as 'scarps', made almost entirely of water ice, that fall away from the polar cap to the surrounding plains.<ref name=ESAwater /> The third part encompasses the vast permafrost fields that stretch for tens of kilometres away from the scarps.<ref name=ESAwater /><ref>{{Cite journal
| journal=Geophysical Research Letters
| volume = 33
| pages = L11201
| date=June 3, 2006
| last=Kostama
| first=V.-P.
| last2=Kreslavsky
| first2=M. A.
| last3=Head
| first3=J. W.
| title=Recent high-latitude icy mantle in the northern plains of Mars: Characteristics and ages of emplacement
| url=http://www.agu.org/pubs/crossref/2006/2006GL025946.shtml
| doi=10.1029/2006GL025946
| accessdate=August 1, 2008
| postscript=<!-- Bot inserted parameter. Either remove it; or change its value to "." for the cite to end in a ".", as necessary. -->{{inconsistent citations}}
| bibcode=2006GeoRL..3311201K
| issue=11}}</ref> NASA scientists calculate that the volume of water ice in the south polar ice cap, if melted, would be sufficient to cover the entire planetary surface to a depth of 11 metres.<ref name=NASAwater>{{cite web
| publisher=NASA | date=March 15, 2007 | title = Mars' South Pole Ice Deep and Wide
| work =
| url= http://www.nasa.gov/mission_pages/mars/news/mars-20070315.html | accessdate =2013-03-18 }}</ref>


Despite strong evidence for glacial flow on Mars, there is little convincing evidence for ] carved by glacial ], e.g., ]s, ] hills, ]s, ]s. Such features are abundant in glaciated regions on Earth, so their absence on Mars has proven puzzling. The lack of these landforms is thought to be related to the cold-based nature of the ice in most recent glaciers on Mars. Because the ] reaching the planet, the temperature and density of the atmosphere, and the ] are all lower on Mars than they are on Earth, modelling suggests the temperature of the interface between a glacier and its bed stays below freezing and the ice is literally frozen down to the ground. This prevents it from sliding across the bed, which is thought to inhibit the ice's ability to erode the surface.<ref name="Carr" />
Results, published in 2009, of ] measurements of the North Polar ice cap determined that the volume of water ice in the cap is 821,000 cubic kilometers (197,000 cubic miles). That's equal to 30% of the Earth's Greenland ice sheet or enough to cover the surface of Mars to a depth of 5.6 meters (dividing the ice cap volume by the surface area of Mars is how this number is found). The radar instrument is on board the ].<ref>{{cite web|url=http://onorbit.com/node/1524 |title=Radar Map of Buried Mars Layers Matches Climate Cycles |publisher=OnOrbit |accessdate=December 19, 2010}}</ref>


===Ground ice=== === Groundwater ===
{{See also|Groundwater on Mars}}
For many years, various scientists have suggested that some Martian surfaces look like ] regions on Earth.<ref name="Kieffer1992"/> Sometimes it is said that these are regions of ]. These observations suggest that frozen water lies right beneath the surface. A common feature in the higher latitudes, ], can occur in a number of shapes, including stripes and polygons. On the Earth, these shapes are caused by the freezing and thawing of soil.<ref>{{cite web|url=http://www.spaceref.com/news/viewnews.html?id=494 |title=Polygonal Patterned Ground: Surface Similarities Between Mars and Earth &#124; SpaceRef – Your Space Reference |publisher=SpaceRef |date=September 28, 2002 |accessdate=December 19, 2010}}</ref><ref>{{dead link|date=December 2010}}</ref>
In August 2024, a reservoir of liquid water was discovered on Mars - deep in the rocky outer crust of the planet. The findings came from a new analysis of data from Nasa’s Mars Insight Lander, which recorded four years' of vibrations - Mars quakes - from deep inside the Red Planet. The analysis revealed reservoirs of water at depths of about six to 12 miles (10 to 20km) in the Martian crust.<ref>{{Cite web |title=Mars water: Liquid water reservoirs found under Martian crust |url=https://www.bbc.com/news/articles/czxl849j77ko |access-date=2024-08-16 |website=www.bbc.com |language=en-GB}}</ref><ref name=":4">{{Cite web |last=Strickland |first=Ashley |date=2024-08-12 |title=Oceans of water may be trapped deep beneath the Martian surface |url=https://edition.cnn.com/2024/08/12/science/mars-crust-water-reservoir-insight/index.html |access-date=2024-08-16 |website=CNN |language=en}}</ref>
There are other types of evidence for large amounts of frozen water under the surface of Mars, such as terrain softening which rounds sharp topographical features.<ref>{{cite journal | doi = 10.1016/0019-1035(89)90078-X | last1 = Squyres | first1 = S. | year = 1989 | title = Urey Prize Lecture: Water on Mars | url = | journal=Icarus | volume = 79 | pages = 229–288 | bibcode=1989Icar...79..229S | issue = 2}}</ref> Besides landscape features that suggest water frozen in the ground, there is evidence from Mars Odyssey's Gamma Ray Spectrometer, theoretical calculations, and direct measurements with the Phoenix lander.<ref>{{cite journal | doi = 10.1016/j.icarus.2009.06.005 | last1 = Lefort | first1 = A. | last2 = Russell | year = 2010 | first2 = P.S. | last3 = Thomas | first3 = N. | title = Scaloped terrains in the Peneus and Amphitrites Paterae region of Mars as observed by HiRISE | url = | journal=Icarus | volume = 205 | pages = 259–268 | bibcode=2010Icar..205..259L}}</ref>


As per estimates, there may be enough water, trapped in tiny cracks and pores of rock in the middle of the Martian crust, to fill oceans on the planet’s surface. The groundwater would likely cover the entirety of Mars to a depth of 1 mile (1.6 kilometers), the study found.<ref name=":4" />
<gallery perRow="6">
Image:Permafrost - polygon.jpg|] polygons in the Arctic
Image:Phoenix horizon view.jpg|Flat terrain near the north pole of Mars showing what appear to be ].
Image:Permafrost pattern.jpg|] in the Canadian Arctic
Image:Patternedground.JPG|Patterned ground on Mars at 45 degrees north
Image:Athabasca Cones.jpg|Cones in ] formed from lava interacting with ice.
Image:Rootless Cones.jpg|These rings on Mars may have been caused by crust moving over steam produced by lava interacting with water ice.
</gallery>


==Development of Mars' water inventory==
Some areas of Mars are covered with cones that resemble those on Earth where lava has flowed on top of frozen ground. The heat of the lava melts the ice, then changes it into steam. The powerful force of the steam works its way through the lava and produces a cone. In the ] image above, the larger cones were made when the steam went through the thicker layers of lava. The difference between highest elevation (red) to lowest (dark blue) is {{convert|170 |m|ft}}.<ref>{{cite web|url=http://www.nasa.gov/mission_pages/MRO/multimedia/mro-20100111.html |title=NASA – Turbulent Lava Flow in Mars' Athabasca Valles |publisher=Nasa.gov |date=January 11, 2010 |accessdate=December 19, 2010}}</ref>
The variation in Mars's surface water content is strongly coupled to the evolution of its atmosphere and may have been marked by several key stages. Head and others put together a detailed history of water on Mars and presented it in March, 2023.<ref>*Head, J., et al. 2023. GEOLOGICAL AND CLIMATE HISTORY OF MARS: IDENTIFICATION OF POTENTIAL WARM AND
WET CLIMATE 'FALSE POSITIVES'. 54th Lunar and Planetary Science Conference 2023 (LPI Contrib. No. 2806). 1731.pdf</ref>


]. ]]
===Scalloped topography===
]]]
Certain regions of Mars display ]-shaped depressions. The depression are believed to be the remains of an ice-rich mantle deposit. Scallops were caused by ice sublimating from frozen soil. This mantle material probably fell from the air as ice formed on dust when the climate was different due to changes in the tilt of the Mars pole.<ref name="Head, J. 2003"/><ref>{{cite web|url=http://hirise.lpl.arizona.edu/PSP_002917_2175 |title=HiRISE &#124; Dissected Mantled Terrain (PSP_002917_2175) |publisher=Hirise.lpl.arizona.edu |accessdate=December 19, 2010}}</ref> The scallops are typically tens of meters deep and from a few hundred to a few thousand meters across. They can be almost circular or elongated. Some appear to have coalesced causing a large heavily pitted terrain to form. The process of forming the terrain may begin with sublimation from a crack. There are often polygon cracks where scallops form. So the presence of scalloped topography is an indication of frozen ground.<ref name="sciencedirect.com"/><ref>{{cite journal | doi = 10.1016/j.icarus.2009.06.005 | last1 = Lefort | first1 = A. | last2 = Russell | year = 2010 | first2 = P.S. | last3 = Thomas | first3 = N. | title = Scalloped terrains in the Peneus and Amphitrites Paterae region of Mars as observed by HiRISE | url = | journal=Icarus | volume = 205 | pages = 259–268 | bibcode=2010Icar..205..259L}}</ref>


===Early Noachian era (4.6 Ga to 4.1 Ga)===
==Possible evidence of flowing water==
{{further|Noachian}}
{{main|Seasonal flows on warm Martian slopes}}
The early Noachian era was characterized by atmospheric loss to space from heavy meteoritic bombardment and hydrodynamic escape.<ref name = Jakosky2001>{{cite journal | last1 = Jakosky | first1 = B. M. | last2 = Phillips | first2 = R. J. | year = 2001 |title=Mars' volatile and climate history |journal=Nature |volume =412| issue = 6843| pages =237–244| doi = 10.1038/35084184 | pmid=11449285| doi-access = free | bibcode = 2001Natur.412..237J }}</ref> Ejection by meteorites may have removed ~60% of the ].<ref name = Jakosky2001/><ref name = Chaufray2007>{{cite journal | last1 = Chaufray | first1 = J. Y. | display-authors = etal | year = 2007 | title = Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space | url = https://hal.archives-ouvertes.fr/hal-00186346/file/Chaufray_et_al-2007-Journal_of_Geophysical_Research__Planets_%281991-2012%29.pdf | journal = Journal of Geophysical Research | volume = 112 | issue = E9 | pages = E09009 | doi = 10.1029/2007JE002915 | bibcode = 2007JGRE..112.9009C | doi-access = free | access-date = November 22, 2019 | archive-date = November 29, 2021 | archive-url = https://web.archive.org/web/20211129022552/https://hal.archives-ouvertes.fr/hal-00186346/file/Chaufray_et_al-2007-Journal_of_Geophysical_Research__Planets_%281991-2012%29.pdf | url-status = live }}</ref> Significant quantities of phyllosilicates may have formed during this period requiring a sufficiently dense atmosphere to sustain surface water, as the spectrally dominant phyllosilicate group, smectite, suggests moderate water-to-rock ratios.<ref name = Chevrier2007>{{cite journal | last1 = Chevrier | first1 = V. | display-authors = etal | year = 2007 | title =Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates| journal = Nature| volume =448| issue = 7149| pages =60–63| doi = 10.1038/nature05961 | pmid=17611538| bibcode =2007Natur.448...60C| s2cid = 1595292 }}</ref> However, the pH-pCO<sub>2</sub> between smectite and carbonate show that the precipitation of smectite would constrain pCO<sub>2</sub> to a value not more than {{convert|1e-2|atm|abbr=on}}.<ref name = Chevrier2007/> As a result, the dominant component of a dense atmosphere on early Mars becomes uncertain, if the clays formed in contact with the Martian atmosphere,<ref name = Catling2007>{{cite journal | last1 = Catling | first1 = D. C. | year = 2007 | title = Mars: Ancient fingerprints in the clay| journal = Nature| volume = 448| issue = 7149| pages = 31–32| doi = 10.1038/448031a | pmid=17611529| bibcode =2007Natur.448...31C| s2cid = 4387261 }}</ref> particularly given the lack of evidence for ]. An additional complication is that the ~25% lower brightness of the young Sun would have required an ancient atmosphere with a significant ] to raise surface temperatures to sustain liquid water.<ref name = Catling2007/> Higher CO<sub>2</sub> content alone would have been insufficient, as CO<sub>2</sub> precipitates at ]s exceeding {{convert|1.5|atm|hPa|abbr=on}}, reducing its effectiveness as a ].<ref name = Catling2007/>
In August 2011, NASA announced the discovery of seasonal changes in gullies near crater rims on the Southern hemisphere. This suggests salty water flowing and then evaporating, possibly leaving some sort of residue.<ref>, ], August 4, 2011</ref>


===Middle to late Noachean era (4.1 Ga to 3.8 Ga)===
On September 27, 2012, ] announced that the '']'' found evidence for an ancient ] suggesting a "vigorous flow" of ] on Mars.<ref name="NASA-20120927" /><ref name="NASA-20120927a" /><ref name="AP-20120927" /> In particular, analysis of an ancient streambed indicated that the water ran quickly, possibly at hip depth. The discovery marks an important achievement for Curiosity, and supports the notion that Mars was once capable of harboring life.
During the middle to late Noachean era, Mars underwent potential formation of a ] by outgassing dominated by the Tharsis volcanoes, including significant quantities of H<sub>2</sub>O, CO<sub>2</sub>, and SO<sub>2</sub>.<ref name = Jakosky2001/><ref name = Chaufray2007/> Martian valley networks date to this period, indicating globally widespread and temporally sustained surface water as opposed to catastrophic floods.<ref name = Jakosky2001/> The end of this period coincides with the termination of the internal ] and a spike in meteoritic bombardment.<ref name = Jakosky2001/><ref name = Chaufray2007/> The cessation of the internal magnetic field and subsequent weakening of any local ] allowed unimpeded ] by the solar wind. For example, when compared with their terrestrial counterparts, <sup>38</sup>Ar/<sup>36</sup>Ar, <sup>15</sup>N/<sup>14</sup>N, and <sup>13</sup>C/<sup>12</sup>C ratios of the Martian atmosphere are consistent with ~60% loss of Ar, N<sub>2</sub>, and CO<sub>2</sub> by solar wind stripping of an upper atmosphere enriched in the lighter isotopes via ].<ref name = Jakosky2001/> Supplementing the solar wind activity, impacts would have ejected atmospheric components in bulk without isotopic fractionation. Nevertheless, cometary impacts in particular may have contributed volatiles to the planet.<ref name = Jakosky2001/>


===Hesperian to Amazonian era (present) (~3.8 Ga to present)===
Remnants of the now dried-up stream were found inside the Gale Crater within which Curiosity is working. Proof of running water came in the form of rounded pebbles and gravel fragments that could have only been weathered by strong currents. Their shape and orientation suggests long-distance transport from above the rim of the crater, where a channel named Peace Vallis feeds into the alluvial fan. Because there are many channels like this, NASA scientists believe the flows were continuous or repeated for long durations, and not intermittent.
{{further|Hesperian|Amazonian (Mars)}}
Atmospheric enhancement by sporadic outgassing events were countered by solar wind stripping of the atmosphere, albeit less intensely than by the young Sun.<ref name = Chaufray2007/> Catastrophic floods date to this period, favoring sudden subterranean release of volatiles, as opposed to sustained surface flows.<ref name = Jakosky2001/> While the earlier portion of this era may have been marked by aqueous acidic environments and Tharsis-centric groundwater discharge<ref name = AndrewsHanna2007>{{cite journal | last1 = Andrews-Hanna | first1 = J. C. | display-authors = etal | year = 2007 | title = Meridiani Planum and the global hydrology of Mars| journal = Nature| volume = 446| issue = 7132| pages = 163–6| doi = 10.1038/nature05594 | pmid=17344848| bibcode =2007Natur.446..163A| s2cid = 4428510 }}</ref> dating to the late Noachian, much of the surface alteration processes during the latter portion is marked by oxidative processes including the formation of Fe<sup>3+</sup> oxides that impart a reddish hue to the Martian surface.<ref name = Chaufray2007/> Such oxidation of primary mineral phases can be achieved by low-pH (and possibly high temperature) processes related to the formation of palagonitic tephra,<ref name = Morris2001>{{cite journal | last1 = Morris | first1 = R. V. | display-authors = etal | year = 2001 | title = Phyllosilicate-poor palagonitic dust from Mauna Kea Volcano (Hawaii): A mineralogical analogue for magnetic Martian dust?| journal = Journal of Geophysical Research| volume = 106| issue = E3| pages = 5057–5083| doi = 10.1029/2000JE001328 | bibcode=2001JGR...106.5057M| doi-access = free}}</ref> by the action of H<sub>2</sub>O<sub>2</sub> that forms photochemically in the Martian atmosphere,<ref name = Chevrier2006>{{cite journal | last1 = Chevrier | first1 = V. | display-authors = etal | year = 2006 | title = Iron weathering products in a CO2+(H2O or H2O2) atmosphere: Implications for weathering processes on the surface of Mars | journal = Geochimica et Cosmochimica Acta | volume = 70 | issue = 16 | pages = 4295–4317 | doi = 10.1016/j.gca.2006.06.1368 | bibcode = 2006GeCoA..70.4295C | url = https://hal.archives-ouvertes.fr/hal-01872279/file/Chevrier%20-%202006%20-%20GCA%20-%20experimental%20weathering%20in%20CO2%20%2B%20H2O.pdf | access-date = June 23, 2022 | archive-date = July 13, 2022 | archive-url = https://web.archive.org/web/20220713142018/https://hal.archives-ouvertes.fr/hal-01872279/file/Chevrier%20-%202006%20-%20GCA%20-%20experimental%20weathering%20in%20CO2%20+%20H2O.pdf | url-status = live }}</ref> and by the action of water,<ref name = Chevrier2007/> none of which require free O<sub>2</sub>. The action of H<sub>2</sub>O<sub>2</sub> may have dominated temporally given the drastic reduction in aqueous and igneous activity in this recent era, making the observed Fe<sup>3+</sup> oxides volumetrically small, though pervasive and spectrally dominant.<ref name = Bibring2006>{{cite journal | last1 = Bibring | first1 = J-P. | display-authors = etal | year = 2006 | title = Global mineralogical and aqueous mars history derived from OMEGA/Mars Express data| journal = Science| volume = 312| issue = 5772| pages = 400–4| doi = 10.1126/science.1122659 | pmid = 16627738 | bibcode = 2006Sci...312..400B| doi-access = free}}</ref> Nevertheless, aquifers may have driven sustained, but highly localized surface water in recent geologic history, as evident in the geomorphology of craters such as Mojave.<ref name = McEwen2007>{{cite journal | last1 = McEwen | first1 = A. S. | display-authors = etal | year = 2007 | title = A Closer Look at Water-Related Geologic Activity on Mars| journal = Science| volume = 317| issue = 5845| pages = 1706–1709| doi = 10.1126/science.1143987 | pmid=17885125| bibcode =2007Sci...317.1706M| s2cid = 44822691 }}</ref> Furthermore, the ] ] shows evidence of aqueous alteration as recently as 650 Ma.<ref name = Jakosky2001/>


]
"From the size of gravels it carried, we can interpret the water was moving about 3 feet per second, with a depth somewhere between ankle and hip deep," noted Curiosity scientist William Dietrich speaking through NASA's official release. "Plenty of papers have been written about channels on Mars with many different hypotheses about the flows in them. This is the first time we're actually seeing water-transported gravel on Mars. This is a transition from speculation about the size of streambed material to direct observation of it."
In 2020 scientists reported that Mars' current loss of atomic hydrogen from water is largely driven by seasonal processes and ] that transport water directly to the upper atmosphere and that this has influenced the planet's climate likely during the last 1 Ga.<ref>{{cite news |title=Escape from Mars: How water fled the red planet |url=https://phys.org/news/2020-11-mars-fled-red-planet.html |access-date=8 December 2020 |work=phys.org |language=en |archive-date=October 9, 2021 |archive-url=https://web.archive.org/web/20211009114212/https://phys.org/news/2020-11-mars-fled-red-planet.html |url-status=live }}</ref><ref>{{cite journal |last1=Stone |first1=Shane W. |last2=Yelle |first2=Roger V. |last3=Benna |first3=Mehdi |last4=Lo |first4=Daniel Y. |last5=Elrod |first5=Meredith K. |last6=Mahaffy |first6=Paul R. |title=Hydrogen escape from Mars is driven by seasonal and dust storm transport of water |journal=Science |date=13 November 2020 |volume=370 |issue=6518 |pages=824–831 |doi=10.1126/science.aba5229 |pmid=33184209 |bibcode=2020Sci...370..824S |s2cid=226308137 |url=https://www.science.org/doi/10.1126/science.aba5229 |access-date=8 December 2020 |language=en |issn=0036-8075 |archive-date=September 16, 2022 |archive-url=https://web.archive.org/web/20220916121529/https://www.science.org/doi/10.1126/science.aba5229 |url-status=live }}</ref> More recent studies have suggested that upward propagating atmospheric gravity waves can play an important role during global dust storms in modulating water escape.<ref>{{Cite journal|last=Yiğit|first=Erdal|date=2021-12-10|title=Martian water escape and internal waves|url=https://www.science.org/doi/10.1126/science.abg5893|journal=Science|language=en|volume=374|issue=6573|pages=1323–1324|doi=10.1126/science.abg5893|pmid=34882460|bibcode=2021Sci...374.1323Y|s2cid=245012567|issn=0036-8075|access-date=December 16, 2021|archive-date=December 16, 2021|archive-url=https://web.archive.org/web/20211216001442/https://www.science.org/doi/10.1126/science.abg5893|url-status=live}}</ref><ref>{{Cite journal|last1=Yiğit|first1=Erdal|last2=Medvedev|first2=Alexander S.|last3=Benna|first3=Mehdi|last4=Jakosky|first4=Bruce M.|date=2021-03-16|title=Dust Storm-Enhanced Gravity Wave Activity in the Martian Thermosphere Observed by MAVEN and Implication for Atmospheric Escape|url=https://onlinelibrary.wiley.com/doi/10.1029/2020GL092095|journal=Geophysical Research Letters|language=en|volume=48|issue=5|doi=10.1029/2020GL092095|arxiv=2101.07698|bibcode=2021GeoRL..4892095Y|s2cid=234356651|issn=0094-8276|access-date=December 16, 2021|archive-date=June 11, 2024|archive-url=https://web.archive.org/web/20240611062827/https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020GL092095|url-status=live}}</ref>


==Mars meteorites== ==== Ice ages ====
]
]]]
Mars has experienced about 40 large scale changes in the amount and distribution of ice on its surface over the past five million years,<ref>{{cite journal | last1 = Schorghofer | first1 = Norbert | year = 2007 | title = Dynamics of ice ages on Mars | url = http://depts.washington.edu/marsweb/papers/PDFs/Schorghofer-2007-Mars-ice-ages.pdf | journal = Nature | volume = 449 | issue = 7159 | pages = 192–194 | bibcode = 2007Natur.449..192S | doi = 10.1038/nature06082 | pmid = 17851518 | s2cid = 4415456 | access-date = January 12, 2018 | archive-url = https://web.archive.org/web/20180113121555/http://depts.washington.edu/marsweb/papers/PDFs/Schorghofer-2007-Mars-ice-ages.pdf | archive-date = January 13, 2018 | url-status = dead }}</ref><ref name="Shean, D. 2005" /> with the most recent happening about 2.1 to 0.4 Myr ago, during the Late ] glaciation at the ] boundary.<ref name="Dickson2008">{{cite journal |last1=Dickson |first1=James L. |last2=Head |first2=James W. |last3=Marchant |first3=David R. |date=2008 |title=Late Amazonian glaciation at the dichotomy boundary on Mars: Evidence for glacial thickness maxima and multiple glacial phases |journal=] |volume=36 |issue=5 |pages=411–4 |doi=10.1130/G24382A.1|bibcode=2008Geo....36..411D |s2cid=14291132 }}</ref><ref>{{cite journal | last1 = Head | first1 = J. W. | last2 = III | last3 = Mustard | first3 = J. F. | last4 = Kreslavsky | first4 = M. A. | last5 = Milliken | first5 = R. E. | last6 = Marchant | first6 = D. R. | year = 2003 | title = Recent ice ages on Mars | journal = Nature | volume = 426 | issue = 6968| pages = 797–802 | doi=10.1038/nature02114| pmid = 14685228 | bibcode = 2003Natur.426..797H | s2cid = 2355534 }}</ref> These changes are known as ice ages.<ref name="Smith 2016">{{cite journal |title=An ice age recorded in the polar deposits of Mars |journal=Science |date= May 27, 2016 |last1=Smith |first1=Isaac B. |last2=Putzig |first2=Nathaniel E. |last3=Holt |first3=John W. |last4=Phillips |first4=Roger J. |volume=352 |issue=6289 |pages= 1075–1078 |doi=10.1126/science.aad6968 |pmid=27230372|bibcode=2016Sci...352.1075S |doi-access=free }}</ref> Ice ages on Mars are very different from the ones that the Earth experiences. Ice ages are driven by changes in Mars's orbit and ] —also known as obliquity. Orbital calculations show that Mars wobbles on its axis far more than Earth does. The Earth is stabilized by its proportionally large moon, so it only wobbles a few degrees. Mars may change its tilt by many tens of degrees.<ref name="hirise" /><ref>{{cite journal | last1 = Levrard | first1 = B. | last2 = Forget | first2 = F. | last3 = Montmessian | first3 = F. | last4 = Laskar | first4 = J. | year = 2004 | title = Recent ice-rich deposits formed at high latitudes on Mars by sublimation of unstable equatorial ice during low obliquity | journal = Nature | volume = 431 | issue = 7012| pages = 1072–1075 | doi=10.1038/nature03055| pmid = 15510141 | bibcode = 2004Natur.431.1072L | s2cid = 4420650 }}</ref> When this obliquity is high, its poles get much more direct sunlight and heat; this causes the ice caps to warm and become smaller as ice sublimes. Adding to the variability of the climate, the ] of the orbit of Mars changes twice as much as Earth's eccentricity. As the poles sublime, the ice is redeposited closer to the equator, which receive somewhat less ] at these high obliquities.<ref name="IceAge&shy;" /> Computer simulations have shown that a 45° tilt of the Martian axis would result in ice accumulation in areas that display glacial landforms.<ref>{{cite journal |last=Forget |first=F. |display-authors=etal |date=2006 |title=Formation of Glaciers on Mars by Atmospheric Precipitation at High Obliquity |journal=Science |volume=311 |pages=368–71 |pmid=16424337 |issue=5759 |doi=10.1126/science.1120335 |bibcode=2006Sci...311..368F|s2cid=5798774 }}</ref>
Over thirty meteorites have been found that came from Mars. Some of them contain evidence that they were exposed to water when on Mars.


The moisture from the ice caps travels to lower latitudes in the form of deposits of frost or snow mixed with dust. The atmosphere of Mars contains a great deal of fine dust particles, the water vapor condenses on these particles that then fall down to the ground due to the additional weight of the water coating. When ice at the top of the mantling layer returns to the atmosphere, it leaves behind dust that serves to insulate the remaining ice.<ref name="IceAge&shy;" /> The total volume of water removed is a few percent of the ice caps, or enough to cover the entire surface of the planet under one meter of water. Much of this moisture from the ice caps results in a thick smooth mantle with a mixture of ice and dust.<ref name=":8" /><ref name="Head, J. 2003" /><ref>{{cite journal |last=Mustard |first=J. |display-authors=etal |date=2001 |title=Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice |journal=Nature |volume=412 |pages=411–4 |pmid=11473309 |issue=6845 |doi=10.1038/35086515 |bibcode=2001Natur.412..411M |s2cid=4409161 }}</ref><ref>{{cite journal |last1=Kreslavsky |first1=M. |first2=J. |last2=Head |date=2002 |title=Mars: Nature and evolution of young latitude-dependent water-ice-rich mantle |issue=15 |journal=Geophysical Research Letters |volume=29 |doi=10.1029/2002GL015392 |bibcode=2002GeoRL..29.1719K |pages=14–1–14–4 |doi-access=free }}</ref> This ice-rich mantle, that can be 100 meters thick at mid-latitudes,<ref name='exposed 100m'>{{cite web |last1=Beatty |first1=Kelly |title=Water Ice Found Exposed in Martian Cliffs - Sky & Telescope |url=https://www.skyandtelescope.com/astronomy-news/cliffs-reveal-water-ice-on-mars/ |website=Sky & Telescope |access-date=3 October 2018 |date=23 January 2018}}</ref> smoothes the land at lower latitudes, but in places it displays a bumpy texture or patterns that give away the presence of former water ice underneath.
Some ]s called ]ic shergottites, appear (from the presence of hydrated ]s and ]s) to have been exposed to liquid water prior to injection into space.<ref>{{cite web|url=http://www2.jpl.nasa.gov/snc/shergotty.html |title=Shergotty Meteorite – JPL, NASA |publisher=.jpl.nasa.gov |accessdate=December 19, 2010}}</ref>


== Habitability assessments ==
It has been shown that another class of meteorites, the nakhlites, were suffused with liquid water around 620 million years ago and that they were ejected from Mars around 10.75&nbsp;million years ago by an asteroid impact. They fell to Earth within the last 10,000 years.<ref name=Nakhlites>{{cite journal | url=http://www.lpi.usra.edu/science/treiman/nakhlite_rev.pdf | last1=Treiman | first1=A |title=The nakhlite meteorites: Augite-rich igneous rocks from Mars |accessdate=September 8, 2006 | journal=Chemie der Erde – Geochemistry | volume=65 | page=203 | year=2005 | doi = 10.1016/j.chemer.2005.01.004 | bibcode = 2005ChEG...65..203T | issue=3 }}</ref>
{{Main|Life on Mars}}
] prototype being tested in the ], 2013.]]
Since the ] that searched for current microbial life in 1976, NASA has pursued a "follow the water" strategy on Mars. However, liquid water is a necessary but not sufficient condition for life as we know it because ] is a function of a multitude of environmental parameters.<ref name='NASA Astrobio Strategy 2015'> {{Webarchive|url=https://web.archive.org/web/20161222190939/https://nai.nasa.gov/media/medialibrary/2016/04/NASA_Astrobiology_Strategy_2015_FINAL_041216.pdf |date=December 22, 2016 }} (PDF) NASA.</ref> Chemical, physical, geological, and geographic attributes shape the environments on Mars. Isolated measurements of these factors may be insufficient to deem an environment habitable, but the sum of measurements can help predict locations with greater or lesser habitability potential.<ref name="2013 LPS">{{cite journal |bibcode=2013LPI....44.2185C |title=Habitability Assessment at Gale Crater: Implications from Initial Results |last1=Conrad |first1=P. G. |last2=Archer |first2=D. |last3=Coll |first3=P. |last4=De La Torre |first4=M. |last5=Edgett |first5=K. |last6=Eigenbrode |first6=J. L. |last7=Fisk |first7=M. |last8=Freissenet |first8=C. |last9=Franz |first9=H. |last10=Glavin |first10=D. P. |last11=Gómez |first11=F. |last12=Haberle |first12=R. |last13=Hamilton |first13=V. |last14=Jones |first14=J. H. |last15=Kah |first15=L. C. |last16=Leshin |first16=L. A. |last17=Mahaffy |first17=P. M. |last18=McAdam |first18=A. |last19=McKay |first19=C. P. |last20=Navarro-González |first20=R. |last21=Steele |first21=A. |last22=Stern |first22=J. |last23=Sumner |first23=D. |last24=Treiman |first24=A. H. |last25=Wong |first25=M. H. |last26=Wray |first26=J. |last27=Yingst |first27=R. A. |author28=MSL Science Team |display-authors=9 |volume=1719 |issue=1719 |date=2013 |page=2185 |journal=44th Lunar and Planetary Science Conference }}</ref>


Habitable environments need not be inhabited, and for purposes of ], scientists are trying to identify potential habitats where stowaway bacteria from Earth on spacecraft could contaminate Mars.<ref name="strategy">{{cite book | author1=Committee on an Astrobiology Strategy for the Exploration of Mars | author2=National Research Council | date=2007 | chapter=Planetary Protection for Mars Missions | chapter-url=http://www.nap.edu/openbook.php?record_id=11937&page=95 | pages=95–98 | title=An Astrobiology Strategy for the Exploration of Mars | publisher=The National Academies Press | isbn=978-0-309-10851-5 }}</ref> If life exists—or existed—on Mars, evidence or ]s could be found in the subsurface, away from present-day harsh surface conditions such as ]s,<ref name="SM-20170706">{{cite news |last=Daley |first=Jason |title=Mars Surface May Be Too Toxic for Microbial Life - The combination of UV radiation and perchlorates common on Mars could be deadly for bacteria |url=http://www.smithsonianmag.com/smart-news/mars-surface-may-be-toxic-bacteria-180963966/ |date=6 July 2017 |work=] |access-date=8 July 2017 }}</ref><ref name="NAT-20170706">{{cite journal|last1=Wadsworth |first1=Jennifer |last2=Cockell |first2=Charles S. |title=Perchlorates on Mars enhance the bacteriocidal effects of UV light |date=6 July 2017 |journal=] |volume=7 |page=4662 |number=4662 |doi=10.1038/s41598-017-04910-3 |bibcode = 2017NatSR...7.4662W |pmid=28684729 |pmc=5500590}}</ref> ionizing radiation, desiccation and freezing.<ref name='NASA strategy 2015'>{{cite web|url=https://nai.nasa.gov/media/medialibrary/2015/10/NASA_Astrobiology_Strategy_2015_151008.pdf|title=NASA Astrobiology Strategy|year=2015|work=NASA.|access-date=September 5, 2018|archive-url=https://web.archive.org/web/20161222190306/https://nai.nasa.gov/media/medialibrary/2015/10/NASA_Astrobiology_Strategy_2015_151008.pdf|archive-date=December 22, 2016|url-status=dead}}</ref> Habitable locations could occur kilometers below the surface in a hypothetical hydrosphere, or it could occur near the sub-surface in contact with permafrost.<ref name="Dartnell-1"/><ref name="ionising radiation"/><ref name="subsurface habitability model"/><ref name="Parnell"/><ref name=Steigerwald/>
In 1996, a group of scientists reported on chemical fossils in ], a meteorite from Mars.<ref>{{cite journal | doi = 10.1126/science.273.5277.924 | last1 = McKay | first1 = D. | last2 = Gibson Jr | year = 1996 | first2 = EK | last3 = Thomas-Keprta | first3 = KL | last4 = Vali | first4 = H | last5 = Romanek | first5 = CS | last6 = Clemett | first6 = SJ | last7 = Chillier | first7 = XD | last8 = Maechling | first8 = CR | last9 = Zare | first9 = RN | title = Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite AL84001 | url = | journal=Science | volume = 273 | issue = 5277| pages = 924–930 | pmid = 8688069 |bibcode = 1996Sci...273..924M }}</ref> Many studies disputed the validity of the fossils.<ref>{{cite news | last1=Gibbs |first1= W. |first2= C. |last2=Powell |title= Bugs in the Data? |date= August 19, 1996 |work=Scientific American | url=http://www.scientificamerican.com/article.cfm?id=bugs-in-the-data }}</ref><ref>{{cite web|url=http://www.space.com/scienceastronomy/solarsystem/mars_meteorite_020320.html |title=Controversy Continues: Mars Meteorite Clings to Life – Or Does It? |publisher=SPACE.com |date=March 20, 2002 |accessdate=December 19, 2010}}</ref> It was found that most of the organic matter in the meteorite was of terrestrial origin.<ref>{{cite journal | doi = 10.1126/science.279.5349.362 | last1 = Bada | first1 = J. | last2 = Glavin | year = 1998 | first2 = DP | last3 = McDonald | first3 = GD | last4 = Becker | first4 = L | title = A Search for Endogenous Amino Acids in Martian Meteorite AL84001 | url = | journal=Science | volume = 279 | issue = 5349| pages = 362–365 | pmid = 9430583 |bibcode = 1998Sci...279..362B }}</ref>


The ''Curiosity'' rover is assessing Mars' past and present habitability potential. The European-Russian ] programme is an astrobiology project dedicated to the search for and identification of biosignatures on Mars. It includes the ] that started mapping the ] in April 2018, and the 2022 ] that will drill and analyze subsurface samples 2 meters deep. NASA's ] rover will cache dozens of drilled core samples for their potential transport to Earth laboratories in the late 2020s or 2030s.
==Lakes==
A variety of lake basins have been discovered on Mars.<ref name="Cabrol, N 2010"/> Some are comparable in size to the largest lakes on Earth, such as the ], ], and ]. Lakes that are fed by valley networks are found in the southern highlands. There are places that are closed depressions with river valleys leading into them. These areas are thought to have once contained lakes. One is in ] which had its overflow move through ] into ], which was explored by the ] ]. Another is near ] and Loire Vallis.<ref>{{cite journal | doi = 10.1006/icar.2000.6465 | last1 = Goldspiel | first1 = J. | last2 = Squires | first2 = S. | author-separator =, | author-name-separator= | year = 2000 | title = Groundwater sapping and valley formation on Mars | url = | journal=Icarus | volume = 148 | pages = 176–192 | bibcode=2000Icar..148..176G}}</ref> Some lakes are believed to have formed by precipitation, while others were formed from groundwater.<ref name="Irwin III 2005" /><ref name="Fassett2008" /> Lakes are believed to have existed in the Argyre basin,<ref name="lpi.usra.edu"/><ref name="Heisinger2002" /> the Hellas basin,<ref name="ISBN 978-0-521-87201-0"/><ref name="Moore2001" />
and maybe in ].<ref name="ISBN 978-0-521-87201-0"/><ref name="http"/><ref>McCauley, J. 1978. Geologic map of the Coprates quadrangle of Mars. U.S. Geol. Misc. Inv. Map I-897</ref><ref>{{cite journal | doi = 10.1016/0019-1035(87)90086-8 | last1 = Nedell | first1 = S. | year = 1987 | title = Origin and evolution of the layered deposits in the Valles Marineris, Mars | url = | journal=Icarus | volume = 70 | pages = 409–441 | bibcode=1987Icar...70..409N | last2 = Squyres | first2 = Steven W. | last3 = Andersen | first3 = David W. | issue = 3}}</ref>


== Findings by probes ==
Research, published in January 2010, suggests that Mars had lakes, each around 20&nbsp;km wide, along parts of the equator. Although earlier research showed that Mars had a warm and wet early history that has long since dried up, these lakes existed in the ] Epoch, a much earlier period. Using detailed images from NASA's ], the researchers speculate that there may have been increased volcanic activity, meteorite impacts or shifts in Mars' orbit during this period to warm Mars' atmosphere enough to melt the abundant ice present in the ground. Volcanoes would have released gases that thickened the atmosphere for a temporary period, trapping more sunlight and making it warm enough for liquid water to exist. In this new study, channels were discovered that connected lake basins near ]. When one lake filled up, its waters overflowed the banks and carved the channels to a lower area where another lake would form.<ref>{{cite web|url=http://www.sciencedaily.com/releases/2012/01/100104092452.htm |title=Spectacular Mars images reveal evidence of ancient lakes |publisher=Sciencedaily.com |date=January 4, 2010 |accessdate=December 19, 2010}}</ref><ref>{{cite journal | doi = 10.1130/G30579.1 | last1 = Gupta | first1 = Sanjeev | last2 = Warner | first2 = Nicholas | last3 = Kim | first3 = Rack | last4 = Lin | first4 = Yuan | last5 = Muller | first5 = Jan | last6 = -1#Jung- | first6 = Shih- | year = 2010 | title = Hesperian equatorial thermokarst lakes in Ares Vallis as evidence for transient warm conditions on Mars | url = | journal=Geology | volume = 38 | pages = 71–74 }}</ref> These lakes would be another place to look for evidence of present or past life.
{{Main|Chronology of discoveries of water on Mars}}
<!--Note: as this section is linked to its parent article, then by policy: only a related summary of it (or of each mission) must be presented in this article. Only SOME representative images may be used as part of this summary.-->


==Lake deltas== === Mariner 9 ===
], as seen by ]. Such images implied that large amounts of water once flowed on the surface of Mars.]]
Researchers have found a number of examples of deltas that formed in Martian lakes.<ref name="ReferenceA">{{cite journal | last1 = Di Achille | first1 = Gaetano | last2 = Hynek | first2 = Brian M. | title = Ancient ocean on Mars supported by global distribution of deltas and valleys | journal=Nature Geoscience | volume = 3 | page = 459 | year = 2010 | doi = 10.1038/ngeo891 |bibcode = 2010NatGe...3..459D | issue=7}}</ref> Finding deltas is a major sign that Mars once had a lot of water. Deltas usually require deep water over a long period of time to form. Also, the water level needs to be stable to keep sediment from washing away. Deltas have been found over a wide geographical range and several are pictured below.<ref name="Irwin III 2005"/>
The images acquired by the ] Mars orbiter, launched in 1971, revealed the first direct evidence of past water in the form of dry river beds, ]s (including the ], a system of canyons over about {{convert|4020|km|mi|-1}} long), evidence of water ] and deposition, weather fronts, fogs, and more.<ref>{{cite web |url=http://marsprogram.jpl.nasa.gov/missions/past/mariner8-9.html |archive-url=https://web.archive.org/web/20040411165457/http://marsprogram.jpl.nasa.gov/missions/past/mariner8-9.html |url-status=dead |archive-date=April 11, 2004 |title=Mars Exploration: Missions |publisher=Marsprogram.jpl.nasa.gov |access-date=December 19, 2010}}</ref> The findings from the Mariner 9 missions underpinned the later ]. The enormous ] canyon system is named after Mariner 9 in honor of its achievements.


=== Viking program ===
<gallery>
{{Main|Viking program}}
Image:Delta in Ismenius Lacus.jpg|] in ]
] suggest that large floods occurred on Mars.]]
Image:Delta in Lunae Palus.jpg|Delta in ]
Image:Delta in Margaritifer Sinus.jpg|Delta in ]
Image:Distributary fan-delta.jpg|Probable delta in ]
</gallery>


By discovering many geological forms that are typically formed from large amounts of water, the two ] orbiters and the two landers caused a revolution in our knowledge about water on Mars. Huge ] were found in many areas. They showed that floods of water broke through dams, carved deep valleys, eroded grooves into bedrock, and traveled thousands of kilometers.<ref name="history.nasa.gov">{{cite web |url=https://history.nasa.gov/SP-441/ch4.htm |title=Viking Orbiter Views of Mars |date=January 1980 |publisher=History.nasa.gov |access-date=December 19, 2010 |last1=Carr |first1=M. H. |last2=Baum |first2=W. A. |last3=Blasius |first3=K. R. |last4=Briggs |first4=G. A. |last5=Cutts |first5=J. A. |last6=Duxbury |first6=T. C. |last7=Greeley |first7=R. |last8=Guest |first8=J. |last9=Masursky |first9=H. |last10=Smith |first10=B. A. }}</ref> Large areas in the southern hemisphere contained branched ], suggesting that rain once fell.<ref>{{cite web |url=https://history.nasa.gov/SP-441/ch5.htm |title=ch5 |work=NASA History |date=January 1980 |publisher=NASA |access-date=December 19, 2010 |last1=Carr |first1=M. H. |last2=Baum |first2=W. A. |last3=Blasius |first3=K. R. |last4=Briggs |first4=G. A. |last5=Cutts |first5=J. A. |last6=Duxbury |first6=T. C. |last7=Greeley |first7=R. |last8=Guest |first8=J. |last9=Masursky |first9=H. |last10=Smith |first10=B. A. }}</ref> Many craters look as if the impactor fell into mud. When they were formed, ice in the soil may have melted, turned the ground into mud, then the mud flowed across the surface.<ref name="Raeburn">{{cite journal |last=Raeburn |first=P. |date=1998 |title=Uncovering the Secrets of the Red Planet Mars |journal=National Geographic |location=Washington D.C.}}</ref><ref name="Moore">{{cite book |last=Moore |first=P. |display-authors=etal |date=1990 |title=The Atlas of the Solar System |publisher=Mitchell Beazley Publishers |location=New York}}</ref><ref name="Kieffer1992" /><ref>{{cite web |url=https://history.nasa.gov/SP-441/ch7.htm |title=Craters |date=January 1980 |publisher=NASA |access-date=December 19, 2010 |last1=Carr |first1=M. H. |last2=Baum |first2=W. A. |last3=Blasius |first3=K. R. |last4=Briggs |first4=G. A. |last5=Cutts |first5=J. A. |last6=Duxbury |first6=T. C. |last7=Greeley |first7=R. |last8=Guest |first8=J. |last9=Masursky |first9=H. |last10=Smith |first10=B. A. }}</ref> Regions, called "Chaotic Terrain," seemed to have quickly lost great volumes of water that caused large channels to form downstream. Estimates for some channel flows run to ten thousand times the flow of the ].<ref name="Morton, O 2002">{{cite book |last=Morton |first=O. |date=2002 |title=Mapping Mars |url=https://archive.org/details/mappingmarsscien00mort_0 |url-access=registration |publisher=Picador, NY|isbn=9780312245511 }}</ref> Underground volcanism may have melted frozen ice; the water then flowed away and the ground collapsed to leave chaotic terrain. Also, general chemical analysis by the two Viking landers suggested the surface has been either exposed to or submerged in water in the past.<ref name="Arvidson, R 1989">{{cite journal |doi=10.1029/RG027i001p00039 |last1=Arvidson |first1=R |last2=Gooding |first2=James L. |last3=Moore |first3=Henry J. |date=1989 |title=The Martian surface as Imaged, Sampled, and Analyzed by the Viking Landers |journal=Reviews of Geophysics |volume=27 |issue=1 |pages=39–60 |bibcode=1989RvGeo..27...39A}}</ref><ref>{{cite journal |doi=10.1126/science.194.4271.1283 |last1=Clark |first1=B. |last2=Baird |first2=AK |last3=Rose |first3=HJ Jr. |last4=Toulmin P |first4=3rd |last5=Keil |first5=K |last6=Castro |first6=AJ |last7=Kelliher |first7=WC |last8=Rowe |first8=CD |last9=Evans |first9=PH |date=1976 |title=Inorganic Analysis of Martian Samples at the Viking Landing Sites |journal=Science |volume=194 |issue=4271 |pages=1283–1288 |pmid=17797084 |bibcode=1976Sci...194.1283C |s2cid=21349024 }}</ref>
==Mars Ocean Hypothesis==
The ] states that nearly a third of the ] of ] was covered by an ocean of liquid ] early in the planet’s ].<ref name="Cabrol, N 2010"/><ref name=Clifford>{{cite journal | doi = 10.1006/icar.2001.6671 | last1 = Clifford | first1 = S. M. | last2 = Parker | first2 = T. J. | author-separator =, | author-name-separator= | year = 2001 | title = The Evolution of the Martian Hydrosphere: Implications for the Fate of a Primordial Ocean and the Current State of the Northern Plains | url = http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WGF-457CXN8-4&_user=126524&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000010360&_version=1&_urlVersion=0&_userid=126524&md5=f78bbc3ae211391e23070bd03d8e1dc6 | journal=Icarus | volume = 154 | pages = 40–79 | bibcode=2001Icar..154...40C}}</ref>
This primordial ocean, dubbed Oceanus Borealis,<ref name=Baker>{{cite journal | doi = 10.1038/352589a0 | last1 = Baker | first1 = V. R. | last2 = Strom | first2 = R. G. | last3 = Gulick | first3 = V. C. | last4 = Kargel | first4 = J. S. | last5 = Komatsu | first5 = G. | last6 = Kale | first6 = V. S. | author-separator =, | author-name-separator= | year = 1991 | title = Ancient oceans, ice sheets and the hydrological cycle on Mars | url = | journal=Nature | volume = 352 | issue = 6336| pages = 589–594 |bibcode = 1991Natur.352..589B }}</ref> would have filled the ] basin in the northern hemisphere, a region which lies 4–5&nbsp;km (2.5–3 miles) below the mean planetary elevation, at a time period of approximately 3.8&nbsp;billion years ago. Early Mars would require a warmer climate and thicker atmosphere to allow liquid water to remain at the surface.<ref name=ReadandLewis>{{cite book | isbn= 978-3-540-40743-0 |last1=Read |first1= Peter L. |first2= S. R. |last2=Lewis |title=The Martian Climate Revisited: Atmosphere and Environment of a Desert Planet |publisher=Praxis |location= Chichester, UK |year= 2004 | url= http://www.praxis-publishing.co.uk/9783540407430.htm | format=Paperback | accessdate=December 19, 2010 }}</ref>


=== Mars Global Surveyor ===
===Observational evidence===
{{Main|Mars Global Surveyor}}
There are several physical features in the present geography of Mars that suggest the existence of an ocean. Networks of valleys that merge into larger channels imply erosion by a liquid agent, and resemble ancient riverbeds on Earth. Enormous channels, 25&nbsp;km wide and several hundred meters deep, appear to direct flow from underground aquifers in the Southern uplands into the Northern plains.<ref name=ReadandLewis />
] in Sinus Meridiani. This data was used to target the landing of the ''Opportunity'' rover that found definite evidence of past water.]]
The ]'s ] (TES) is an instrument able to determine the mineral composition on the surface of Mars. Mineral composition gives information on the presence or absence of water in ancient times. TES identified a large ({{convert|30000|km²}}) area in the ] formation that contains the mineral ].<ref>{{cite journal | last1 = Hoefen | first1 = T.M. | display-authors = etal | year = 2003 | title = Discovery of Olivine in the Nili Fossae Region of Mars | journal = Science | volume = 302 | issue = 5645| pages = 627–630 | doi=10.1126/science.1089647 | pmid=14576430| bibcode = 2003Sci...302..627H | s2cid = 20122017 | url = https://zenodo.org/record/1230836 }}</ref> It is thought that the ancient asteroid impact that created the ] resulted in faults that exposed the olivine. The discovery of olivine is strong evidence that parts of Mars have been extremely dry for a long time. Olivine was also discovered in many other small outcrops within 60 degrees north and south of the equator.<ref>{{cite journal |doi=10.1126/science.1089647 |last1=Hoefen |first1=T. |last2=Clark |first2=RN |last3=Bandfield |first3=JL |last4=Smith |first4=MD |last5=Pearl |first5=JC |last6=Christensen |first6=PR |date=2003 |title=Discovery of Olivine in the Nili Fossae Region of Mars |journal=Science |volume=302 |issue=5645 |pages=627–630 |pmid=14576430 |bibcode=2003Sci...302..627H|s2cid=20122017 |url=https://zenodo.org/record/1230836 }}</ref> The probe has imaged several channels that suggest past sustained liquid flows, two of them are found in ] and in ].<ref name="Malin, M 2001">{{cite journal |last1=Malin |first1=Michael C. |last2=Edgett |first2=Kenneth S. |title=Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission |pages=23429–23570 |journal=Journal of Geophysical Research |date=2001 |doi=10.1029/2000JE001455 |volume=106 |bibcode=2001JGR...10623429M |issue=E10|s2cid=129376333 |doi-access=free }}</ref>


].]]
Research published in the Journal of Geophysical Research – Planets, shows a much higher density of flow paths than formerly believed (more than twice as many). Regions on Mars with the most valleys are comparable to what is found on our Earth. In the research, the team developed a computer program to identify valleys by searching for U-shaped structures in topographical data.<ref>{{cite web|url=http://www.astrobio.net/pressrelease/3322/martian-north-once-covered-by-ocean |title=Martian North Once Covered by Ocean |publisher=Astrobio.net |accessdate=December 19, 2010}}</ref> The large amount of valley networks strongly supports rain on the planet in the past. The global pattern of the martian valleys could be explained with a big northern ocean. A large ocean in the northern hemisphere would explain why there is a southern limit to valley networks; the southernmost regions of Mars, located farthest from the water reservoir, would get little rainfall and would not develop valleys. In a similar fashion the lack of rainfall would explain why Martian valleys become shallower as you go from north to south.<ref>{{cite web|url=http://www.space.com/scienceastronomy/091123-mars-ocean.html |title=New Map Bolsters Case for Ancient Ocean on Mars |publisher=SPACE.com |date=November 23, 2009 |accessdate=December 19, 2010}}</ref>


=== Mars Pathfinder ===
Much of the northern hemisphere of Mars is located at a significantly lower elevation than the rest of the planet (the ]), and is unusually flat. Along the margins of this region are physical features indicative of ancient shorelines.<ref name=Baker /> Sea level must follow a line of constant gravitational potential. After adjustment for ] caused by mass redistributions from volcanism, the Martian paleo-shorelines meet this criterion.<ref name=Zuber>{{cite journal | doi = 10.1038/447785a | last1 = Zuber | first1 = Maria T. | year = 2007 | title = Planetary Science: Mars at the tipping point | url = | journal=Nature | volume = 447 | issue = 7146| pages = 785–786 | pmid = 17568733 |bibcode = 2007Natur.447..785Z }}</ref> The Mars Orbiter Laser Altimeter (MOLA), which accurately determined the altitude of all parts of Mars, found that the watershed for an ocean on Mars covers three-quarters of the planet.<ref>{{cite journal | last1 = Smith | first1 = D. ''et al.'' | year = 1999 | title = The Gravity Field of Mars: Results from Mars Global Surveyor| journal=Science | volume = 284 | issue =5437 | pages = 94–97 | doi = 10.1126/science.286.5437.94 | bibcode= 1999Sci...286...94S | url=http://seismo.berkeley.edu/~rallen/eps122/reading/Smithetal1999.pdf}}</ref>
{{Main|Mars Pathfinder}}
The ] lander recorded the variation of diurnal temperature cycle. It was coldest just before sunrise, about {{convert|−78|C|F K}}, and warmest just after Mars noon, about {{convert|−8|C|F K}}. At this location, the highest temperature never reached the freezing point of water ({{convert|0|C|F K}}), too cold for pure liquid water to exist on the surface.


A study, published in Nature, in June 2010 concluded that an Ocean covered 36% of Mars. The study was based on dozens of deltas that were at the same elevation.<ref name="ReferenceA"/><ref>{{cite web|url=http://www.sciencedaily.com/releases/2010/06/100613181245.htm |title=Ancient ocean may have covered third of Mars |publisher=Sciencedaily.com |date=June 14, 2010 |accessdate=December 19, 2010}}</ref> The atmospheric pressure measured by the Pathfinder on Mars is very low —about 0.6% of Earth's, and it would not permit pure liquid water to exist on the surface.<ref>{{cite web |url=http://mars.jpl.nasa.gov/MPF/science/atmospheric.html |title=Atmospheric and Meteorological Properties |publisher=NASA}}</ref>


Other observations were consistent with water being present in the past. Some of the rocks at the Mars Pathfinder site leaned against each other in a manner geologists term imbricated. It is suspected that strong flood waters in the past pushed the rocks around until they faced away from the flow. Some pebbles were rounded, perhaps from being tumbled in a stream. Parts of the ground are crusty, maybe due to cementing by a fluid containing minerals.<ref name="Golombek, M 1997" /> There was evidence of clouds and maybe fog.<ref name="Golombek, M 1997">{{cite journal |doi=10.1126/science.278.5344.1743 |last1=Golombek |first1=M. P. |last2=Cook |first2=R. A. |last3=Economou |first3=T. |last4=Folkner |first4=W. M. |last5=Haldemann |first5=A. F. C. |last6=Kallemeyn |first6=P. H. |last7=Knudsen |first7=J. M. |last8=Manning |first8=R. M. |last9=Moore |first9=H. J. |last10=Parker |first10=T. J. |last11=Rieder |first11=R. |last12=Schofield |first12=J. T. |last13=Smith |first13=P. H. |last14=Vaughan |first14=R. M. |title=Overview of the Mars Pathfinder Mission and Assessment of Landing Site Predictions |journal=Science |volume=278 |issue=5344 |pages=1743–1748 |pmid=9388167 |bibcode=1997Sci...278.1743G |date=1997|doi-access=free }}</ref>
Although phyllosilicates, i.e. clay, have been observed on Mars, the northern lowlands are known to show only few such abundances in early geological layers, a fact that has so far contradicted the theory of a northern ocean on Mars. A 2011 numerical simulation study found though that an ocean of water on the northern hemisphere would have had a temperature near the freezing point "which would have hindered the formation of phyllosilicate minerals in the ocean basin" and would therefore explain the relative absence of clay minerals on the northern hemisphere.<ref>{{cite journal|title=Cold glacial oceans would have inhibited phyllosilicate sedimentation on early Mars |first=Alberto G. |last=Fairén |first2=Alfonso F. |last2=Davila |first3=Luis |last3=Gago-Duport |first4=Jacob D. |last4=Haqq-Misra |first5=Carolina |last5=Gil |first6=Christopher P. |last6=McKay |first7=James F. |last7=Kasting |journal=] |date=28 August 2011 |doi=10.1038/ngeo1243|volume=4|issue=10|page=667|bibcode = 2011NatGe...4..667F }}</ref>


===Theoretical issues=== === Mars Odyssey ===
{{Main|Evidence of water on Mars from Mars Odyssey}}
The existence of liquid water on the surface of Mars requires both a warmer and thicker ]. Atmospheric pressure on the present day Martian surface only exceeds that of the ] (6.11 hPa) in the lowest elevations; at higher elevations water can exist only in solid or vapor form. Annual mean temperatures at the surface are currently less than 210 K, significantly less than what is needed to sustain liquid water. However, early in its history Mars may have had conditions more conducive to retaining liquid water at the surface.
]. Location is ]]]
The ] found much evidence for water on Mars in the form of images, and with its ], it proved that much of the ground is loaded with water ice. Mars has enough ice just beneath the surface to fill ] twice.<ref name="mars.jpl.nasa.gov">{{cite web |url=http://mars.jpl.nasa.gov/odyssey/newsroom/pressreleases/20020528a.html |title=Mars Odyssey: Newsroom |publisher=Mars.jpl.nasa.gov |date=May 28, 2002}}</ref> In both hemispheres, from 55° latitude to the poles, Mars has a high density of ice just under the surface; one kilogram of soil contains about {{convert|500|g}} of water ice. But close to the equator, there is only 2% to 10% of water in the soil.<ref name="Feildman, T. 2004">{{cite journal |date=2004 |last=Feldman |first=W.C. |display-authors=etal |title=Global Distribution of Near-Surface Hydrogen on Mars |journal=Journal of Geophysical Research |volume=109 |issue=E9 |doi=10.1029/2003JE002160 |bibcode=2004JGRE..109.9006F |doi-access=free }}</ref> Scientists think that much of this water is also locked up in the chemical structure of minerals, such as ] and ]s.<ref>{{cite journal |doi=10.1006/icar.1993.1141 |last1=Murche |first1=S. |last2=Mustard |first2=John |date=1993 |title=Spatial Variations in the Spectral Properties of Bright Regions on Mars |journal=Icarus |volume=105 |pages=454–468 |bibcode=1993Icar..105..454M |issue=2 |last3=Bishop |first3=Janice |author-link3=Janice Bishop|last4=Head |first4=James |last5=Pieters |first5=Carle |last6=Erard |first6=Stephane}}</ref><ref>{{cite web |url=http://marswatch.tn.cornell.edu/burns.html |title=Home Page for Bell (1996) Geochemical Society paper |publisher=Marswatch.tn.cornell.edu |access-date=December 19, 2010}}</ref> Although the upper surface contains a few percent of chemically-bound water, ice lies just a few meters deeper, as it has been shown in ], ], and ] that contain large amounts of water ice.<ref>{{cite journal |doi=10.1126/science.1073541 |last1=Feldman |first1=W. C. |last2=Boynton |first2=W. V. |last3=Tokar |first3=R. L. |last4=Prettyman |first4=T. H. |last5=Gasnault |first5=O. |last6=Squyres |first6=S. W. |last7=Elphic |first7=R. C. |last8=Lawrence |first8=D. J. |last9=Lawson |first9=S. L. |last10=Maurice |first10=S. |last11=McKinney |first11=G. W. |last12=Moore |first12=K. R. |last13=Reedy |first13=R. C. |title=Global Distribution of Neutrons from Mars: Results from Mars Odyssey |journal=Science |volume=297 |issue=5578 |pages=75–78 |pmid=12040088 |bibcode=2002Sci...297...75F |date=2002|s2cid=11829477 |doi-access=free }}</ref> The orbiter also discovered vast deposits of bulk water ice near the surface of equatorial regions.<ref name="ICRS-20170928"/> Evidence for equatorial hydration is both morphological and compositional and is seen at both the ] formation and the ].<ref name="ICRS-20170928"/> Analysis of the data suggests that the southern hemisphere may have a layered structure, suggestive of stratified deposits beneath a now extinct large water mass.<ref>{{cite journal |doi=10.1126/science.1073616 |last1=Mitrofanov |first1=I. |last2=Anfimov |first2=D. |last3=Kozyrev |first3=A. |last4=Litvak |first4=M. |last5=Sanin |first5=A. |last6=Tret'yakov |first6=V. |last7=Krylov |first7=A. |last8=Shvetsov |first8=V. |last9=Boynton |first9=W. |last10=Shinohara |first10=C. |last11=Hamara |first11=D. |last12=Saunders |first12=R. S. |title=Maps of Subsurface Hydrogen from the High Energy Neutron Detector, Mars Odyssey |journal=Science |volume=297 |issue=5578 |pages=78–81 |pmid=12040089 |bibcode=2002Sci...297...78M |date=2002|s2cid=589477 |doi-access=free }}</ref>
].]]


The instruments aboard the ''Mars Odyssey'' are able to study the top meter of soil. In 2002, available data were used to calculate that if all soil surfaces were covered by an even layer of water, this would correspond to a global layer of water (GLW) {{convert|0.5-1.5|km}}.<ref>{{cite journal |doi=10.1126/science.1073722 |last1=Boynton |first1=W. V. |last2=Feldman |first2=W. C. |last3=Squyres |first3=S. W. |last4=Prettyman |first4=T. H. |last5=Brückner |first5=J. |last6=Evans |first6=L. G. |last7=Reedy |first7=R. C. |last8=Starr |first8=R. |last9=Arnold |first9=J. R. |last10=Drake |first10=D. M. |last11=Englert |first11=P. A. J. |last12=Metzger |first12=A. E. |last13=Mitrofanov |first13=Igor |last14=Trombka |first14=J. I. |last15=d'Uston |first15=C. |last16=Wänke |first16=H. |last17=Gasnault |first17=O. |last18=Hamara |first18=D. K. |last19=Janes |first19=D. M. |last20=Marcialis |first20=R. L. |last21=Maurice |first21=S. |last22=Mikheeva |first22=I. |last23=Taylor |first23=G. J. |last24=Tokar |first24=R. |last25=Shinohara |first25=C. |title=Distribution of Hydrogen in the Near Surface of Mars: Evidence for Subsurface Ice Deposits |journal=Science |volume=297 |issue=5578 |pages=81–85 |pmid=12040090 |bibcode=2002Sci...297...81B |date=2002|s2cid=16788398 |doi-access=free }}</ref>
Calculations of the volume of one of the supposed oceans yielded a number that would mean that Mars was covered with as much water as the Earth.


Thousands of images returned from ''Odyssey'' orbiter also support the idea that Mars once had great amounts of water flowing across its surface. Some images show patterns of branching valleys; others show layers that may have been formed under lakes; even river and lake ] have been identified.<ref name="Irwin III 2005">{{cite journal |last1=Irwin |first1=Rossman P. |last2=Howard |first2=Alan D. |last3=Craddock |first3=Robert A. |last4=Moore |first4=Jeffrey M. |title=An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development |journal=Journal of Geophysical Research |volume=110 |issue=E12 |pages=E12S15 |date=2005 |doi=10.1029/2005JE002460 |bibcode=2005JGRE..11012S15I|doi-access=free }}</ref><ref name="themis.asu.edu">{{cite web |url=http://themis.asu.edu/zoom-20020807a |title=Dao Vallis |date=August 7, 2002 |work=Mars Odyssey Mission |publisher=THEMIS |access-date=December 19, 2010 }}</ref>
The water that was in this ocean may have escaped into space, been deposited in the ice caps, or have been trapped in the soil.<ref name="2003JGRE..108.5042C" />
For many years researchers suspected that glaciers exist under a layer of insulating rocks.<ref name="Holt, J. 2008" /><ref name="Richard Lewis" /><ref name="Plaut, J. 2008" /> ] is one example of these rock-covered glaciers. They are found on the floors of some channels. Their surfaces have ridged and grooved materials that deflect around obstacles. Lineated floor deposits may be related to ]s, which have been shown by orbiting radar to contain large amounts of ice.<ref name="Holt, J. 2008" /><ref name="Plaut, J. 2008" />


===Alternative ideas=== === ''Phoenix'' ===
{{Main|Phoenix (spacecraft)}}
The existence of a primordial Martian ocean remains controversial among scientists.<ref>{{cite web|url=http://astrobiology.nasa.gov/articles/mars-ocean-hypothesis-hits-the-shore/ |title=Mars Ocean Hypothesis Hits the Shore " Articles " NASA Astrobiology |publisher=Astrobiology.nasa.gov |date=January 26, 2001 |accessdate=December 19, 2010}}</ref> The Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment has discovered large boulders on the site of the ancient seabed, which should contain only fine sediment.<ref name=Kerr>{{cite journal | last1 = Kerr | first1 = Richard A. | year = 2007 | title = Is Mars Looking Drier and Drier for Longer and Longer? | url = | page = 1673| journal=Science | volume = 317 | issue = 5845| doi = 10.1126/science.317.5845.1673 | pmid = 17885108}}</ref> The interpretations of some features as ancient shorelines has been challenged. Some have been shown to be of volcanic origin.<ref name="2003JGRE..108.5042C" />
] polygons imaged by the ''Phoenix'' lander.]]
The '']'' lander also confirmed the existence of large amounts of water ice in the northern region of Mars.<ref name="Arvidson, R. 2008">{{cite journal |last1=Smith |first1=P. H. |last2=Tamppari |first2=L. |last3=Arvidson |first3=R. E. |last4=Bass |first4=D. |last5=Blaney |first5=D.|author5-link= Diana Blaney |last6=Boynton |first6=W. |last7=Carswell |first7=A. |last8=Catling |first8=D. |last9=Clark |first9=B. |last10=Duck |first10=T. |last11=DeJong |first11=E. |last12=Fisher |first12=D. |last13=Goetz |first13=W. |last14=Gunnlaugsson |first14=P. |last15=Hecht |first15=M. |last16=Hipkin |first16=V. |last17=Hoffman |first17=J. |last18=Hviid |first18=S. |last19=Keller |first19=H. |last20=Kounaves |first20=S. |last21=Lange |first21=C. F. |last22=Lemmon |first22=M. |last23=Madsen |first23=M. |last24=Malin |first24=M. |last25=Markiewicz |first25=W. |last26=Marshall |first26=J. |last27=McKay |first27=C. |last28=Mellon |first28=M. |last29=Michelangeli |first29=D. |last30=Ming |first30=D. |last31=Morris |first31=R. |last32=Renno |first32=N. |last33=Pike |first33=W. T. |last34=Staufer |first34=U. |last35=Stoker |first35=C. |last36=Taylor |first36=P. |last37=Whiteway |first37=J. |last38=Young |first38=S. |last39=Zent |first39=A. |title=Introduction to special section on the phoenix mission: Landing site characterization experiments, mission overviews, and expected science |journal=Journal of Geophysical Research |volume=113 |issue=E12 |pages=E00A18 |doi=10.1029/2008JE003083 |bibcode=2008JGRE..113.0A18S |date=2008|display-authors=29 |hdl=2027.42/94752 |s2cid=38911896 |hdl-access=free }}</ref><ref>{{cite web |url=http://www.nasa.gov/mission_pages/phoenix/news/phx20100909.html |title=NASA Data Shed New Light About Water and Volcanoes on Mars |publisher=NASA |date=September 9, 2010 |access-date=March 21, 2014 |archive-date=January 26, 2021 |archive-url=https://web.archive.org/web/20210126063250/http://www.nasa.gov/mission_pages/phoenix/news/phx20100909.html |url-status=dead }}</ref> This finding was predicted by previous orbital data and theory,<ref>{{cite journal |last1=Mellon |first1=M. |last2=Jakosky |first2=B. |date=1993 |title=Geographic variations in the thermal and diffusive stability of ground ice on Mars |journal=Journal of Geophysical Research |volume=98 |issue=E2 |pages=3345–3364 |doi=10.1029/92JE02355 |bibcode=1993JGR....98.3345M }}</ref> and was measured from orbit by the Mars Odyssey instruments.<ref name="Feildman, T. 2004" /> On June 19, 2008, NASA announced that dice-sized clumps of bright material in the "Dodo-Goldilocks" trench, dug by the robotic arm, had vaporized over the course of four days, strongly indicating that the bright clumps were composed of water ice that ] following exposure. Recent radiative transfer modeling has shown that this water ice was snow with a grain size of ~350&nbsp;μm with 0.015% dust.<ref>{{Cite journal |last1=Khuller |first1=Aditya R. |last2=Christensen |first2=Philip R. |last3=Warren |first3=Stephen G. |date=September 2021 |title=Spectral Albedo of Dusty Martian H 2 O Snow and Ice |journal=Journal of Geophysical Research: Planets |language=en |volume=126 |issue=9 |doi=10.1029/2021JE006910 |bibcode=2021JGRE..12606910K |s2cid=238721489 |issn=2169-9097|doi-access=free }}</ref> Even though CO<sub>2</sub> (]) also sublimes under the conditions present, it would do so at a rate much faster than observed.<ref name="Confirmation of Water on Mars">{{cite web |url=http://www.nasa.gov/mission_pages/phoenix/news/phoenix-20080620.html |title=Confirmation of Water on Mars |publisher=Nasa.gov |date=June 20, 2008 |access-date=October 8, 2009 |archive-date=July 1, 2008 |archive-url=https://web.archive.org/web/20080701104400/http://www.nasa.gov/mission_pages/phoenix/news/phoenix-20080620.html |url-status=dead }}</ref> On July 31, 2008, NASA announced that ''Phoenix'' further confirmed the presence of water ice at its landing site. During the initial heating cycle of a sample, the mass spectrometer detected water vapor when the sample temperature reached {{convert|0|C|F K}}.<ref name="LATimes">{{cite news |last=Johnson |first=John |title=There's water on Mars, NASA confirms |work=Los Angeles Times |date=August 1, 2008 |url=https://www.latimes.com/news/science/la-sci-phoenix1-2008aug01,0,3012423.story}}</ref> Stable liquid water cannot exist on the surface of Mars with its present low atmospheric pressure and temperature (it would boil), except at the lowest elevations for short periods.<ref name="Kostama">{{cite journal |journal=Geophysical Research Letters |volume=33 |issue=11 |pages=L11201 |date=June 3, 2006 |last1=Kostama |first1=V.-P. |last2=Kreslavsky |first2=M. A. |last3=Head |first3=J. W. |title=Recent high-latitude icy mantle in the northern plains of Mars: Characteristics and ages of emplacement |url=http://www.agu.org/pubs/crossref/2006/2006GL025946.shtml |doi=10.1029/2006GL025946 |bibcode=2006GeoRL..3311201K |citeseerx=10.1.1.553.1127 |s2cid=17229252 |access-date=October 8, 2009 |archive-date=March 18, 2009 |archive-url=https://web.archive.org/web/20090318010946/http://www.agu.org/pubs/crossref/2006/2006GL025946.shtml |url-status=dead }}</ref><ref name="flows">{{cite journal |journal=Journal of Geophysical Research |date=May 7, 2005 |last=Heldmann |first=Jennifer L. |display-authors=etal |title=Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions |url=http://daleandersen.seti.org/Dale_Andersen/Science_articles_files/Heldmann%20et%20al.2005.pdf |volume=110 |issue=E5 |pages=Eo5004 |doi=10.1029/2004JE002261 |bibcode=2005JGRE..110.5004H |hdl=2060/20050169988 |s2cid=1578727 |hdl-access=free |access-date=October 8, 2009 |archive-date=October 1, 2008 |archive-url=https://web.archive.org/web/20081001162643/http://daleandersen.seti.org/Dale_Andersen/Science_articles_files/Heldmann%20et%20al.2005.pdf |url-status=dead }} 'conditions such as now occur on Mars, outside of the temperature-pressure stability regime of liquid water' … 'Liquid water is typically stable at the lowest elevations and at low latitudes on the planet, because the atmospheric pressure is greater than the vapor pressure of water and surface temperatures in equatorial regions can reach {{convert|220|K|C F}} for parts of the day.</ref><ref name="Arvidson, R. 2008"/><ref name="Dirt find">{{cite web |url=http://www.space.com/scienceastronomy/090702-phoenix-soil.html |title=The Dirt on Mars Lander Soil Findings |date=July 2, 2009 |publisher=SPACE.com |access-date=December 19, 2010}}</ref>


The presence of the ] (ClO<sub>4</sub><sup>–</sup>) anion, a strong ], in the martian soil was confirmed. This salt can considerably lower the water ].
== Possibility of Mars having enough water to support life ==
]
Life is generally understood to ]. Some evidence suggests that Mars had enough water to form lakes and to carve huge river valleys.<ref>{{cite journal | doi = 10.1006/icar.2000.6530 | last1 = Cabrol | first1 = N. | last2 = Grin | first2 = E. | author-separator =, | author-name-separator= | year = 2001 | title = The Evolution of Lacustrine Environments on Mars: Is Mars Only Hydrologically Dormant? | url = | journal=Icarus | volume = 149 | pages = 291–328 | bibcode=2001Icar..149..291C | issue = 2}}</ref><ref>{{cite web|url=http://www.space.com/scienceastronomy/080306-mars-lake.html |title=Once-Habitable Lake Found on Mars |publisher=SPACE.com |date=March 6, 2008 |accessdate=December 19, 2010}}</ref> Vast quantities of water have been discovered frozen beneath much of the Martian surface. Nevertheless, many significant issues remain.
* History. When did the water once flow on Mars?<ref>{{cite journal | doi = 10.1038/341514a0 | last1 = Gulick | first1 = V. | last2 = Baker | first2 = V. | author-separator =, | author-name-separator= | year = 1989 | title = Fluvial valleys and martian palaeoclimates | url = | journal=Nature | volume = 341 | issue = 6242| pages = 514–516 |bibcode = 1989Natur.341..514G }}</ref><ref>{{cite journal | last1=Head |first1= J. |year= 2001 |title= Water in Middle Mars History: New Insights From MOLO Data | journal=American Geophysical Union | bibcode = 2001AGUSM...P31A02H | last2=Kreslavsky | first2=M. A. | last3=Ivanov | first3=M. A. | last4=Hiesinger | first4=H. | last5=Fuller | first5=E. R. | last6=Pratt | first6=S. }}</ref><ref>{{cite journal | last1=Head |first1= J. ''et al.'' |year= 2001 |title= Exploration for standing Bodies of Water on Mars: When Were They There, Where did They go, and What are the Implications for Astrobiology? | bibcode = 2001AGUFM.P21C..03H | journal=American Geophysical Union | volume=21 | page=03 }}</ref> Mars areas have been extremely dry for long periods, as marked by the presence of ] that would be decomposed by water.<ref>{{cite web|url=http://www.space.com/707-mars-rover-meteorite-discovery-triggers-questions.html |title=Mars Rover's Meteorite Discovery Triggers Questions |publisher=Space.com |date= |accessdate=2013-02-10}}</ref><!---<ref>{{dead link|date=December 2010}}</ref>---> On the other hand, many other areas contain clay and/or sulfates, which indicate the presence of liquid water on the surface.<ref name="wwwspaceref.com">{{cite web|author=Source: NASA HQ Posted Tuesday, October 28, 2008 |url=http://www.spaceref.com/news/viewpr.html?pid=26817 |title=NASA Mars Reconnaissance Orbiter Reveals Details of a Wetter Mars &#124; SpaceRef - Your Space Reference |publisher=SpaceRef |date=2008-10-28 |accessdate=2013-02-10}}</ref>
* Sulfates. While the presence of sulfates bolsters the case for surface water, they present problems of their own. Sulfates form under acid conditions.<ref>{{cite web|url=http://www.space.com/6265-amazing-mars-discoveries-2008.html |title=Amazing Mars: Discoveries in 2008 |publisher=Space.com |date=2008-12-30 |accessdate=2013-02-10}}</ref><!---<ref>{{dead link|date=December 2010}}</ref>---> On Earth some organisms can survive in acidic environment, but questions remain about the possibility of life forming under such conditions.<ref></ref><ref>{{cite web|url=http://www.space.com/scienceastronomy/080501-am-mars-life-iron.html |title=What Mars Fossils Might Look Like |publisher=SPACE.com |date=May 1, 2008 |accessdate=December 19, 2010}}</ref> Even allowing for adaptation to acidic environments, could life actually originate in acidic waters?<ref>http://blogs.discover magazine.com/80beats/2008/05/30/mars-water-suited-for-pickles-not-for-life-2/</ref> On the other hand, carbonates, which do not form in acid solutions, have been found in Martian meteorites by the Phoenix lander and by the Compact Reconnaissance Imaging Spectrometer, an instrument aboard the NASA Mars Reconnaissance Orbiter.<!---<ref>{{dead link|date=December 2010}}</ref>---><ref>{{cite journal | last1 = Mittlefehldt | first1 = D. | year = 1994 | title = ALH84001, a cumulate orthopyroxenite member of the martian meteorite clan | url = | journal=Meteortics | volume = 29 | pages = 214–221 }}</ref>
* Salts. The saltiness of the soil could be a major obstacle for life.<ref>{{dead link|date=December 2010}}</ref> Salt has been used by the human race as a major preservative since most organisms can not live in highly salted water (] bacteria being an exception).<ref>{{cite journal | doi = 10.1016/0019-1035(92)90045-9 | last1 = Boston | first1 = P. | year = 1992 | last2 = Ivanov | first2 = MV | last3 = McKay | first3 = CP | title = On the Possibility of Chemosynthetic Ecosystems in Subsurface Habitats on Mars | url = | journal=Icarus | volume = 95 | pages = 300–308 | pmid = 11539823 | bibcode=1992Icar...95..300B | issue = 2}}</ref>
* Oxidizers. The Phoenix mission discovered ], a highly oxidizing chemical in the soil. Although some organisms use perchlorate, the chemical could be hostile to life. Other research show that there is a variety of soil types on Mars including clays and alkaline soil as well as acidic soil, and studies of Mars analog soils find that they are not unusually or severely biotoxic, and not growth limiting for Mars microbiota (if present).<ref>{{cite web |last=Thompson |first=Andrea |title=Mars Sprinkled with Salty Mysteries |url=http://www.space.com/6573-mars-sprinkled-salty-mysteries.html |date=April 14, 2009 |publisher=SPACE.com |accessdate=October 9, 2012 }}</ref><ref>{{cite web|author=Jpl.Nasa.Gov |url=http://www.jpl.nasa.gov/news/news.php?release=2009-106 |title=NASA Phoenix Results Point to Martian Climate Cycles - NASA Jet Propulsion Laboratory |publisher=Jpl.nasa.gov |date=2009-07-02 |accessdate=2013-02-10}}</ref>
<ref>. A. C. Schuerger, D. W. Ming, and D. C. Golden 43rd Lunar and Planetary Science Conference (2012) </ref>


When ''Phoenix'' landed, the ]s splashed soil and melted ice onto the vehicle.<ref name="martinez2013">{{cite journal | author = Martínez, G. M. | author2 = Renno, N. O. | name-list-style = amp | date = 2013 | title = Water and brines on Mars: current evidence and implications for MSL | journal = Space Science Reviews | volume = 175 | issue = 1–4 | pages = 29–51 | doi = 10.1007/s11214-012-9956-3 | bibcode = 2013SSRv..175...29M | doi-access = free }}</ref> Photographs showed the landing had left blobs of material stuck to the landing struts.<ref name="martinez2013" /> The blobs expanded at a rate consistent with ], darkened before disappearing (consistent with ] followed by dripping), and appeared to merge. These observations, combined with ] evidence, indicated that the blobs were likely liquid ] droplets.<ref name="martinez2013" /><ref name="Renno2009">{{cite journal |doi=10.1029/2009JE003362 |title=Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site |date=2009 |last1=Rennó |first1=Nilton O. |last2=Bos |first2=Brent J. |last3=Catling |first3=David |last4=Clark |first4=Benton C. |last5=Drube |first5=Line |last6=Fisher |first6=David |last7=Goetz |first7=Walter |last8=Hviid |first8=Stubbe F. |last9=Keller |first9=Horst Uwe |last10=Kok |first10=Jasper F. |last11=Kounaves |first11=Samuel P. |last12=Leer |first12=Kristoffer |last13=Lemmon |first13=Mark |last14=Madsen |first14=Morten Bo |last15=Markiewicz |first15=Wojciech J. |last16=Marshall |first16=John |last17=McKay |first17=Christopher |last18=Mehta |first18=Manish |last19=Smith |first19=Miles |last20=Zorzano |first20=M. P. |last21=Smith |first21=Peter H. |last22=Stoker |first22=Carol |last23=Young |first23=Suzanne M. M. |journal=Journal of Geophysical Research |volume=114 |issue=E1 |pages=E00E03 |bibcode=2009JGRE..114.0E03R|hdl=2027.42/95444 |s2cid=55050084 |hdl-access=free }}</ref> Other researchers suggested the blobs could be "clumps of frost."<ref name="NYTimes20090316">{{cite web |last=Chang |first=Kenneth |url=https://www.nytimes.com/2009/03/17/science/17mars.html |title=Blobs in Photos of Mars Lander Stir a Debate: Are They Water? |publisher=New York Times (online) |date=March 16, 2009 }}</ref><ref name="Sciencedaily.com">{{cite web |url=https://www.sciencedaily.com/releases/2009/03/090319232438.htm |title=Liquid Saltwater Is Likely Present On Mars, New Analysis Shows |website=ScienceDaily |date=March 20, 2009 }}</ref><ref>{{cite web |url=http://www.astrobio.net/index.php?option=com_retrospection&task=detail&id=3350 |title=Astrobiology Top 10: Too Salty to Freeze |work=Astrobiology Magazine |access-date=December 19, 2010 |archive-url=https://web.archive.org/web/20110604121445/http://www.astrobio.net/index.php?option=com_retrospection&task=detail&id=3350 |archive-date=2011-06-04 |url-status=usurped}}</ref> In 2015 it was confirmed that perchlorate plays a role in forming ] on steep ].<ref name="Ojhaetal2015"/><ref>{{cite journal |last1=Hecht |first1=M. H. |last2=Kounaves |first2=S. P. |last3=Quinn |first3=R. C. |last4=West |first4=S. J. |last5=Young |first5=S. M. M. |last6=Ming |first6=D. W. |last7=Catling |first7=D. C. |last8=Clark |first8=B. C. |last9=Boynton |first9=W. V. |last10=Hoffman |first10=J. |last11=DeFlores |first11=L. P. |last12=Gospodinova |first12=K. |last13=Kapit |first13=J. |last14=Smith |first14=P. H. |title=Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site |journal=Science |volume=325 |issue=5936 |pages=64–67 |pmid=19574385 |doi=10.1126/science.1172466 |bibcode=2009Sci...325...64H |date=2009 |s2cid=24299495 }}</ref>
Benton Clark III, a member of the Mars Exploration Rover (MER) team, surmises that Martian organisms could be adapted to a sort of suspended animation for millions of years.<ref>{{cite web|url=http://www.astrobio.net/wxclusive/1163/life-on-mars-a-definite-possibility |title=Astrobiology Magazine |publisher=Astrobio.net |accessdate=December 19, 2010}}</ref> Indeed, some organisms can endure extreme environments for a time. Measurements performed on Earth under 50 meters of permafrost, showed that half of the microorganisms would accumulate enough radiation from radioactive decay in rocks to die in 10&nbsp;million years, but if organisms come back to life every few million years they could repair themselves and reset any damaged systems, especially DNA.<ref>{{cite journal | doi = 10.2307/4018828 | last1 = Cowen | first1 = R. | year = 2003 | title = Martian Invasion| journal=Science News | volume = 164 | issue = 19| pages = 298–300 | jstor = 4018828 }}</ref><ref>{{cite journal | last1=McKay | first1=C. P. |year=1997 |title= Looking for life on Mars | journal=Astronomy |volume= 25 |issue=8 |pages= 38–43 | authorlink1=David S. McKay |bibcode = 1997Ast....25...38F }}</ref> Other scientists are in agreement.


For about as far as the camera can see, the landing site is flat, but shaped into polygons between {{convert|2-3|m}} in diameter which are bounded by troughs that are {{convert|20-50|cm}} deep. These shapes are due to ice in the soil expanding and contracting due to major temperature changes. The microscope showed that the soil on top of the polygons is composed of rounded particles and flat particles, probably a type of clay.<ref>{{cite journal |last1=Smith |first1=P. H. |last2=Tamppari |first2=L. K. |last3=Arvidson |first3=R. E. |last4=Bass |first4=D. |last5=Blaney |first5=D.|author5-link= Diana Blaney |last6=Boynton |first6=W. V. |last7=Carswell |first7=A. |last8=Catling |first8=D. C. |last9=Clark |first9=B. C. |last10=Duck |first10=T. |last11=DeJong |first11=E. |last12=Fisher |first12=D. |last13=Goetz |first13=W. |last14=Gunnlaugsson |first14=H. P. |last15=Hecht |first15=M. H. |last16=Hipkin |first16=V. |last17=Hoffman |first17=J. |last18=Hviid |first18=S. F. |last19=Keller |first19=H. U. |last20=Kounaves |first20=S. P. |last21=Lange |first21=C. F. |last22=Lemmon |first22=M. T. |last23=Madsen |first23=M. B. |last24=Markiewicz |first24=W. J. |last25=Marshall |first25=J. |last26=McKay |first26=C. P. |last27=Mellon |first27=M. T. |last28=Ming |first28=D. W. |last29=Morris |first29=R. V. |last30=Pike |first30=W. T. |last31=Renno |first31=N. |last32=Staufer |first32=U. |last33=Stoker |first33=C. |last34=Taylor |first34=P. |last35=Whiteway |first35=J. A. |last36=Zent |first36=A. P. |title=H<sub>2</sub>O at the Phoenix Landing Site |journal=Science |volume=325 |issue=5936 |pages=58–61 |date=2009 |pmid=19574383 |doi=10.1126/science.1172339 |bibcode=2009Sci...325...58S |s2cid=206519214 |display-authors=29 }}</ref> Ice is present a few inches below the surface in the middle of the polygons, and along its edges, the ice is at least {{convert|8|in}} deep.<ref name="Dirt find" />
The discovery of organisms living in extreme conditions on Earth has brought renewed hope that life exists, or once existed on Mars.<ref>{{cite journal | doi = 10.1089/ast.2006.0012 | last1 = Gilichinsky | first1 = D. | last2 = Wilson | year = 2007 | first2 = GS | last3 = Friedmann | first3 = EI | last4 = McKay | first4 = CP | last5 = Sletten | first5 = RS | last6 = Rivkina | first6 = EM | last7 = Vishnivetskaya | first7 = TA | last8 = Erokhina | first8 = LG | last9 = Ivanushkina | first9 = NE | title = Microbal Populations in Antarctic Permafrost: Biodiversity, State, Age, and Implication for Astrobiology | url = | journal=Astrobiology | volume = 7 | issue = 2| pages = 275–311 | pmid = 17480161 | bibcode=2007AsBio...7..275G}}</ref><ref>Raeburn, P. 1998. Mars. National Geographic Society. Washington, D.C.</ref><ref>{{cite journal | doi = 10.1006/icar.2000.6435 | last1 = Allen | first1 = C. | last2 = Albert | year = 2000 | first2 = FG | last3 = Chafetz | first3 = HS | last4 = Combie | first4 = J | last5 = Graham | first5 = CR | last6 = Kieft | first6 = TL | last7 = Kivett | first7 = SJ | last8 = McKay | first8 = DS | last9 = Steele | first9 = A | title = Microscopic Physical Biomarkers in Carbonate Hot Springs: Implications in the Search fo Life on Mars | url = | journal=Icarus | volume = 147 | issue = 1| pages = 49–67 | pmid = 11543582 | bibcode=2000Icar..147...49A}}</ref> Colonies of microbes have been found beneath almost 3 kilometers of glaciers in the Canadian Arctic and in Antarctica.<ref>{{cite journal | doi = 10.1038/scientificamerican1096-68 | last1 = Fredrickson | first1 = J. | last2 = Onstott | first2 = T. | author-separator =, | author-name-separator= | year = 1996 | title = Microbes Deep inside the Earth | url = | journal=Scientific American | volume = 275 | issue = 4| pages = 68–73 | pmid = 8797299 }}</ref> Could microbes live under the ice caps of Mars? In the 1980s, it was thought that microorganisms might live up to a depth of a few meters under ground.<ref>{{cite journal | doi = 10.1016/0012-8252(93)90058-F | last1 = Pedersen | first1 = K. | year = 1993 | title = The deep subterranean biosphere | url = | journal=Earth-Science Reviews | volume = 34 | pages = 243–260 |bibcode = 1993ESRv...34..243P | issue = 4 }}</ref> Today, we know that a wide variety of organisms grow to a depth of over a mile. Some live on gases like methane, hydrogen, and hydrogen sulfide that originate from volcanic activity. Mars has had widespread volcanic activity.<ref>{{cite journal | doi = 10.1126/science.270.5235.450 | last1 = Stevens | first1 = T | last2 = McKinley | first2 = J. | author-separator =, | author-name-separator= | year = 1995 | title = Lithoautotrophic Microbial Ecosystems in Deep Basalt Aquifers | url = | journal=Science | volume = 270 | issue = 5235| pages = 450–454 |bibcode = 1995Sci...270..450S }}</ref> It is entirely possible that life exists near volcanoes or underground reservoirs of hot magma.<ref>{{cite journal | last1=Payne |first1= M |first2= J.| last2= Farmer |year= 2001 |title= Volcanic-Ice Interactions and the Exploration for Extant Martian Life | journal=American Geophysical Union| bibcode = 2001AGUFM.P22B0549P | volume=22 | page=0549 }}</ref> Some organisms live inside of basalt (the most common rock on Mars) and produce methane. Methane has been tracked on Mars.<ref>{{cite web|url=http://dsc.discovery.com/news/2009/08/12/mars-life.html |title=Martian Life Appears Less Likely : Discovery News |publisher=Dsc.discovery.com |date=August 12, 2009 |accessdate=December 19, 2010}}</ref> Some{{Who|date=October 2009}} believe there must be some (possibly biological) mechanism that is producing methane since it will not last long in the present atmosphere of Mars.<!---<ref>{{cite web|url=http://www.space.com/scienceastronomy/mars_methane_040329.html |title=Scientists Unsure if Methane at Mars Points to Biology or Geology |publisher=SPACE.com |date=March 29, 2004 |accessdate=December 19, 2010}}</ref>---><ref>{{cite web|url=http://www.livescience.com/5584-tough-microbe-stuff-mars.html |title=Tough Microbe Has The Right Stuff for Mars |publisher=LiveScience |date=2009-07-18 |accessdate=2013-02-10}}</ref> Other organisms eat sulfur compounds; the same chemicals that have been found in many regions of Mars. Scientists have suggested that whole communities of organisms could thrive near areas heated by volcanic activity. Studies have shown that certain forms of life have adapted to extremely high temperatures (80° to 110 °C).<ref>{{cite journal | doi = 10.1038/345179a0 | last1 = Huber | first1 = R. | last2 = Stotters | year = 1990 | first2 = P. | last3 = Cheminee | first3 = J. L. | last4 = Richnow | first4 = H. H. | last5 = Stetter | first5 = K. O. | title = Hyperthermophilic archaebacteria within the crater and open-sea plume of erupting Macdonald Seamount | url = | journal=Nature | volume = 345 | issue = 6271| pages = 179–182 |bibcode = 1990Natur.345..179H }}</ref> With all the volcanic activity on Mars, one would suppose that certain places have not yet cooled down.<ref>{{cite journal | doi = 10.1006/icar.1993.1011 | last1 = Walter | first1 = M. | last2 = DesMarais | first2 = D. | author-separator =, | author-name-separator= | year = 1993 | title = Preservation of Biological Information in Thermal Spring Deposits: Developing a Strategy for the Search for Fossil Life on Mars | url = | journal=Icarus | volume = 101 | issue = 1| pages = 129–143 | pmid = 11536937 | bibcode=1993Icar..101..129W}}</ref> An underground magma chamber might melt ice, then circulate water through the ground. Remains of hot springs like the ones in Yellowstone National Park have actually been spotted by the Mars Reconnaissance Orbiter.<ref>{{cite journal | doi = 10.1089/ast.2008.0239 | last1 = Allen | first1 = C. | last2 = Oehler | first2 = D. | author-separator =, | author-name-separator= | year = 2008 | title = A Case for Ancient Springs in Arabia Terra, Mars | url = | journal=Astrobiology | volume = 8 | issue = 6| pages = 1093–1112 | pmid = 19093802 | bibcode=2008AsBio...8.1093A}}</ref><ref>{{cite web|url=http://www.spaceref.com/news/viewpr.html?pid=27553 |title=Evidence of Ancient Hot Springs on Mars Detailed in Astrobiology Journal &#124; SpaceRef – Your Space Reference |publisher=SpaceRef |date=February 11, 2009 |accessdate=December 19, 2010}}</ref> Minerals associated with hot springs, such as opal and silica have been studied on the ground by Spirit Rover and mapped from orbit by the Mars Reconnaissance Orbiter.<ref name="wwwspaceref.com"/> Some volcanoes, like Olympus Mons, seem relatively young to the eyes of a geologist. However, no warm areas have ever been found on the surface. The Mars Global Surveyor scanned most of the surface in infrared with its TES instrument. The Mars Odyssey's THEMIS, also imaged the surface in wavelengths that measure temperature.


Snow was observed to fall from cirrus clouds. The clouds formed at a level in the atmosphere that was around {{convert|−65|C|F K}}, so the clouds would have to be composed of water-ice, rather than carbon dioxide-ice (CO<sub>2</sub> or dry ice), because the temperature for forming carbon dioxide ice is much lower than {{convert|−120|C|F K}}. As a result of mission observations, it is now suspected that water ice (snow) would have accumulated later in the year at this location.<ref name="Witeway2009">{{cite journal |last1=Whiteway |first1=J. A. |last2=Komguem |first2=L. |last3=Dickinson |first3=C. |last4=Cook |first4=C. |last5=Illnicki |first5=M. |last6=Seabrook |first6=J. |last7=Popovici |first7=V. |last8=Duck |first8=T. J. |last9=Davy |first9=R. |last10=Taylor |first10=P. A. |last11=Pathak |first11=J. |last12=Fisher |first12=D. |last13=Carswell |first13=A. I. |last14=Daly |first14=M. |last15=Hipkin |first15=V. |last16=Zent |first16=A. P. |last17=Hecht |first17=M. H. |last18=Wood |first18=S. E. |last19=Tamppari |first19=L. K. |last20=Renno |first20=N. |last21=Moores |first21=J. E. |last22=Lemmon |first22=M. T. |last23=Daerden |first23=F. |last24=Smith |first24=P. H. |title=Mars Water-Ice Clouds and Precipitation |journal=Science |volume=325 |issue=5936 |pages=68–70 |pmid=19574386 |doi=10.1126/science.1172344 |bibcode=2009Sci...325...68W |date=2009 |s2cid=206519222 }}</ref> The highest temperature measured during the mission, which took place during the Martian summer, was {{convert|−19.6|C|F K}}, while the coldest was {{convert|−97.7|C|F K}}. So, in this region the temperature remained far below the freezing point ({{convert|0|C|F K}}) of water.<ref>{{cite web |url=http://www.asc-csa.gc.ca/eng/media/news_releases/2009/0702.asp |title=CSA – News Release |publisher=Asc-csa.gc.ca |date=July 2, 2009 |url-status=dead |archive-url=https://web.archive.org/web/20110705011110/http://www.asc-csa.gc.ca/eng/media/news_releases/2009/0702.asp |archive-date=July 5, 2011 }}</ref>
The possibility of liquid water on Mars has been examined. Although water would quickly boil or evaporate away, lake-sized bodies of water would quickly be covered with an ice layer which would greatly reduce evaporation. With a cover of dust and other debris, water under ice might last for some time and could even flow to significant distances as ice-covered rivers.<ref>{{cite journal | doi = 10.1016/0019-1035(79)90148-9 | last1 = Wallace | first1 = D. | last2 = Sagan | first2 = C. | author-separator =, | author-name-separator= | year = 1979 | title = Evaporation of Ice in Planetary Atmospheres: Ice-Covered Rivers on Mars | url = | journal=Icarus | volume = 39 | pages = 385–400 | bibcode=1979Icar...39..385W | issue = 3}}</ref> ] in ] may have implications for liquid water still being on Mars because if the lake existed before the perennial glaciation began, is likely that the lake did not freeze all the way to the bottom. Accordingly if water existed before the polar ice caps on Mars, it is likely that there is still liquid water below the ice caps.<ref>{{Cite journal
| last1=Duxbury | url=http://www.agu.org/journals/je/v106/iE01/2000JE001254/2000JE001254.pdf | first1=N. S. | last2=Zotikov | first2=I. A. | last3=Nealson | first3=K. H. | last4=Romanovsky | first4=V. E. | last5=Carsey | first5=F. D. | title=A numerical model for an alternative origin of Lake Vostok and its exobiological implications for Mars | doi = 10.1029/2000JE001254 | year=2001 | page=1453 | volume=106 | journal=Journal of Geophysical Research | accessdate=April 8, 2009 | bibcode=2001JGR...106.1453D}}</ref> Large quantities of water could be released, even today, by an asteroid impact. It has been suggested that life has survived over millions of years by periodic impacts which melted ice and allowed organisms to come out of dormancy and live for a few thousands of years.<ref>Segura, T. et al. 2001. Effects of Large Impacts on Mars: Implication for River Formation. American Astronomical society, DPS meeting</ref><ref>{{cite journal | doi = 10.1126/science.1073586 | last1 = Segura | first1 = T. | last2 = Toon | year = 2002 | first2 = OB | last3 = Colaprete | first3 = A | last4 = Zahnle | first4 = K | title = Environmental Effects of Large Impacts on Mars | url = | journal=Science | volume = 298 | issue = 5600| pages = 1977–1980 | pmid = 12471254 |bibcode = 2002Sci...298.1977S }}</ref> But if impacts brought the water, maybe liquid water did not exist on the surface very long. Large river valleys could have been made in short periods of time (maybe just days) when impacts caused water to flow as a giant flood.<ref>{{cite journal | doi = 10.1016/0019-1035(74)90101-8 | last1 = Baker | first1 = V. | last2 = Milton | first2 = D. | author-separator =, | author-name-separator= | year = 1974 | title = Erosion by Catastrophic Floods on Mars and Earth | url = | journal=Icarus | volume = 23 | pages = 27–41 | bibcode=1974Icar...23...27B}}</ref> We suppose that Mars had great amounts of water because of the existence of so many large river valleys.<ref name="Harrison 2005"/><ref name="Howard, A. 2005"/> Maybe, valleys did not take thousands to millions of years to form as on the Earth.<ref>{{cite journal | doi = 10.1038/scientificamerican0705-32 | last1 = Christensen | first1 = P. | year = 2005 | title = The Many Faces of Mars | url = | journal=Scientific American | volume = 293 | issue = 1| pages = 32–39 | pmid = 16008291 }}</ref> It is accepted that a vast network of channels, resembling many Martian channels, were formed in a very short time period in eastern Washington State when floods were caused by a breakout of an ice-dammed lake. So, perhaps not that much water was involved and maybe it did not last long enough for life to develop.


=== Mars Exploration Rovers ===
Studies have shown that various salts present in the Martian soil could act as a kind of antifreeze—keeping water liquid well below its normal freezing point.<ref name="ReferenceC"/><ref>{{cite web|author=Source: Ames Research Center Posted Saturday, June 6, 2009 |url=http://www.spaceref.com/news/viewpr.html?pid=28377 |title=NASA Scientists Find Evidence for Liquid Water on a Frozen Early Mars &#124; SpaceRef – Your Space Reference |publisher=SpaceRef |date=June 6, 2009 |accessdate=December 19, 2010}}</ref> Some calculations suggest that tiny amounts of liquid water may be present for short periods of time (hours) in some locations.<ref>{{cite journal | last1 = Kreslavsky | first1 = M. | year = 2006 | title = Periods of Active Permafrost Layer Formation During the Geological History of Mars: Implication for Circum-Polar and Mid-Latitude surface Processes | url = http://www.planetary.brown.edu/pdfs/3229.pdf |format=PDF| journal=Planetary and space Science Special Issue on Polar Processes | volume = 56 | pages = 266–288 | doi = 10.1016/j.pss.2006.02.010 |bibcode = 2008P&SS...56..289K | last2 = Head | first2 = James W. | last3 = Marchant | first3 = David R. | issue = 2 }}</ref><ref>{{cite web|url=http://www.space.com/scienceastronomy/mars-phoenix-water-salt-data-100831.html |title=Dead Spacecraft on Mars Lives on in New Study |publisher=SPACE.com |date=June 10, 2008 |accessdate=December 19, 2010}}</ref> Some researchers have calculated that when taking into consideration insolation and pressure factors that liquid water could exist in some areas for about 10% of the Martian year;<ref>{{cite journal | doi = 10.1073/pnas.031581098 | last1 = Lobitz | first1 = B. | last2 = Wood | year = 2001 | first2 = BL | last3 = Averner | first3 = MM | last4 = McKay | first4 = CP | title = Use of spacecraft data to derive regions on Mars where liquid water would be stable | url = | journal=Proc. Natl. Acad. Sci. | volume = 98 | issue = 5| pages = 2132–2137 | pmid = 11226204 | pmc = 30104 |bibcode = 2001PNAS...98.2132L }}</ref> others estimate that water could be a liquid for only 2% of the year.<ref>{{cite journal | doi = 10.1029/2000JE001360 | last1 = Haberie | first1 = Robert M.| last2 = McKay | year = 2001 | first2 = Christopher P. | last3 = Schaeffer | first3 = James | last4 = Cabrol | first4 = Nathalie A. | last5 = Grin | first5 = Edmon A. | last6 = Zent | first6 = Aaron P. | last7 = Quinn | first7 = Richard | title = On the possibility of liquid water on present-day Mars | url = | journal=J. Geophysical Research | volume = 106 | pages = 23317–23326 | bibcode=2001JGR...10623317H}}</ref> Either way, that may be enough liquid water to support some forms of hardy organisms. It may not take much liquid water for life; organisms have been found on Earth living on extremely thin layers of unfrozen water in below-freezing locations.<ref>{{cite web|author=Nancy Atkinson |url=http://www.universetoday.com/2008/09/04/phoenix-probe-says-both-yes-and-no-to-water-on-mars/ |title=Phoenix Probe Says Both Yes and No to Water on Mars |publisher=Universetoday.com |date=September 4, 2008 |accessdate=December 19, 2010}}</ref> Research described in December 2009, showed that liquid water could form in the daytime inside of snow on Mars. As light heats ice, it may be warming up dust grains located inside. These grains would then store heat and form water by melting some of the ice. The process has been already been observed in Antarctica. Enough water may be produced for physical, chemical, and biological processes.<ref>http://www.newscientist.com/article/mg20427373.700 {{Subscription required|date=August 2011}}</ref><ref>{{cite web|author=Tudor Vieru |url=http://news.softpedia.com/news/Greenhouse-Effect-on-Mars-May-Be-Allowing-for-Life-129065.shtml |title=Greenhouse Effect on Mars May Be Allowing for Life |publisher=News.softpedia.com |date=2009-12-07 |accessdate=2011-08-20}}</ref>.
{{Main|Mars Exploration Rover}}
]
]
].]]
].]]


The ]s, '']'' and '']'' found a great deal of evidence for past water on Mars. The ] landed in what was thought to be a large lake bed. The lake bed had been covered over with lava flows, so evidence of past water was initially hard to detect. On March 5, 2004, NASA announced that ''Spirit'' had found hints of water history on Mars in a rock dubbed "Humphrey".<ref>{{cite web |url=http://marsrovers.jpl.nasa.gov/newsroom/pressreleases/20040305a.html |title=Mars Exploration Rover Mission: Press Releases |publisher=Marsrovers.jpl.nasa.gov |date=March 5, 2004 }}</ref>
Another location under consideration is in ] on Mars.<ref></ref> There is some evidence for possible subsurface ice sheets near the equator. This may for instance be geologically ancient ice which may melt or sublimate on its way towards the surface.<ref>Michael T. Mellon University of Colorado 10 May 2011 Planetary Protection Subcommittee Meeting</ref><ref>Robert Roy Britt space.com 22 February 2005</ref><ref>Mellon, M. T., B. M. Jakosky, and S. E. Postawko (1997), J. Geophys. Res., 102(E8), 19357–19369, doi:10.1029/97JE01346.</ref><ref>John D. Arfstrom Comparative Climatology of Terrestrial Planets (2012)</ref>


As ''Spirit'' traveled in reverse in December 2007, pulling a seized wheel behind, the wheel scraped off the upper layer of soil, uncovering a patch of white ground rich in ]. Scientists think that it must have been produced in one of two ways.<ref>{{cite web |url=http://www.nasa.gov/mission_pages/mer/mer-20070521.html |title=NASA – Mars Rover Spirit Unearths Surprise Evidence of Wetter Past |publisher=NASA |date=May 21, 2007 |access-date=January 17, 2012 |archive-date=March 8, 2013 |archive-url=https://web.archive.org/web/20130308054606/http://www.nasa.gov/mission_pages/mer/mer-20070521.html |url-status=dead }}</ref> One: ] deposits produced when water dissolved silica at one location and then carried it to another (i.e. a ]). Two: acidic steam rising through cracks in rocks stripped them of their mineral components, leaving silica behind.<ref name="20071210a">{{cite web |last=Bertster |first=Guy |title=Mars Rover Investigates Signs of Steamy Martian Past |work=Press Release |publisher=Jet Propulsion Laboratory, Pasadena, California |date=December 10, 2007 |url=http://marsrovers.jpl.nasa.gov/newsroom/pressreleases/20071210a.html}}</ref> The ''Spirit'' rover also found evidence for water in the Columbia Hills of Gusev crater. In the Clovis group of rocks the ] (MB) detected ],<ref>{{cite journal |last=Klingelhofer |first=G. |display-authors=etal |date=2005 |journal=Lunar Planet. Sci. |title=volume XXXVI |type=abstr. |page=2349}}</ref> that forms only in the presence of water,<ref>{{cite journal |last=Schroder |first=C. |display-authors=etal |publisher=European Geosciences Union, General Assembly |title=Journal of Geophysical Research |type=abstr. |volume=7 |page=10254 |date=2005}}</ref><ref>{{cite journal |last=Morris |first=S. |display-authors=etal |title=Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journal through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills |journal=J. Geophys. Res. |volume=111|issue=E2 |doi=10.1029/2005je002584 |bibcode=2006JGRE..111.2S13M|year=2006 |pages=n/a |hdl=1893/17159 |hdl-access=free }}</ref><ref>{{cite journal |last1=Ming |first1=D. |last2=Mittlefehldt |first2=D. W.|date=2006 |title=Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars |journal=J. Geophys. Res.|volume=111 |issue=E2 |pages=E02S12 |bibcode=2006JGRE..111.2S12M |last3=Morris |first3=R. V. |last4=Golden |first4=D. C. |last5=Gellert |first5=R. |last6=Yen |first6=A. |last7=Clark |first7=B. C. |last8=Squyres |first8=S. W. |last9=Farrand |first9=W. H. |last10=Ruff |first10=S. W. |last11=Arvidson |first11=R. E. |last12=Klingelhöfer |first12=G. |last13=McSween |first13=H. Y. |last14=Rodionov |first14=D. S. |last15=Schröder |first15=C. |last16=De Souza |first16=P. A. |last17=Wang |first17=A. |doi=10.1029/2005JE002560|hdl=1893/17114 |hdl-access=free }}</ref> iron in the oxidized form Fe<sup>3+</sup>,<ref>{{cite book |editor-last=Bell |editor-first=J |title=The Martian Surface |date=2008 |publisher=Cambridge University Press. |isbn=978-0-521-86698-9}}</ref> ]-rich rocks, which means that regions of the planet once harbored water.<ref>{{cite journal|url=https://www.sciencedaily.com/releases/2010/06/100603140959.htm |title=Outcrop of long-sought rare rock on Mars found |doi=10.1126/science.1189667 |pmid=20522738 |publisher=Sciencedaily.com |date=June 4, 2010 |journal=Science |volume=329 |issue=5990 |pages=421–424 |first1=R. V. |last1=Morris|last2=Ruff |first2=S. W. |last3=Gellert |first3=R. |last4=Ming |first4=D. W. |last5=Arvidson |first5=R. E. |last6=Clark |first6=B. C. |last7=Golden |first7=D. C. |last8=Siebach |first8=K. |last9=Klingelhofer |first9=G. |last10=Schroder |first10=C. |last11=Fleischer |first11=I. |last12=Yen |first12=A. S. |last13=Squyres |first13=S. W.|bibcode=2010Sci...329..421M|s2cid=7461676 |doi-access=free }}</ref><ref>{{cite journal |first1=Richard V. |last1=Morris |first2=Steven W. |last2=Ruff |first3=Ralf |last3=Gellert |first4=Douglas W. |last4=Ming |first5=Raymond E. |last5=Arvidson |first6=Benton C. |last6=Clark |first7=D. C. |last7=Golden |first8=Kirsten |last8=Siebach |first9=Göstar |last9=Klingelhöfer |first10=Christian |last10=Schröder |first11=Iris |last11=Fleischer |first12=Albert S. |last12=Yen |first13=Steven W. |last13=Squyres |display-authors=8 |title=Identification of Carbonate-Rich Outcrops on Mars by the Spirit Rover |journal=Science |date=June 3, 2010 |doi=10.1126/science.1189667 |pmid=20522738 |volume=329 |issue=5990 |pages=421–424|bibcode=2010Sci...329..421M|s2cid=7461676 |doi-access=free }}</ref>
Experiments also suggest that lichen and bacteria may also be able to survive solely on humidity from the air, particularly in cracks in the rocks.<ref name="dlrMarsStudy"> DLR, 26 April 2012</ref> <ref>Jean-Pierre de Vera Fungal Ecology
Volume 5, Issue 4, August 2012, Pages 472–479</ref><ref>R. de la Torre Noetzel, F.J. Sanchez Inigo, E. Rabbow, G. Horneck, J. P. de Vera, L.G. Sancho </ref><ref>F.J. Sáncheza, , , E. Mateo-Martíb, J. Raggioc, J. Meeßend, J. Martínez-Fríasb, L.Ga. Sanchoc, S. Ottd, R. de la Torrea Planetary and Space Science
Volume 72, Issue 1, November 2012, Pages 102–110</ref> The water is present in the morning and evening when humidity briefly condenses as precipitation across the surface, and the organisms can absorb it.


The ] was directed to a site that had displayed large amounts of ] from orbit. Hematite often forms from water. The rover indeed found layered rocks and marble- or blueberry-like hematite ]s. Elsewhere on its traverse, ''Opportunity'' investigated aeolian dune ] in Burns Cliff in ]. Its operators concluded that the preservation and cementation of these outcrops had been controlled by flow of shallow groundwater.<ref name="BurnsCliff" /> In its years of continuous operation, ''Opportunity'' sent back evidence that this area on Mars was soaked in liquid water in the past.<ref name="marsrovers">{{cite web |url=http://marsrovers.jpl.nasa.gov/newsroom/pressreleases/20040302a.html |title=Opportunity Rover Finds Strong Evidence Meridiani Planum Was Wet |access-date=July 8, 2006}}</ref><ref name="SFN-20130125">{{cite web |last=Harwood |first=William |title=Opportunity rover moves into 10th year of Mars operations |url=http://www.spaceflightnow.com/news/n1301/25opportunity/ |date=January 25, 2013 |publisher=Space Flight Now}}</ref>
== Valleys and channels ==
{{Further|Atmosphere of Mars}}
]
The Viking Orbiters caused a revolution in our ideas about water on Mars. Huge river valleys were found in many areas. They showed that floods of water broke through dams, carved deep valleys, eroded grooves into bedrock, and traveled thousands of kilometers. Areas of branched streams, in the southern hemisphere, suggested that rain once fell.<ref name="Raeburn"/><ref name="Moore"/><ref name="Kieffer1992b">{{cite book|last=ed|first=Hugh H. Kieffer ...|title=Mars|year=1994|publisher=Univ. of Arizona Press|location=Tucson |isbn=0-8165-1257-4|edition=.}}</ref>


The MER rovers found evidence for ancient wet environments that were very acidic. In fact, what ''Opportunity'' found evidence of ], a harsh chemical for life.<ref name="Amos June 2013" /><ref name="Clay clues" /><ref>{{cite journal |last1=Benison |first1=KC |last2=Laclair |first2=DA |title=Modern and ancient extremely acid saline deposits: terrestrial analogs for martian environments? |journal=Astrobiology |volume=3 |issue=3 |pages=609–618 |date=2003 |pmid=14678669 |doi=10.1089/153110703322610690 |bibcode=2003AsBio...3..609B|s2cid=36757620 }}</ref><ref>{{cite journal |last1=Benison |first1=K |last2=Bowen |first2=B |title=Acid saline lake systems give clues about past environments and the search for life on Mars |journal=Icarus |volume=183 |issue=1 |pages=225–229 |bibcode=2006Icar..183..225B |date=2006 |doi=10.1016/j.icarus.2006.02.018}}</ref> But on May 17, 2013, NASA announced that ''Opportunity'' found ] deposits that typically form in wet environments that are near neutral ]. This find provides additional evidence about a wet ancient environment possibly favorable for ].<ref name="Amos June 2013" /><ref name="Clay clues" />
The images below, some of the best from the Viking Orbiters, are mosaics of many small, high resolution images. Click on the images for more detail. Some of the pictures are labeled with place names.


=== Mars Reconnaissance Orbiter ===
<gallery>
{{Main|Evidence of water on Mars found by Mars Reconnaissance Orbiter}}
Image:Streamlined Islands in Maja Vallis.jpg|Streamlined Islands seen by Viking showed that large floods occurred on Mars. Image is located in ].
], as seen by ]. These springs may be good places to look for evidence of past life, because hot springs can preserve evidence of life forms for a long time. Location is ]. ]]
Image:Viking Teardrop Islands.jpg|Tear-drop shaped islands caused by flood waters from Maja Vallis, as seen by Viking Orbiter. Image is located in ]. The islands are formed in the ejecta of ], ], and ].
The ]'s ] instrument has taken many images that strongly suggest that Mars has had a rich history of water-related processes. A major discovery was finding evidence of ancient ]s. If they have hosted microbial life, they may contain ]s.<ref name="Osterloo2008">{{cite journal |doi=10.1126/science.1150690 |last1=Osterloo |first1=MM |last2=Hamilton |date=2008 |first2=VE |last3=Bandfield |first3=JL |last4=Glotch |first4=TD |last5=Baldridge |first5=AM |last6=Christensen |first6=PR |last7=Tornabene |first7=LL |last8=Anderson |first8=FS |title=Chloride-Bearing Materials in the Southern Highlands of Mars |journal=Science |volume=319 |issue=5870 |pages=1651–1654 |pmid=18356522 |bibcode=2008Sci...319.1651O|citeseerx=10.1.1.474.3802 |s2cid=27235249 }}</ref> Research published in January 2010, described strong evidence for sustained precipitation in the area around ].<ref name=Weitz>{{cite journal |doi=10.1016/j.icarus.2009.04.017 |last1=Weitz |first1=C. |last2=Milliken |date=2010 |first2=R.E. |last3=Grant |first3=J.A. |last4=McEwen |first4=A.S. |last5=Williams |first5=R.M.E. |last6=Bishop |first6=J.L. |author-link6=Janice Bishop|last7=Thomson |first7=B.J. |title=Mars Reconnaissance Orbiter observations of light-toned layered deposits and associated fluvial landforms on the plateaus adjacent to Valles Marineris |journal=Icarus |volume=205 |issue=1 |pages=73–102 |bibcode=2010Icar..205...73W}}</ref><ref name="Icarus Vol 210">{{cite journal |title=Atmospheric mass loss by stellar wind from planets around main sequence M stars|volume=210 |issue=2 |pages=539–1000 |date=December 2010 |doi=10.1016/j.icarus.2010.07.013 |bibcode=2010Icar..210..539Z |journal=Icarus|last1=Zendejas|first1=J.|last2=Segura|first2=A.|last3=Raga|first3=A.C.|arxiv=1006.0021|s2cid=119243879 }}</ref> The types of minerals there are associated with water. Also, the high density of small branching channels indicates a great deal of precipitation.
Image:Chryse Planitia Scour Patterns.jpg|Scour Patterns, located in ], were produced by flowing water from Maja Vallis, which lies just to the left of this mosaic. Detail of flow around Dromore Crater is shown on the next image.
Image:Detail of Maja Vallis Flow.jpg|Great amounts of water were required to carry out the erosion shown in this Viking image. Image is located in ]. The erosion shaped the ejecta around ].
Image:Vedra, Maumee, and Maja Vallis.JPG|Waters from ], ], and ] went from Lunae Planum on the left, to ] on the right. Image is located in ] and was taken by Viking Orbiter.
Image:Kasei Valles topolabled.JPG|Area around Northern Kasei Valles, showing relationships among ], ], ], ], and ]. Map location is in ] and includes parts of Lunae Planum and ].
Image:Flow from Arandas Crater.jpg|The ejecta from ] acts like mud. It moves around small craters (indicated by arrows), instead of just falling down on them. Craters like this suggest that large amounts of frozen water were melted when the impact crater was produced. Image is located in ] and was taken by Viking Orbiter.
Image:Alba Patera Channels.jpg|This view of the flank of ] shows several chnnels/troughs. Some channels are associated with lava flows; others are probably caused by running water. A large trough or graben turns into a line of collapse pits. Image is located in ] and was taken by Viking Orbiter.
Image:Branched Channels from Viking.jpg|Branched channels in ], as seen by Viking Orbiter. Networks of channels like this are strong evidence for rain on Mars in the past.
Image:Dissected Channels, as seen by Viking.jpg|The branched channels seen by Viking from orbit strongly suggested that it rained on Mars in the past. Image is located in ].
Image:Ravi Vallis.jpg|Ravi Vallis, as seen by Viking Orbiter. ] was probably formed when catastrophic floods came out of the ground to the right (chaotic terrain). Image located in ].
Image:Channels near Warrego in Thaumasia.JPG|Channels near ]. These branched channels are strong evidence for flowing water on Mars, perhaps during a much warmer period.
Image:Semeykin Crater Drainage.JPG|] Drainage. Click on image to see details of drainage system. Location is ].
Image:Candor Channels.jpg|Channels in Candor plateau, as seen by HiRISE. Location is ]. Click on image to see many small, branched channels which are strong evidence for sustained precipitation.
Image:Ius Channels.jpg|Channels near the rim of Ius Chasma, as seen by HiRISE. The pattern and high density of these channels support precipitation as the source of the water. Location is ].
File:29054cutoff.jpg|Stream meander and cutoff, as seen by HiRISE under HiWish program. This image is located in ].
</gallery>


Rocks on Mars have been found to frequently occur as layers, called strata, in many different places.<ref>{{cite book |editor-last=Grotzinger |editor-first=J. |editor2-first=R. |editor2-last=Milliken |date=2012 |title=Sedimentary Geology of Mars |publisher=SEPM}}</ref> Layers form by various ways, including volcanoes, wind, or water.<ref>{{cite web |url=http://hirise.lpl.arizona.edu?PSP_008437_1750 |title=HiRISE – High Resolution Imaging Science Experiment |publisher=HiriUniversity of Arizona |access-date=December 19, 2010}}</ref> Light-toned rocks on Mars have been associated with ] like sulfates and clay.<ref>{{cite web |url=http://themis.asu.edu/features/nilosyrtis |title=Target Zone: Nilosyrtis? &#124; Mars Odyssey Mission THEMIS |publisher=Themis.asu.edu |access-date=December 19, 2010}}</ref>
The high resolution Mars Orbiter Camera on the ] has taken pictures which give much more detail about the history of liquid water on the surface of Mars. Despite the many gigantic flood channels and associated tree-like network of tributaries found on Mars, there are no smaller scale structures that would indicate the origin of the flood waters. It has been suggested that weathering processes have denuded these, indicating the river valleys are old features. Another theory about the formation of the ancient river valleys is that rather than floods, they were created by the slow seeping out of groundwater. This observation is supported by the sudden ending of the river networks in theatre shaped heads, rather than tapering ones. Additionally, valleys are often discontinuous, small sections of uneroded land separating the parts of the river.<ref name="Jakosky1999">{{Cite journal|last=Jakosky|first=Bruce M.|authorlink=|coauthors=|year=1999|month=|title=Water, Climate, and Life|journal=Science|volume=283|issue=5402|pages=648–649|doi=10.1126/science.283.5402.648|url=|accessdate=|quote=|pmid=9988657 }}</ref>
].]]


The orbiter helped scientists determine that much of the surface of Mars is covered by a thick smooth mantle that is thought to be a mixture of ice and dust.<ref name="Head, J. 2003">{{cite journal |last1=Head |first1=James W. |last2=Mustard |first2=John F. |last3=Kreslavsky |first3=Mikhail A. |last4=Milliken |first4=Ralph E. |last5=Marchant |first5=David R. |title=Recent ice ages on Mars |journal=Nature |volume=426 |issue=6968 |pages=797–802 |date=2003 |pmid=14685228 |doi=10.1038/nature02114 |bibcode=2003Natur.426..797H|s2cid=2355534 }}</ref><ref>{{Cite journal |last1=Mellon |first1=M. T. |first2=B. M. |last2=Jakosky |first3=S. E. |last3=Postawko |date=1997 |title=The persistence of equatorial ground ice on Mars |publisher=onlinelibrary.wiley.com |journal=J. Geophys. Res. |volume=102 |issue=E8 |pages=19357–19369 |doi=10.1029/97JE01346 |bibcode=1997JGR...10219357M|doi-access=free }}</ref><ref>{{cite web |first=John D. |last=Arfstrom |url=http://www.lpi.usra.edu/meetings/climatology2012/pdf/8001.pdf |title=A Conceptual Model of Equatorial Ice Sheets on Mars. J |publisher=Lunar and Planetary Institute |work=Comparative Climatology of Terrestrial Planets |date=2012}}</ref>
On the other hand, evidence in favor of heavy or even catastrophic flooding is found in the ] in the ].<ref>{{cite web|url=http://www.msss.com/mars_images/moc/2004/09/27/ |title=Mars Global Surveyor MOC2-862 Release |publisher=Msss.com |date= |accessdate=2012-01-16}}</ref>


The ice mantle under the shallow subsurface is thought to result from frequent, major climate changes. Changes in Mars' orbit and tilt cause significant changes in the distribution of water ice from polar regions down to latitudes equivalent to Texas. During certain climate periods water vapor leaves polar ice and enters the atmosphere. The water returns to the ground at lower latitudes as deposits of frost or snow mixed generously with dust. The atmosphere of Mars contains a great deal of fine dust particles.<ref name="Head 2008 PNAS" /> Water vapor condenses on the particles, then they fall down to the ground due to the additional weight of the water coating. When ice at the top of the mantling layer goes back into the atmosphere, it leaves behind dust, which insulates the remaining ice.<ref name="IceAge&shy;">{{cite news |publisher=MLA NASA/Jet Propulsion Laboratory |date=December 18, 2003 |title=Mars may be emerging from an ice age |work=ScienceDaily |url=https://www.sciencedaily.com/releases/2003/12/031218075443.htm}}</ref>
Research, published in the '']'' in June 2010, reported the detection of 40,000 river valleys on Mars, about four times the number of river valleys that have previously been identified by scientists.<ref>{{cite web|url=http://www.sciencedaily.com/releases/2010/06/100613181245.htm |title=Ancient ocean may have covered third of Mars |publisher=Sciencedaily.com |date=2010-06-13 |accessdate=2012-01-16}}</ref>


In 2008, research with the Shallow Radar on the Mars Reconnaissance Orbiter provided strong evidence that the ] (LDA) in ] and in mid northern latitudes are ]s that are covered with a thin layer of rocks. Its radar also detected a strong reflection from the top and base of LDAs, meaning that pure water ice made up the bulk of the formation.<ref name="Holt, J. 2008" /> The discovery of water ice in LDAs demonstrates that water is found at even lower latitudes.<ref name="Kieffer1992">{{cite book |first=Hugh H. |last=Kieffer |title=Mars |url=https://books.google.com/books?id=NoDvAAAAMAAJ |access-date=March 7, 2011 |date=1992 |publisher=University of Arizona Press |isbn=978-0-8165-1257-7}}</ref>
Many Mars researchers now agree that the Martian water worn features can be divided into two distinct classes: 1. dendritic (branched), terrestrial-scale, widely distributed, ]-age "]" and 2. exceptionally large, long, single-thread, isolated, uncommon, ]-age "]". Consensus seems to be emerging that the latter formed in single, catastrophic ruptures of subsurface water reservoirs, possibly sealed by ice, discharging colossal quantities of water across an otherwise ultra-arid Mars surface.<ref>{{cite journal | last1 = Carr | first1 = M.H. | year = 1979 | title = Formation of Martian flood features by relaease of water from confined aquifers | url = | journal = J. Geophys. Res. | volume = 84 | issue = | pages = 2995–3007 |bibcode = 1979JGR....84.2995C |doi = 10.1029/JB084iB06p02995 }}</ref> The former, however, probably indicate prolonged "wet" (though still arid by terrestrial standards) conditions on Noachian-era Mars, with an active ongoing hydrological cycle.<ref>Craddock, R.A. and Howard, A.D. (2002). The case for rainfall on a warm, wet early Mars. ''J. Geophys. Res.'', 107(E11), {{doi|10.1029/2001JE001505}}.</ref>


Research published in September 2009, demonstrated that some new craters on Mars show exposed, pure water ice.<ref>{{cite journal |last1=Byrne |pmid=19779195 |date=2009 |first1=Shane |last2=Dundas |first2=Colin M. |last3=Kennedy |first3=Megan R. |last4=Mellon |first4=Michael T. |last5=McEwen |first5=Alfred S. |last6=Cull |first6=Selby C. |last7=Daubar |first7=Ingrid J. |last8=Shean |first8=David E. |last9=Seelos |first9=Kimberly D. |last10=Murchie |first10=Scott L. |last11=Cantor |first11=Bruce A. |last12=Arvidson |first12=Raymond E. |last13=Edgett |first13=Kenneth S. |last14=Reufer |first14=Andreas |last15=Thomas |first15=Nicolas |last16=Harrison |first16=Tanya N. |last17=Posiolova |first17=Liliya V. |last18=Seelos |first18=Frank P. |title=Distribution of mid-latitude ground ice on Mars from new impact craters |journal=Science |volume=325 |issue=5948 |pages=1674–1676 |doi=10.1126/science.1175307 |bibcode=2009Sci...325.1674B|s2cid=10657508 }}</ref> After a time, the ice disappears, evaporating into the atmosphere. The ice is only a few feet deep. The ice was confirmed with the Compact Imaging Spectrometer (CRISM) on board the Mars Reconnaissance Orbiter.<ref>{{cite web |url=http://www.space.com/scienceastronomy/090924-mars-crater-ice.html |title=Water Ice Exposed in Mars Craters |date=September 24, 2009 |publisher=SPACE.com |access-date=December 19, 2010}}</ref> Similar exposures of ice have been detected within the mid-latitude mantle (originally proposed to contain buried dusty snow covered with dust and regolith;<ref name=":8"/>) that drapes most pole-facing slopes in the mid-latitudes using spectral analysis of HiRISE images.<ref>{{Cite journal |last1=Khuller |first1=Aditya |last2=Christensen |first2=Philip |date=February 2021 |title=Evidence of Exposed Dusty Water Ice within Martian Gullies |url=https://onlinelibrary.wiley.com/doi/10.1029/2020JE006539 |journal=Journal of Geophysical Research: Planets |language=en |volume=126 |issue=2 |doi=10.1029/2020JE006539 |bibcode=2021JGRE..12606539R |s2cid=234174382 |issn=2169-9097}}</ref>
Higher resolution observations from spacecraft like Mars Global Surveyor also revealed at least a few hundred features along crater and canyon walls that appear similar to terrestrial seepage gullies.<ref>{{cite web|url=http://www.space.com/scienceastronomy/flashback-water-on-mars-announced-10-years-ago-100622.html |title=Flashback: Water on Mars Announced 10 Years Ago |publisher=Space.com |date= |accessdate=2012-01-16}}</ref> The gullies tended to be Equator facing and in the highlands of the southern hemisphere, and all greater than 30° north or south latitude.<ref>{{Cite journal|last=Malin|first=Michael C.|authorlink=|coauthors=Edgett, Kenneth S.|year=2000|month=|title=Evidence for Recent Groundwater Seepage and Surface Runoff on Mars|journal=Science|volume=288|issue=5475|pages=2330–2335|doi=10.1126/science.288.5475.2330|url=|accessdate=|quote=|pmid=10875910 |bibcode = 2000Sci...288.2330M }}</ref> The researchers found no partially degraded (i.e. weathered) gullies and no superimposed impact craters, indicating that these are very young features.
<gallery>
Image:Gully in Phaethontis.jpg|Group of gullies on north wall of crater that lies west of the crater Newton (41.3047 degrees south latitude, 192.89 east longitide). Image taken with Mars Global Surveyor under the public target program.
Image:Crater wall inside Mariner Crater.JPG|Crater wall inside ] showing a large group of gullies, as seen by HiRISE.
Image:Branched gullies.jpg|Gullies with branches.
Image:Deep Gullies.jpg|Group of deep gullies, as seen by HiRISE.
</gallery>


Additional collaborating reports published in 2019 evaluated the amount of water ice located at the northern pole. One report used data from the MRO's ] (SHAllow RADar sounder) probes. SHARAD has the capability scanning up to about {{convert|2|km|miles}} below the surface at {{convert|15|m|ft}} intervals. The analysis of past SHARAD runs showed evidence of strata of water ice and sand below the ], with as much as 60% to 88% of the volume being water ice. This supports the theory of the long-term global weather of Mars consisting of cycles of global warming and cooling; during cooling periods, water gathered at the poles to form the ice layers, and then as global warming occurred, the unthawed water ice was covered by dust and dirt from Mars' frequent dust storms. The total ice volume determine by this study indicated that there was approximately {{convert|2.2e5|km3|cumi}}, or enough water, if melted, to fully cover the Mars surface with a {{convert|1.5|m|ft}} layer of water.<ref>{{cite journal | title = Buried ice and sand caps at the north pole of Mars: revealing a record of climate change in the cavi unit with SHARAD | author1 = S. Nerozzi |author2=J.W. Holt | date = May 22, 2019 | doi = 10.1029/2019GL082114 | journal = ] | volume = 46 | issue = 13 | pages = 7278–7286 | bibcode = 2019GeoRL..46.7278N | hdl = 10150/634098 | s2cid = 182153656 | hdl-access = free }}</ref> The work was corroborated by a separate study that used recorded gravity data to estimate the density of the Planum Boreum, indicating that on average, it contained up to 55% by volume of water ice.<ref>{{cite journal | title = Compositional Constraints on the North Polar Cap of Mars from Gravity and Topography | author1 = Lujendra Ojha |author2=Stefano Nerozzi |author3=Kevin Lewis | date = May 22, 2019 | doi = 10.1029/2019GL082294 | journal = ] | volume = 46 | issue = 15 | pages = 8671–8679 | bibcode = 2019GeoRL..46.8671O | s2cid = 181334027 }}</ref>
=== Liquid water ===
{{Double image|right|07-ml-3-soil-mosaic-B019R1 br.jpg|{{#expr: (200 * (500 / 265)) round 0}}|nasa mars opportunity rock water 150 eng 02mar04.jpg|{{#expr: (200 * (431 / 428)) round 0}}|Mosaic shows some ] partly embedded.|Photo of Microscopic rock forms indicating past signs of water, taken by '']''}}


Many features that look like the ]s on the Earth were found in Utopia Planitia (~35-50° N; ~80-115° E) by examining photos from HiRISE. Pingos contain a core of ice.<ref>Soare, E., et al. 2019.
Liquid water cannot exist on the surface of Mars with its present low atmospheric pressure, except at the lowest elevations for short periods.<ref>{{Cite journal|journal=Journal of Geophysical Research|date=2005-05-07|last=Heldmann et al.|first=Jennifer L.|title=Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions|url=http://daleandersen.seti.org/Dale%20Andersen/Articles_files/Heldmann%20et%20al.2005.pdf|format= – <sup></sup>|volume=110|issue=E5|pages=Eo5004|doi=10.1029/2004JE002261|accessdate=2007-08-12|postscript=<!--None-->|archiveurl = http://web.archive.org/web/20071201012001/http%3A//daleandersen.seti.org/Dale%2520Andersen/Articles_files/Heldmann%2520et%2520al.2005.pdf |archivedate = December 1, 2007|deadurl=yes|bibcode=2005JGRE..11005004H}} 'conditions such as now occur on Mars, outside of the temperature-pressure stability regime of liquid water' … 'Liquid water is typically stable at the lowest elevations and at low latitudes on the planet because the atmospheric pressure is greater than the vapor pressure of water and surface temperatures in equatorial regions can reach 273 K for parts of the day '</ref><ref>{{Cite journal|journal=Geophysical Research Letters|volume=33|issue=11|pages=L11201|date=June 3, 2006|last=Kostama|first=V.-P.|last2=Kreslavsky|first2=M. A.|last3=Head|first3=J. W.|title=Recent high-latitude icy mantle in the northern plains of Mars: Characteristics and ages of emplacement|url=http://www.agu.org/pubs/crossref/2006/2006GL025946.shtml|doi=10.1029/2006GL025946|accessdate=2007-08-12|postscript=<!--None-->|bibcode=2006GeoRL..3311201K}} 'Martian high-latitude zones are covered with a smooth, layered ice-rich mantle'</ref> Recently, the discovery of gully deposits that were not seen ten years ago provided evidence to support the popular belief that liquid water flowed on the surface in the recent past.<ref>{{cite web|author=Jpl.Nasa.Gov |url=http://www.jpl.nasa.gov/news/news.cfm?release=2006-145 |title=JPL news release 2006-145 |publisher=Jpl.nasa.gov |date=2006-12-06 |accessdate=2012-01-16}}</ref><ref>{{Cite journal|title=Present-Day Impact Cratering Rate and Contemporary Gully Activity on Mars|journal=Science|date=8 December 2006|first=Michael C.|last=Malin|coauthors=Kenneth S. Edgett, Liliya V. Posiolova, Shawn M. McColley, Eldar Z. Noe Dobrea|volume=314|issue=5805|pages=1573–1577|doi=10.1126/science.1135156|url=http://www.sciencemag.org/cgi/content/abstract/314/5805/1573|format=|accessdate=2009-09-03|pmid=17158321 |bibcode = 2006Sci...314.1573M }}</ref> There is some disagreement in the scientific community as to whether or not the new gully deposits were formed from liquid water. A paper, published in the January 2010 issue of Icarus, concluded that the observed deposits were probably dry flows that were started by a rockfall in steep regions.<ref name="ReferenceB">{{cite web|url=http://www.sciencedirect.com/science/journal/00191035 |title=Icarus &#124; Vol 218, Iss 1, In Progress , (March, 2012) |publisher=ScienceDirect.com |date=2004-06-08 |accessdate=2012-01-16}}</ref><ref>{{cite journal | last1= Kolb | first1= Kelly Jean | last2= Pelletier | first2= Jon D. | last3= McEwen | first3= Alfred S. | title= Modeling the formation of bright slope deposits associated with gullies in Hale Crater, Mars: Implications for recent liquid water |journal= Icarus |volume= 205 | issue= 1 |pages= 113–137 | year= 2010 | bibcode = 2010Icar..205..113K | doi = 10.1016/j.icarus.2009.09.009 }}</ref>
Possible (closed system) pingo and ice-wedge/thermokarst complexes at the mid latitudes of Utopia Planitia, Mars. Icarus. https://doi.org/10.1016/j.icarus.2019.03.010</ref>
{{Clear}}


=== ''Curiosity'' rover ===
Among the findings from the '']'' rover is the presence of ] on Mars in the form of ] on the ]. The spheres are only a few millimetres in diameter and are believed to have formed as rock deposits under watery conditions billions of years ago. Other minerals have also been found containing forms of ], ], or ] such as ]. This and other evidence led a group of 50 scientists to conclude in the December 9, 2004 edition of the journal '']'' that "Liquid water was once intermittently present at the Martian surface at Meridiani, and at times it saturated the subsurface. Because liquid water is a key prerequisite for life, we infer conditions at Meridiani may have been habitable for some period of time in Martian history." Later studies suggested that this liquid water was actually acid because of the types of minerals found at the location.<ref>{{cite journal | last1= Benison | first1= KC | last2= Laclair | first2= DA | title= Modern and ancient extremely acid saline deposits: terrestrial analogs for martian environments? | journal= Astrobiology | volume= 3 | issue= 3 | pages= 609–618 | year= 2003 | pmid = 14678669 | doi= 10.1089/153110703322610690 |bibcode = 2003AsBio...3..609B }}</ref><ref>{{cite journal | last1= Benison | first1= K | last2= Bowen | first2= B | title= Acid saline lake systems give clues about past environments and the search for life on Mars | journal= Icarus | volume= 183 | issue= 1 | pages= 225–229 | bibcode = 2006Icar..183..225B | year= 2006 | doi = 10.1016/j.icarus.2006.02.018 }}</ref> On the opposite side of the planet, the mineral ], which (unlike hematite) forms ''only'' in the presence of water, along with other evidence of water, has also been found by the Spirit rover in the "]".
{{Main|Timeline of Mars Science Laboratory}}
]" ] – an ancient ] discovered by the ] team (September 14, 2012) () ().]]
] on Mars – compared with a terrestrial ] – suggesting water "vigorously" flowing in a stream.<ref name="NASA-20120927">{{cite web |last1=Brown |first1=Dwayne |last2=Cole |first2=Steve |last3=Webster |first3=Guy |last4=Agle |first4=D.C. |title=NASA Rover Finds Old Streambed On Martian Surface |url=http://www.nasa.gov/home/hqnews/2012/sep/HQ_12-338_Mars_Water_Stream.html |date=September 27, 2012 |publisher=]}}</ref><ref name="NASA-20120927a">{{cite web |author=NASA |author-link=NASA |title=NASA's Curiosity Rover Finds Old Streambed on Mars – video (51:40) |url=https://www.youtube.com/watch?v=fYo31XjoXOk | archive-url=https://ghostarchive.org/varchive/youtube/20211113/fYo31XjoXOk| archive-date=2021-11-13 | url-status=live|date=September 27, 2012 |publisher=]television}}{{cbignore}}</ref><ref name="AP-20120927">{{cite news |last=Chang |first=Alicia |title=Mars rover Curiosity finds signs of ancient stream |url=http://apnews.excite.com/article/20120927/DA1IDOO00.html |date=September 27, 2012 |agency=Associated Press}}</ref>]]


Very early in its ongoing mission, ]'s ] rover discovered unambiguous ] sediments on Mars. The properties of the pebbles in these outcrops suggested former vigorous flow on a streambed, with flow between ankle- and waist-deep. These rocks were found at the foot of an ] system descending from the crater wall, which had previously been identified from orbit.<ref name="NASA-20120927" /><ref name="NASA-20120927a" /><ref name="AP-20120927" />
On July 31, 2008, NASA announced that the ] confirmed the presence of water ice on Mars,<ref>{{Cite news|last=Johnson|first=John|title=There's water on Mars, NASA confirms|work=Los Angeles Times |date=2008-08-01|url=http://www.latimes.com/news/science/la-sci-phoenix1-2008aug01,0,3012423.story|accessdate=2008-08-01}}</ref> as predicted on 2002 by the ] orbiter.


In October 2012, the first ] of a ] was performed by ''Curiosity''. The results revealed the presence of several minerals, including ], ]s and ], and suggested that the Martian soil in the sample was similar to the weathered basaltic soils of ]. The sample used is composed of dust distributed from ] and local fine sand. So far, the materials ''Curiosity'' has analyzed are consistent with the initial ideas of deposits in ] recording a transition through time from a wet to dry environment.<ref name="NASA-20121030">{{cite web |last=Brown |first=Dwayne |title=NASA Rover's First Soil Studies Help Fingerprint Martian Minerals |url=http://www.nasa.gov/home/hqnews/2012/oct/HQ_12-383_Curiosity_CheMin.html |date=October 30, 2012 |publisher=] |access-date=June 16, 2013 |archive-date=June 3, 2016 |archive-url=https://web.archive.org/web/20160603091908/http://www.nasa.gov/home/hqnews/2012/oct/HQ_12-383_Curiosity_CheMin.html |url-status=dead }}</ref>
Studies have shown that various salts present in the Martian soil could act as a kind of antifreeze—keeping water liquid at temperatures far below its normal freezing point.<ref>{{cite web|author=Source: Ames Research Center Posted Saturday, June 6, 2009 |url=http://www.spaceref.com/news/viewpr.html?pid=28377 |title=NASA Scientists Find Evidence for Liquid Water on a Frozen Early Mars &#124; SpaceRef - Your Space Reference |publisher=SpaceRef |date=2009-06-06 |accessdate=2012-01-16}}</ref><ref>{{cite journal |last1=Fairén |first1=Alberto G. |last2=Davila |first2=Alfonso F. |last3=Gago-Duport |first3=Luis |last4=Amils |first4=Ricardo |last5=McKay |first5=Christopher P. |title=Stability against freezing of aqueous solutions on early Mars |journal=Nature |volume=459 |issue=7245 |pages=401–4 |year=2009 |month=May |pmid=19458717 |doi=10.1038/nature07978 |url=|bibcode = 2009Natur.459..401F }}</ref> Some calculations suggest that tiny amounts of liquid water may be present for short periods of time (hours) in some locations.<ref>{{cite journal | last1= Kreslavsky | first1= M | last2= Head | first2= J | last3= Marchant | first3= D | title= Periods of Active Permafrost Layer Formation During the Geological History of Mars: Implication for Circum-Polar and Mid-Latitude surface Processes | pages= 289–302 | issue= 2 | year= 2008 | volume= 56 |doi = 10.1016/j.pss.2006.02.010 | journal= Planetary and Space Science | url=http://www.planetary.brown.edu/pdfs/3229.pdf | format=PDF | bibcode=2008P&SS...56..289K}}</ref> Some researchers have calculated that when taking into consideration insolation and pressure factors that liquid water could exist in some areas for about 10% of the Martian year;<ref>{{cite journal |last1=Lobitz |first1=B. |last2=Wood |first2=BL |last3=Averner |first3=MM |last4=McKay |first4=CP |title=Use of spacecraft data to derive regions on Mars where liquid water would be stable |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=98 |issue=5 |pages=2132–7 |year=2001 |month=February |pmid=11226204 |pmc=30104 |doi=10.1073/pnas.031581098 |url=|bibcode = 2001PNAS...98.2132L }}</ref> others estimate that water could be a liquid for only 2% of the year.<ref>{{cite journal | last1= Haberle | first1= Robert M. | last2= McKay | first2= Christopher P. | last3= Schaeffer | first3= James | last4= Cabrol | first4= Nathalie A. | last5= Grin | first5= Edmon A. | last6= Zent | first6= Aaron P. | last7= Quinn | first7= Richard | title= On the possibility of liquid water on present-day Mars | journal= Journal of Geophysical Research | volume= 106 | issue= E10 | pages= 23317–23326 | year= 2001 | doi = 10.1029/2000JE001360 | bibcode=2001JGR...10623317H}}</ref> Either way, that may be enough liquid water to support some forms of hardy organisms. It may not take much liquid water for life—organisms have been found on Earth living on extremely thin layers of unfrozen water in below-freezing locations.<ref>{{cite web|author=Nancy Atkinson |url=http://www.universetoday.com/2008/09/04/phoenix-probe-says-both-yes-and-no-to-water-on-mars/ |title=Phoenix Probe Says Both Yes and No to Water on Mars |publisher=Universetoday.com |date=2008-09-04 |accessdate=2012-01-16}}</ref> Research in December 2009 showed that liquid water could form in the daytime inside of snow on Mars. As light heats ice, it may be warming up dust grains located inside. These grains would then store heat and form water by melting some of the ice. This process has already been observed in Antarctica. Enough water may be produced for physical, chemical, and biological processes.<ref>{{cite journal | url=http://www.newscientist.com/article/mg20427373.700 | title=Watery niche may foster life on Mars | date = 7 December 2009 | first=David |last=Shiga | journal=New Scientist | issue = 2737 }}</ref><ref>{{dead link|date=January 2012}}</ref>


In December 2012, NASA reported that ''Curiosity'' performed its first extensive ], revealing the presence of water molecules, ] and ] in the ].<ref name="NASA-20121203">{{cite web |last1=Brown |first1=Dwayne |last2=Webster |first2=Guy |last3=Neal-Jones |first3=Nance |title=NASA Mars Rover Fully Analyzes First Martian Soil Samples |url=http://mars.jpl.nasa.gov/msl/news/whatsnew/index.cfm?FuseAction=ShowNews&NewsID=1399 |archive-url=https://web.archive.org/web/20121205005911/http://mars.jpl.nasa.gov/msl/news/whatsnew/index.cfm?FuseAction=ShowNews&NewsID=1399 |url-status=dead |archive-date=December 5, 2012 |date=December 3, 2012 |publisher=] }}</ref><ref name="NYT-20121203">{{cite web |last=Chang |first=Ken |title=Mars Rover Discovery Revealed |url=http://thelede.blogs.nytimes.com/2012/12/03/mars-rover-discovery-revealed |date=December 3, 2012 |work=]}}</ref> And in March 2013, NASA reported evidence of ], likely hydrated ], in several ] including the broken fragments of ] and ] as well as in ] and ] in other rocks like ] and ].<ref name="NASA-20130318">{{cite web |last1=Webster |first1=Guy |last2=Brown |first2=Dwayne |title=Curiosity Mars Rover Sees Trend In Water Presence |url=http://mars.jpl.nasa.gov/msl/news/whatsnew/index.cfm?FuseAction=ShowNews&NewsID=1446 |archive-url=https://web.archive.org/web/20130322065943/http://mars.jpl.nasa.gov/msl/news/whatsnew/index.cfm?FuseAction=ShowNews&NewsID=1446 |url-status=dead |archive-date=March 22, 2013 |date=March 18, 2013 |work=]}}</ref><ref name="BBC-20130319">{{cite web |last=Rincon |first=Paul |title=Curiosity breaks rock to reveal dazzling white interior |url=https://www.bbc.co.uk/news/science-environment-21340279 |date=March 19, 2013 |publisher=BBC}}</ref><ref name="MSN-20130120">{{cite web |author=Staff |title=Red planet coughs up a white rock, and scientists freak out |url=http://now.msn.com/white-mars-rock-called-tintina-found-by-curiosity-rover |date=March 20, 2013 |publisher=] |url-status=dead |archive-url=https://web.archive.org/web/20130323164757/http://now.msn.com/white-mars-rock-called-tintina-found-by-curiosity-rover |archive-date=March 23, 2013 }}</ref> Analysis using the rover's ] provided evidence of subsurface water, amounting to as much as 4% water content, down to a depth of {{convert|60|cm|ft|abbr=on}}, in the rover's traverse from the '']'' site to the ''Yellowknife Bay'' area in the ] terrain.<ref name="NASA-20130318" />
=== Polar ice caps ===
] acquired this image of the Martian north polar ice cap in early northern summer.]]
]
{{main|Martian polar ice caps}}
Both the northern polar cap (]) and the southern polar cap (]) are believed to grow in thickness during the winter and partially ] during the summer. Data obtained by the ] satellite, made it possible in 2004 to confirm that the southern polar cap has ice at a depth of {{convert|3.7|km|mi}} below the surface<ref name=NASAwater/> with varying contents of frozen water depending on its latitude. The polar cap is a mixture of CO<sub>2</sub> ice and water ice.<ref name=ESAwater >{{Cite news|first=|last=|coauthors=|authorlink=|title=Water at Martian south pole|date=17 March 2004|publisher=European Space Agency (ESA)|url=http://www.esa.int/SPECIALS/Mars_Express/SEMYKEX5WRD_0.html|work=|pages=|accessdate=2009-09-11|language=}}</ref> The second part comprises steep slopes known as ''scarps'', made almost entirely of water ice, that fall away from the polar cap to the surrounding plains.<ref name=ESAwater /> The third part encompasses the vast permafrost fields that stretch for tens of kilometres away from the scarps.<ref name=ESAwater /><ref>{{Cite journal|journal=Geophysical Research Letters|volume=33|issue=11|pages=L11201|date=June 3, 2006|last=Kostama|first=V.-P.|last2=Kreslavsky|first2=M. A.|last3=Head|first3=J. W.|title=Recent high-latitude icy mantle in the northern plains of Mars: Characteristics and ages of emplacement|url=http://www.agu.org/pubs/crossref/2006/2006GL025946.shtml|doi=10.1029/2006GL025946|accessdate=2008-08-01|postscript=<!--None-->|bibcode=2006GeoRL..3311201K}}</ref> NASA scientists calculate that the volume of water ice in the south polar ice cap, if melted, would be sufficient to cover the entire planetary surface to a depth of 11 metres.<ref name=NASAwater/>


On September 26, 2013, NASA scientists reported the ] ''Curiosity'' rover detected abundant chemically-bound water (1.5 to 3 weight percent) in ] at the ] of ] in ].<ref name="ST-20130926">{{cite web |last=Lieberman |first=Josh |title=Mars Water Found: Curiosity Rover Uncovers 'Abundant, Easily Accessible' Water In Martian Soil |url=http://www.isciencetimes.com/articles/6131/20130926/mars-water-soil-nasa-curiosity-rover-martian.htm |date=September 26, 2013 |work=iSciencetimes}}</ref><ref name="Science-20130926a">{{cite journal |last=Leshin |first=L. A. |display-authors=etal |title=Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover |date=September 27, 2013 |journal=] |volume=341 |issue=6153 |doi=10.1126/science.1238937 |pages=1238937 |pmid=24072926|bibcode=2013Sci...341E...3L |s2cid=206549244 |url=https://semanticscholar.org/paper/7f3089e0c3e10eb39e48ff007e04a778811683dd }}</ref><ref name="Science-20130926">{{cite journal |last=Grotzinger |first=John |title=Introduction To Special Issue: Analysis of Surface Materials by the Curiosity Mars Rover |date=September 26, 2013 |journal=] |volume=341 |issue=6153 |page=1475 |doi=10.1126/science.1244258|pmid=24072916 |bibcode=2013Sci...341.1475G |doi-access=free }}</ref><ref name="NASA-20130926a">{{cite web |last1=Neal-Jones |first1=Nancy |last2=Zubritsky |first2=Elizabeth |last3=Webster |first3=Guy |last4=Martialay |first4=Mary |title=Curiosity's SAM Instrument Finds Water and More in Surface Sample |url=http://www.nasa.gov/content/goddard/curiositys-sam-instrument-finds-water-and-more-in-surface-sample/ |date=September 26, 2013 |work=]}}</ref><ref name="NASA-20130926b">{{cite web |last1=Webster |first1=Guy |last2=Brown |first2=Dwayne |title=Science Gains From Diverse Landing Area of Curiosity |url=http://www.nasa.gov/mission_pages/msl/news/msl20130926.html |date=September 26, 2013 |work=] |access-date=September 27, 2013 |archive-date=May 2, 2019 |archive-url=https://web.archive.org/web/20190502194152/http://www.nasa.gov/mission_pages/msl/news/msl20130926.html |url-status=dead }}</ref><ref name="NYT-20131001">{{cite news |last=Chang |first=Kenneth |title=Hitting Pay Dirt on Mars |url=https://www.nytimes.com/2013/10/01/science/space/hitting-pay-dirt-on-mars.html |date=October 1, 2013 |work=]}}</ref> In addition, NASA reported the rover found two principal soil types: a fine-grained ] and a locally derived, coarse-grained ].<ref name="Science-20130926" /><ref name="NASA-20130926b" /><ref name="Science-20130913b">{{cite journal |last=Meslin |first=P.-Y. |display-authors=etal |title=Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars |date=September 26, 2013 |journal=] |volume=341 |issue=6153 |doi=10.1126/science.1238670 |pages=1238670 |pmid=24072924|bibcode=2013Sci...341E...1M |s2cid=7418294 }}</ref> The mafic type, similar to other ]s and ], was associated with hydration of the amorphous phases of the soil.<ref name="Science-20130913b" /> Also, ], the presence of which may make detection of life-related ] difficult, were found at the ''Curiosity'' rover landing site (and earlier at the more polar site of the ]) suggesting a "global distribution of these salts".<ref name="NYT-20131001" /> NASA also reported that ], a rock encountered by ''Curiosity'' on the way to ], was a ] and very similar to terrestrial mugearite rocks.<ref name="Science-20130926c">{{cite journal |last1=Stolper |first1=E.M. |last2=Baker |first2=M.B. |last3=Newcombe |first3=M.E. |last4=Schmidt |first4=M.E. |last5=Treiman |first5=A.H. |last6=Cousin |first6=A. |last7=Dyar |first7=M.D. |last8=Fisk |first8=M.R. |last9=Gellert |first9=R. |last10=King |first10=P.L. |last11=Leshin |first11=L. |last12=Maurice |first12=S. |last13=McLennan |first13=S.M. |last14=Minitti |first14=M.E. |last15=Perrett |first15=G. |last16=Rowland |first16=S. |last17=Sautter |first17=V. |author17-link=Violaine Sautter |last18=Wiens |first18=R.C. |last19=MSL ScienceTeam |title=The Petrochemistry of Jake_M: A Martian Mugearite |journal=] |volume=341 |issue=6153 |doi=10.1126/science.1239463 |publisher=] |date=2013 |pages=1239463 |pmid=24072927 |bibcode=2013Sci...341E...4S |s2cid=16515295 |url=https://authors.library.caltech.edu/41547/13/Jake_M%20Stolper%20et%20al.%20%282013%29%20Science.pdf |access-date=July 23, 2019 |archive-date=August 11, 2021 |archive-url=https://web.archive.org/web/20210811150621/https://authors.library.caltech.edu/41547/13/Jake_M%20Stolper%20et%20al.%20(2013)%20Science.pdf |url-status=dead }}</ref>
Research, published in January 2010 using ] images, says that understanding the layers is more complicated than was formerly believed. The brightness of the layers does not just depend on the amount of dust. The angle of the sun together with the angle of the spacecraft greatly affect the brightness seen by the camera. This angle depends on factors such as the shape of the trough wall and its orientation. Furthermore, the roughness of the surface can greatly change the albedo (amount of reflected light). In addition, many times what one is seeing is not a real layer, but a fresh covering of frost. All of these factors are influenced by the wind which can erode surfaces. The HiRISE camera did not reveal layers that were thinner than those seen by the Mars Global Surveyor. However, it did see more detail within layers.<ref>{{cite journal |first1=KE |last1=Fishbaugh |last2=Byrne| year=2010 |first2=Shane |last3=Herkenhoff |first3=Kenneth E. |last4=Kirk |first4=Randolph L. |last5=Fortezzo |first5=Corey |last6=Russell |first6=Patrick S. |last7=McEwen |first7=Alfred |title= Evaluating the meaning of "layer" in the martian north polar layered depsoits and the impact on the climate connection | journal= Icarus | volume= 205 |issue=1 |pages= 269–282 | doi = 10.1016/j.icarus.2009.04.011 | bibcode= 2010Icar..205..269F |url=http://www.lpl.arizona.edu/~shane/publications/fishbaugh_etal_icarus_2010.pdf | format=PDF }}</ref>


On December 9, 2013, NASA reported that Mars once had a large ] inside ],<ref name="NYT-20131209" /><ref name="SCI-20131209" /> that could have been a hospitable environment for ].
=== Ice patches ===
On July 28, 2005, the ] announced the existence of a crater partially filled with frozen water,<ref name="lake"> - July 27, 2005 ] Press release. URL accessed March 17, 2006.</ref> which some then interpreted as an "ice lake".<ref name="BBClake"> - July 29, 2005 ] story. URL accessed March 17, 2006.</ref> Images of the crater, taken by the ] on board the ]'s ] spacecraft, clearly show a broad sheet of ice in the bottom of an unnamed crater located on ], a broad plain that covers much of Mars' far northern latitudes, at approximately 70.5° North and 103° East. The crater is 35&nbsp;km wide and about 2&nbsp;km deep.


On December 16, 2014, NASA reported detecting an unusual increase, then decrease, in the amounts of ] in the ] of the planet ]; in addition, ]s were detected in powder drilled from a ] by the ]. Also, based on ] to ] ratio studies, much of the water at ] on Mars was found to have been lost during ancient times, before the lake bed in the crater was formed; afterwards, large amounts of water continued to be lost.<ref name="NASA-20141216-GW">{{cite web |last1=Webster |first1=Guy |last2=Neal-Jones |first2=Nancy |last3=Brown |first3=Dwayne |title=NASA Rover Finds Active and Ancient Organic Chemistry on Mars |url=http://www.jpl.nasa.gov/news/news.php?release=2014-432 |date=December 16, 2014 |work=] |access-date=December 16, 2014 }}</ref><ref name="NYT-20141216-KC">{{cite news |last=Chang |first=Kenneth |title='A Great Moment': Rover Finds Clue That Mars May Harbor Life |url=https://www.nytimes.com/2014/12/17/science/a-new-clue-in-the-search-for-life-on-mars.html |date=December 16, 2014 |work=] |access-date=December 16, 2014 }}</ref><ref name="SCI-20141216-PRM">{{cite journal |title=Mars Atmosphere – The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars |date=December 16, 2014 |journal=] |volume=347 |issue=6220 |pages=412–414 |doi=10.1126/science.1260291 |display-authors=1 |last1=Mahaffy |first1=P. R. |last2=Webster|first2=C. R.|last3=Stern |first3=J. C. |last4=Brunner |first4=A. E. |last5=Atreya |first5=S. K. |last6=Conrad |first6=P. G. |last7=Domagal-Goldman |first7=S. |last8=Eigenbrode |first8=J. L. |last9=Flesch |first9=G. J. |last10=Christensen |first10=L. E. |last11=Franz |first11=H. B. |last12=Freissinet |first12=C. |last13=Glavin |first13=D. P. |last14=Grotzinger |first14=J. P. |last15=Jones |first15=J. H. |last16=Leshin |first16=L. A. |last17=Malespin |first17=C. |last18=McAdam |first18=A. C. |last19=Ming |first19=D. W. |last20=Navarro-Gonzalez |first20=R. |last21=Niles |first21=P. B. |last22=Owen |first22=T. |last23=Pavlov |first23=A. A. |last24=Steele |first24=A. |last25=Trainer |first25=M. G. |last26=Williford |first26=K. H. |last27=Wray |first27=J. J. |bibcode=2015Sci...347..412M |pmid=25515119|s2cid=37075396 |url=https://authors.library.caltech.edu/52528/7/Mahaffy-SM.pdf }}</ref>
The height difference between the crater floor and the surface of the water ice is about 200 metres. ] scientists have attributed most of this height difference to sand dunes beneath the water ice, which are partially visible. While scientists do not refer to the patch as a "lake", the water ice patch is remarkable for its size and for being present throughout the year. Deposits of water ice and layers of frost have been found in many different locations on the planet.


On April 13, 2015, '']'' published an analysis of humidity and ground temperature data collected by ''Curiosity'', showing evidence that films of liquid brine water form in the upper 5&nbsp;cm of Mars's subsurface at night. The water activity and temperature remain below the requirements for reproduction and ] of known terrestrial microorganisms.<ref name="Torres 2015"/><ref>{{cite news |last=Rincon |first=Paul |url=https://www.bbc.com/news/science-environment-32287609 |title=Evidence of liquid water found on Mars |work=BBC News |date=April 13, 2015 |access-date=April 15, 2015 }}</ref>
=== Equatorial frozen sea ===
Surface features consistent with ] have been discovered in the southern ]. What appear to be plates of broken ice, ranging in size from 30&nbsp;m to 30&nbsp;km, are found in channels leading to a flooded area of approximately the same depth and width as the ]. The plates show signs of break up and rotation that clearly distinguish them from lava plates elsewhere on the surface of Mars. The source for the flood is thought to be the nearby geological fault, ], which spewed water as well as lava some 2 to 10 million years ago.<ref name="Murray2007">{{Cite journal|last=Murray|first=John B.|authorlink=|coauthors=''et al.''|year=2005|month=|title=Evidence from the Mars Express High Resolution Stereo Camera for a frozen sea close to Mars' equator|journal=Nature|volume=434|issue=7031|pages=352–356|doi=10.1038/nature03379|url=|accessdate=|quote=|pmid=15772653|bibcode = 2005Natur.434..352M }}</ref>


On October 8, 2015, NASA confirmed that lakes and streams existed in ] 3.3 – 3.8 billion years ago delivering sediments to build up the lower layers of ].<ref name="NASA-20151008">{{cite web |last=Clavin |first=Whitney |title=NASA's Curiosity Rover Team Confirms Ancient Lakes on Mars |url=http://www.jpl.nasa.gov/news/news.php?feature=4734 |date=October 8, 2015 |work=] |access-date=October 9, 2015 }}</ref><ref name="SCI-20151009">{{cite journal |author=Grotzinger, J.P. |title=Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars |date=October 9, 2015 |journal=] |volume=350 |issue=6257 |pages=aac7575 |doi=10.1126/science.aac7575|pmid=26450214 |bibcode=2015Sci...350.7575G |s2cid=586848 |url=https://resolver.caltech.edu/CaltechAUTHORS:20151009-084255932 }}</ref>
=== Ancient coastline ===
A striking feature of the topography of Mars is the flat plains of the northern hemisphere. With the increasing amounts of data returning from the current set of orbiting probes, what seems to be an ancient shoreline several thousands of kilometres long has been discovered. Actually, two different shorelines have been proposed. One, the Arabia shoreline, can be traced all around Mars except through the Tharsis volcanic region. The second, the Deuteronilus, follows the Vastitas Borealis Formation. Some researchers do not agree that these formations are real shorelines.<ref>{{cite web|url=http://www.psrd.hawaii.edu/July03/MartianSea.html |title=PSRD: Ancient Floodwaters and Seas on Mars |publisher=Psrd.hawaii.edu |date=2003-07-16 |accessdate=2012-01-16}}</ref><ref>{{cite journal | last1= Carr | first1= Michael H. | title= Oceans on Mars: An assessment of the observational evidence and possible fate| journal= Journal of Geophysical Research | volume= 108 |issue= E5 |page= 5042 | year= 2003 | doi = 10.1029/2002JE001963 | url=http://www.planetary.brown.edu/pdfs/2757.pdf | format=PDF | bibcode=2003JGRE..108.5042C}}</ref> One major problem with the conjectured 2 Ga old shoreline is that it is not flat — i.e. does not follow a line of constant gravitational potential. However, a 2007 '']'' article points out that this could be due to a change in distribution in Mars' mass, perhaps due to volcanic eruption or meteor impact—the Elysium volcanic province or the massive Utopia basin that is buried beneath the northern plains have been put forward as the most likely causes.<ref name="Zuber2007">{{Cite journal|last=Zuber|first=Maria T.|authorlink=|coauthors=|year=2007|month=|title=Mars at the tipping point|journal=Nature|volume=447|issue=7146|pages=785–786|doi=10.1038/447785a|url=|accessdate=|quote=|pmid=17568733|bibcode = 2007Natur.447..785Z }}</ref> The ] conjectures that the Vastitas Borealis basin was the site of a primordial ocean of liquid water 3.8 billion years ago.<ref name=Baker>{{cite journal | last1= Baker | year= 1991 | first1= V. R. | last2= Strom | first2= R. G. | last3= Gulick | first3= V. C. | last4= Kargel | first4= J. S. | last5= Komatsu | first5= G. | last6= Kale | first6= V. S. |title= Ancient oceans, ice sheets and the hydrological cycle on Mars | journal= Nature |volume= 352 | issue= 6348 |pages= 589–594 | doi = 10.1038/352589a0 | bibcode = 1991Natur.352..589B }}</ref>


On November 4, 2018, geologists presented evidence, based on studies in ] by the ], that there was plenty of ] on early ].<ref name="EA-20181103-gsa">{{cite news |author=Geological Society of America |title=Evidence of outburst flooding indicates plentiful water on early Mars |url=https://www.eurekalert.org/pub_releases/2018-11/gsoa-eoo110318.php |date= November 3, 2018 |work=] |access-date=November 5, 2018 |author-link=Geological Society of America }}</ref><ref name="GSA-20181104">{{cite journal |author=Heydari, Ezat|display-authors=etal |title=Significance of Flood Depositis in Gale Crater, Mars |url=https://gsa.confex.com/gsa/2018AM/webprogram/Paper319960.html |date=November 4, 2018 |journal=] |access-date=November 5, 2018 }}</ref>
=== Glaciers and ice ages ===
]


===''Mars Express''===
Many large areas of Mars have been shaped by glaciers. Much of the area in high latitudes, especially the ], are believed to still contain enormous amounts of water ice.<ref name="ISBN 0-8165-1257-4">ISBN 0-8165-1257-4</ref><ref>{{cite web|url=http://www.esa.int/SPECIALS/Mars_Express/SEMBS5V681F_0.html |title=ESA - Mars Express - Breathtaking views of Deuteronilus Mensae on Mars |publisher=Esa.int |date=2005-03-14 |accessdate=2012-01-16}}</ref> Recent evidence has led many planetary scientists to believe that water ice still exists as glaciers with thin coverings of insulating rock.<ref name="Head, J. 2005" /><ref name="marstoday.com" /><ref name="news.brown.edu" /><ref name="Plaut, J. 2008" /><ref name="Holt, J. 2008" /> In March 2010, scientists released the results of a radar study of an area called ] that found widespread evidence of ice lying beneath a few meters of rock debris.<ref>{{Cite news|author=Ohanlon, Larry |url=http://news.discovery.com/space/mars-ice-sheet-map-climate.html |title=Mars' Ice Age Revealed in Map |work=Discovery News |date=4 March 2010}}</ref> Glaciers are believed to be associated with ], many volcanoes, and even some craters. Researchers have described glacial deposits on ],<ref name="Hauber, E. 2005">{{Cite journal|author=Hauber, E. ''et al.'' |year=2005 |title=Discovery of a flank caldera and very young glacial activity at Hecates Tholus, Mars |journal=Nature |volume=434 |pages=356–61|pmid=15772654|issue=7031|doi=10.1038/nature03423|bibcode = 2005Natur.434..356H }}</ref> ],<ref name="ReferenceA">{{cite journal | last1= Shean | first1= David E. | last2= Head | first2= James W. | last3= Fastook | first3= James L. | last4= Marchant | first4= David R. | title= Recent glaciation at high elevations on Arsia Mons, Mars: Implications for the formation and evolution of large tropical mountain glaciers| page= E03004 | year= 2007 | issue= E3 | volume= 112 | doi = 10.1029/2006JE002761 | journal= Journal of Geophysical Research | url=http://www.planetary.brown.edu/pdfs/3281.pdf | format = PDF | bibcode=2007JGRE..11203004S}}</ref> ],<ref name="Shean, D. 2005">{{Cite journal|author=Shean, D. ''et al.'' |year=2005 |title=Origin and evolution of a cold-based mountain glacier on Mars: The Pavonis Mons fan-shaped deposit |journal=Journal of Geophysical Research |volume=110|issue=E5 |page=E05001 | doi = 10.1029/2004JE002360 |bibcode=2005JGRE..11005001S}}</ref> and ].<ref name="Basilevsky, A. 2006">{{Cite journal|author=Basilevsky, A. ''et al.'' |year=2006 |title=Geological recent tectonic, volcanic and fluvial activity on the eastern flank of the Olympus Mons volcano, Mars |journal=Geophysical Research Letters |volume=33 |at=L13201|doi=10.1029/2006GL026396 |bibcode = 2006GeoRL..3313201B }}</ref>
The ''] Orbiter'', launched by the ], has been mapping the surface of Mars and using radar equipment to look for evidence of sub-surface water. Between 2012 and 2015, the ''Orbiter'' scanned the area beneath the ice caps on the ]. Scientists determined by 2018 that the readings indicated a sub-surface lake bearing water about {{convert|20|km|mi}} wide. The top of the lake is located {{convert|1.5|km}} under the planet's surface; how much deeper the liquid water extends remains unknown.<ref>{{cite journal |vauthors=Orosei R, Lauro SE, Pettinelli E, Cicchetti A, Coradini M, Cosciotti B, Di Paolo F, Flamini E, Mattei E, Pajola M, Soldovieri F, Cartacci M, Cassenti F, Frigeri A, Giuppi S, Martufi R, Masdea A, Mitri G, Nenna C, Noschese R, Restano M, Seu R|date=July 25, 2018 |title=Radar evidence of subglacial liquid water on Mars |journal= ]|volume=361 |issue=3699 |pages= 490–493|doi=10.1126/science.aar7268 |pmid= 30045881|arxiv=2004.04587 |bibcode=2018Sci...361..490O |hdl=11573/1148029 |s2cid=206666385 |hdl-access=free }}</ref><ref>{{cite news | url = https://www.bbc.com/news/science-environment-44952710 | title = Liquid water 'lake' revealed on Mars | first = Mary | last = Halton | date = July 25, 2018 | access-date = July 25, 2018 |work=BBC News}}</ref>


===Zhurong Rover===
Ridges of debris on the surface of the glaciers indicate the direction of ice movement. The surface of some glaciers have rough textures due to ] of buried ice. The ice goes directly into a gas (this process is called sublimation) and leaves behind an empty space. Overlying material then collapses into the void.<ref>{{cite web|url=http://hirise.lpl.arizona.edu/PSP_009719_2230 |title=Fretted Terrain Valley Traverse |publisher=Hirise.lpl.arizona.edu |date= |accessdate=2012-01-16}}</ref> Glaciers are not pure ice; they contain dirt and rocks. At times, they dump their loads of material into ridges. Such ridges are called ]. Some places on Mars have groups of ridges that are twisted around; this may have been due to more movement after the ridges were put into place. Sometimes chunks of ice fall from the glacier and get buried in the land surface. When they melt, a more or less round hole remains.<ref>{{cite web|url=http://hirise.lpl.arizona.edu/PSP_006278_2225 |title=Jumbled Flow Patterns |publisher=Hirise.lpl.arizona.edu |date= |accessdate=2012-01-16}}</ref> On Earth we call these features kettles or kettle holes. ] in upstate NY has preserved several of these kettles. The picture from ] below shows possible kettles in ].


China's Zhurong touched down on Mars in the area called Utopia Planitia on May 14, 2021. Its six scientific instruments including two panoramic cameras, a ground-penetrating radar and a magnetic field detector. Zhurong used a laser to zap rocks to study their compositions.<ref>{{cite web | url=https://www.space.com/china-mars-rover-landing-success-tianwen-1-zhurong | title=China's 1st Mars rover 'Zhurong' lands on the Red Planet | website=] | date=May 15, 2021 }}</ref>
Pictures below show various features that appear to be connected with the existence of glaciers.
<gallery>
Image:Moreux Crater moraines.JPG|] moraines and kettle holes, as seen by HIRISE. Location is ].
Image:Niger Vallis hirise.JPG|] with features typical of this latitude. Chevron pattern results from movement of ice-rich material. Click on image to see chevron pattern and mantle. Location is ].
Image:Glacier as seen by ctx.JPG|Mesa in ], as seen by CTX. Mesa has several glaciers eroding it. One of the glaciers is seen in greater detail in the next two images from HiRISE.
Image:Wide view of glacier showing image field.JPG|Glacier as seen by HiRISE under the ]. Area in rectangle is enlarged in the next photo. Zone of accumulation of snow at the top. Glacier is moving down valley, then spreading out on plain. Evidence for flow comes from the many lines on surface. Location is in ] in ].
Image:Glacier close up with hirise.JPG|Enlargement of area in rectangle of the previous image. On Earth the ridge would be called the terminal moraine of an alpine glacier. Picture taken with HiRISE under the HiWish program.
</gallery>


Zhurong found evidence of water when it examined the crust at the surface, called "duricrust." The crust
Many mid-latitude craters contain straight and/or curved ridges of material that resemble glacial moraines on the Earth. Moving ice carries rock material, then drops it as the ice disappears. On Mars, with its extremely thin atmosphere, ice does not usually melt but instead sublimates. As a result, the rock debris is just dropped, and melt water is not produced so the remains of these glaciers do not appear the same as on the Earth. Various names have been applied to these ridged features. Depending on the author, they may be called arcuate ridges,<ref>{{Cite journal|doi=10.1016/j.icarus.2005.05.011 |author=Berman, D. ''et al.'' |year=2005 |title=The role of arcuate ridges and gullies in the degradation of craters in the Newton Basin region of Mars |journal=Icarus |volume=178|issue=2 |pages=465–86 |bibcode=2005Icar..178..465B}}</ref> viscous flow features,<ref>{{Cite journal|author=Milliken, R. ''et al.'' |year=2003 |title=Viscous flow features on the surface of Mars: Observations from high-resolution Mars Orbiter Camera (MOC) images |journal=Journal of Geophysical Research |volume=108 |at=E6, 5057}}</ref> Martian flow features, or moraine-like ridges. Many, but not all, seem to be associated with gullies on the walls of craters and mantling material.<ref>{{Cite journal|doi=10.1016/j.icarus.2004.05.026 |author=Arfstrom, J.; W. Hartmann |year=2005 |title=Martian flow features, moraine-like ridges, and gullies: Terrestrial analogs and interrelationships |journal=Icarus |volume=174|issue=2 |pages=321–35 |bibcode=2005Icar..174..321A}}</ref>
contained hydrated sulfate/silica materials in the Amazonian-age terrain of the landing site. The duricrust was produced either by subsurface ice melting or groundwater rising.<ref>{{cite journal | doi=10.1126/sciadv.abn8555 | title=Zhurong reveals recent aqueous activities in Utopia Planitia, Mars | date=2022 | last1=Liu | first1=Yang | last2=Wu | first2=Xing | last3=Zhao | first3=Yu-Yan Sara | last4=Pan | first4=Lu | last5=Wang | first5=Chi | last6=Liu | first6=Jia | last7=Zhao | first7=Zhenxing | last8=Zhou | first8=Xiang | last9=Zhang | first9=Chaolin | last10=Wu | first10=Yuchun | last11=Wan | first11=Wenhui | last12=Zou | first12=Yongliao | journal=Science Advances | volume=8 | issue=19 | pages=eabn8555 | pmid=35544566 | pmc=9094648 | bibcode=2022SciA....8N8555L }}</ref><ref>Liu, Y., et al. 2022. Zhurong reveals recent aqueous activities in Utopia Planitia, Mars. Science Advances. VOL. 8, NO. 19</ref>
<gallery>
Image:Gullies and tongue-shaped glacier.jpg|Gullies and possible remains of old ] in a crater in ], north of the large crater Kepler. One suspected glacier, to the right, has the shape of a tongue. Image taken with Mars Global Surveyor, under the Public Target program.
Image:Tongue Glacier.JPG|Tongue-Shaped Glacier, as seen by Mars Global Surveyor. Location is ].
Image:Tongue23141.jpg|Tongue-shaped glacier, as seen by HiRISE under the HiWish program. Ice may exist in the glacier, even today, beneath an insulating layer of dirt. Location is Hellas quadrangle.
Image:Tongue23141close.jpg|Close-up of tongue-shaped glacier, as seen by HiRISE under the HiWish program. Resolution is about 1 meter, so one can see objects a few meters across in this image. Ice may exist in the glacier, even today, beneath an insulating layer of dirt. Location is Hellas quadrangle.
</gallery>


Looking at the dunes at Zhurong's landing site, researchers found a large shift in wind direction (as evidenced in the dune directions) that occurred about the same time that layers in the Martian northern ice caps changed. It was suggested that these events happened when the rotational tilt of the planet changed.<ref>Liu, J., et al. 2023. Martian dunes indicative of wind regime shift in line with end of ice age. Nature</ref>
Lineated deposits are probably rock-covered glaciers which are found on the floors of some channels. Their surfaces have ridged and grooved materials that deflect around obstacles, similar to some glaciers on the Earth. Lineated floor deposits may be related to ]s, which have been proven to contain large amounts of ice by orbiting radar.<ref name="Plaut, J. 2008" /><ref name="Holt, J. 2008" /><ref name="planetary.brown.edu">{{Cite journal|author=Plaut Jeffrey J. ''et al.'' |title=Radar evidence for ice in lobate debris aprons in the mid-northern latitudes of Mars |journal=Geophysical Research Letters |volume=36 |at=L02203 |doi=10.1029/2008GL036379|issue=2 |date=28 January 2009 |url=http://www.planetary.brown.edu/pdfs/3733.pdf |pages=L02203 |bibcode=2009GeoRL..3602203P}}</ref>


===InSight===
For many years, researchers believed that on Mars features called Lobate Debris Aprons looked like glacial flows. It was thought that ice existed under a layer of insulating rocks.<ref name="Head, J. 2005">{{Cite journal|doi=10.1038/nature03359 |author=Head, J. ''et al.'' |year=2005 |title=Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars |journal=Nature |volume=434 |issue=7031 |pages=346–50 |pmid=15772652|bibcode = 2005Natur.434..346H }}</ref><ref name="marstoday.com">{{cite web|url=http://www.marstoday.com/news/viewpr.html?pid=18050 |title=Mars' climate in flux: Mid-latitude glaciers |work=Mars Today}}</ref><ref name="news.brown.edu">{{cite press release |url=http://news.brown.edu/pressreleases/2008/04/martian-glaciers |title=Glaciers Reveal Martian Climate Has Been Recently Active |publisher=Brown University |date=April 2008}}</ref> With new instrument readings, it has been confirmed that Lobate Debris Aprons contain almost pure ice that is covered with a layer of rocks.<ref name="Plaut, J. 2008">{{Cite journal|author=Plaut, J. ''et al.'' |year=2008 |title=Radar Evidence for Ice in Lobate Debris Aprons in the Mid-Northern Latitudes of Mars |journal=Lunar and Planetary Science |volume=XXXIX |page=2290}}</ref><ref name="Holt, J. 2008">{{Cite journal|author=Holt, J. ''et al.'' |year=2008 |title=Radar Sounding Evidence for Ice within Lobate Debris Aprons near Hellas Basin, Mid-Southern Latitudes of Mars |journal=Lunar and Planetary Science |volume=XXXIX |page=2441}}</ref>
NASA's ] lander discovered ] in 2024 by measuring the ]s from ]s with its ]. At the area it was measuring, it is estimated that there is water 7 to 13 miles beneath the ]. It is estimated that there is enough groundwater on Mars that could theoretically cover all of Mars surface in water between 0.62 and 1.24 miles deep, if it was all surface water.<ref>{{cite web | url=https://www.space.com/the-universe/mars/oceans-worth-of-water-may-be-buried-within-mars-but-can-we-get-to-it | title=Ocean's worth of water may be buried within Mars — but can we get to it? | website=] | date=August 13, 2024 }}</ref><ref>{{cite web | url=https://www.smithsonianmag.com/smart-news/mars-hosts-a-giant-reservoir-of-water-underground-we-just-cant-easily-reach-it-study-finds-180984888/#:~:text=Data%20from%20NASA%27s%20InSight%20lander,7%20and%2013%20miles%20deep | title=Mars Hosts a Giant Reservoir of Water Underground, We Just Can't Easily Reach It, Study Finds }}</ref>
<gallery>
Image:Reull Vallis lineated deposits.JPG|] with lineated floor deposits. Click on image to see relationship to other features. Floor deposits are believed to be formed from ice movement. Location is ].
Image:Coloe Fossae Lineated Valley Fill.JPG|] Lineated Valley Fill, as seen by HiRISE. Scale bar is 500 meters long. Location is ].
</gallery>


== Interactive map ==
Ice ages on Mars are far different than the ones that our Earth experiences. Ice ages on Mars, that is when ice accumulates, occur during warmer periods.<ref>{{Cite journal|author=Baker, V |year=2003 |title=Icy martian mysteries |journal=Nature |volume=426 |pages=779–80 |pmid=14685217 |issue=6968 |doi=10.1038/426779a}}</ref> During a Martian ice age, the poles get warmer. Water ice leaves the ice caps and is deposited in mid latitudes. The moisture from the ice caps travels to lower latitudes in the form of deposits of frost or snow mixed generously with dust. The atmosphere of Mars contains a great deal of fine dust particles. Water vapor condenses on these particles, which then fall down to the ground due to the additional weight of the water coating. When ice at the top of the mantling layer returns to the atmosphere, it leaves behind dust which serves to insulate the remaining ice.<ref name="sciencedaily.com­">{{Cite news|publisher=MLA NASA/Jet Propulsion Laboratory |date=December 18, 2003 |title=Mars may be emerging from an ice age |work=ScienceDaily |accessdate=February 19, 2009 |url=http://www.sciencedaily.com/releases/2003/12/031218075443.htm }}</ref> The total volume of water removed is about a few percent of the ice caps, or enough to cover the entire surface of the planet under one meter of water. Much of this moisture from the ice caps results in a thick smooth mantle that is thought to be a mixture of ice and dust.<ref>{{Cite journal|author=Head, J. ''et al.'' |year=2003 |title=Recent ice ages on Mars |journal=Nature |volume=426 |pages=797–802 |pmid=14685228 |issue=6968 |doi=10.1038/nature02114}}</ref><ref>{{Cite journal|author=Mustard, J. ''et al.'' |year=2001 |title=Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice |journal=Nature |volume=412 |pages=411–4 |pmid=11473309 |issue=6845 |doi=10.1038/35086515}}</ref><ref>{{Cite journal|author=Kreslavsky, M.; J. Head |year=2002 |title=Mars: Nature and evolution of young latitude-dependent water-ice-rich mantle|issue=15 |journal=Geophysical Research Letters |volume=29 |url=http://www.planetary.brown.edu/pdfs/2756.pdf | format=PDF | doi = 10.1029/2002GL015392 |bibcode=2002GeoRL..29o..14K}}</ref> This ice-rich mantle, a few yards thick, smoothes the land. But in places it displays a bumpy texture, resembling the surface of a basketball. Because there are few craters on this mantle, the mantle is relatively young. It is believed that this mantle was put in place during a relatively recent ice age. The mantle covers areas to the equivalent latitude of Saudi Arabia and the southern United States.
{{Mars map}}


== See also ==
The images below, all taken with HiRISE show a variety of views of this smooth mantle.
{{div col|colwidth=30em}}
<gallery>
* {{annotated link|Atmosphere of Mars#Water|Atmospheric water on Mars}}
Image:Ptolemaeus Crater Rim.JPG|] Rim. Click on image to see excellent view of mantle deposit. Location is ].
* {{annotated link|Climate of Mars}}
Image:Atlantis Chaos.JPG|]. Click on image to see mantle covering and possible gullies. The two images are different parts of the original image. They have different scales. Location is ].
* {{annotated link|Colonization of Mars}}
Image:Dissected Mantle.JPG|Dissected mantle with layers. Location is ].
* {{annotated link|Evolution of water on Mars and Earth}}
</gallery>
* {{annotated link|Extraterrestrial liquid water}}
* {{annotated link|Lakes on Mars}}
* {{annotated link|Life on Mars}}
* ]
* ]{{Broken anchor|date=2024-07-17|bot=User:Cewbot/log/20201008/configuration|target_link=Mars Global Surveyor#Discovery of water ice on Mars|reason= The anchor (Discovery of water ice on Mars) ].}}
* {{annotated link|Martian canals}}
* {{annotated link|Mud cracks on Mars}}
{{div col end}}


== References ==
Ice ages are driven by changes in Mars's orbit and tilt. Orbital calculations show that Mars wobbles on its axis far more than Earth. Earth is stabilized by its proportionally large moon, so it only wobbles a few degrees. Mars, in contrast, may change its tilt by tens of degrees.<ref>{{cite web|url=http://hirise.lpl.arizona.edu/PSP_002917_2175 |title=HiRISE &#124; Dissected Mantled Terrain (PSP_002917_2175) |publisher=Hirise.lpl.arizona.edu |date= |accessdate=2012-01-16}}</ref> Its poles get much more direct sunlight at times, which causes the ice caps to warm and become smaller as ice sublimes. Adding to the variability of the climate, the ] of the orbit of Mars changes twice as much as Earth's eccentricity. Computer simulations have shown that a 45° tilt of the Martian axis would result in ice accumulation in areas that display glacial landforms.<ref>{{Cite journal|author=Forget, F. ''et al.'' |year=2006 |title=Formation of Glaciers on Mars by Atmospheric Precipitation at High Obliquity |journal=Science |volume=311 |pages=368–71 |pmid=16424337 |issue=5759 |doi=10.1126/science.1120335|bibcode = 2006Sci...311..368F }}</ref> A 2008 study provided evidence for multiple glacial phases during Late Amazonian glaciation at the ] boundary on Mars.<ref name="Dickson2008">{{Cite journal|last=Dickson |first=James L. |authorlink= |coauthors=Head, James W.; Marchant, David R. |year=2008 |month= |title=Late Amazonian glaciation at the dichotomy boundary on Mars: Evidence for glacial thickness maxima and multiple glacial phases|journal=] |volume=36 |issue=5 |pages=411–4 |doi=10.1130/G24382A.1 }}</ref>
{{reflist|colwidth=30em}}


== Bibliography ==
=== Glaciers on volcanoes ===
* Boyce, Joseph, M. (2008). ''The Smithsonian Book of Mars;'' Konecky & Konecky: Old Saybrook, CT, {{ISBN|978-1-58834-074-0}}
Using new MGS and Odyssey data, combined with recent developments in the study of cold-based glaciers, scientists believe glaciers once existed and still exist on some volcanoes. The evidence for this are concentric ridges (these are moraines dropped by the glacier), a knobby area (caused by ice sublimating), and a smooth section that flows over other deposits (debris-covered glacial ice). The ice could have been deposited when the tilt of Mars changed the climate, thereby causing more moisture to be present in the atmosphere. Studies suggest the glaciation happened in the Late Amazonian period, the latest period in Mars history. Multiple stages of glaciations probably occurred.<ref>{{cite web|url=http://www.mars.asu.edu/christensen/advancedmarsclass/shean_glaciers_2005.pdf |title=Origin and evolution of a cold-based tropical mountain glacier on Mars: The Pavonis Mons fan-shaped deposit |publisher=Mars.asu.edu |date= |accessdate=2013-02-10}}</ref> The ice present today represents one more resource for the possible future colonization of the planet. Researchers have described glacial deposits on Hecates Tholus,<ref name="Hauber, E. 2005" /> Arisia Mons,<ref name="ReferenceA" /> Pavonis Mons,<ref name="Shean, D. 2005" /> and Olympus Mons.<ref name="Basilevsky, A. 2006" />
* Carr, Michael, H. (1996). ''Water on Mars;'' Oxford University Press: New York, {{ISBN|0-19-509938-9}}.
* Carr, Michael, H. (2006). ''The Surface of Mars;'' Cambridge University Press: Cambridge, UK, {{ISBN|978-0-521-87201-0}}.
* Hartmann, William, K. (2003). ''A Traveler's Guide to Mars: The Mysterious Landscapes of the Red Planet;'' Workman: New York, {{ISBN|0-7611-2606-6}}.
* Hanlon, Michael (2004). ''The Real Mars: Spirit, Opportunity, Mars Express and the Quest to Explore the Red Planet;'' Constable: London, {{ISBN|1-84119-637-1}}.
* Kargel, Jeffrey, S. (2004). ''Mars: A Warmer Wetter Planet;'' Springer-Praxis: London, {{ISBN|1-85233-568-8}}.
* Morton, Oliver (2003). ''Mapping Mars: Science, Imagination, and the Birth of a World;'' Picador: New York, {{ISBN|0-312-42261-X}}.
* Sheehan, William (1996). ''The Planet Mars: A History of Observation and Discovery;'' University of Arizona Press: Tucson, AZ, {{ISBN|0-8165-1640-5}}.
* Viking Orbiter Imaging Team (1980). ''Viking Orbiter Views of Mars,'' C.R. Spitzer, Ed.; NASA SP-441: Washington DC.


==See also== == External links ==
{{Commons|Water on Mars}}
{{col-begin}}
{{col-2}}
* ]
* ]
* ]
* ]
* ]
* ]
* ]
* ]
* ]
* ]
* ]
* ]
* ]
{{col-2}}
* ]
* ]
* ]
* ]
* ]
* ]
* ]
* ]
* ]
* ]
* ]
{{col-end}}


*Head, J., et al. 2023. GEOLOGICAL AND CLIMATE HISTORY OF MARS: IDENTIFICATION OF POTENTIAL WARM AND WET CLIMATE 'FALSE POSITIVES'. 54th Lunar and Planetary Science Conference 2023 (LPI Contrib. No. 2806). 1731.pdf
==References==
*
{{Reflist|30em}}
* {{Webarchive|url=https://web.archive.org/web/20211009115723/https://science.nasa.gov/science-news/science-at-nasa/2012/27sep_streambed/ |date=October 9, 2021 }}

* (])
==External links==
*
{{Commons category|Water on Mars}}
*
*
*
* (])
* *
* *
* {{Cite news|url=https://www.nasa.gov/press-release/goddard/2018/mars-terraforming|title=Mars Terraforming Not Possible Using Present-Day Technology|last=Steigerwald|first=Bill|date=2018-07-25|work=NASA|access-date=2018-11-26|language=en}}


{{Mars}} {{Mars}}
{{portal bar|Mars|Astrobiology|Water}} {{Geography of Mars}}
{{Water}}

{{Portal bar|Astronomy|Biology|Solar System|Water}}
{{DEFAULTSORT:Water On Mars}}
]
]
]


]
{{Link FA|cs}}
]
{{Link FA|sv}}

Latest revision as of 07:01, 2 January 2025

Study of past and present water on Mars For the Doctor Who special, see The Waters of Mars. For the band, see Water on Mars (band).

Mars contains water, though mostly as subsurface permafrost. Surface water is readily visible at some places, such as the ice-filled Korolev Crater, near the north polar ice cap.

Almost all water on Mars today exists as polar permafrost ice, though it also exists in small quantities as vapor in the atmosphere.

What was thought to be low-volume liquid brines in shallow Martian soil, also called recurrent slope lineae, may be grains of flowing sand and dust slipping downhill to make dark streaks. While most water ice is buried, it is exposed at the surface across several locations on Mars. In the mid-latitudes, it is exposed by impact craters, steep scarps and gullies. Additionally, water ice is also visible at the surface at the north polar ice cap. Abundant water ice is also present beneath the permanent carbon dioxide ice cap at the Martian south pole. More than 5 million km of ice have been detected at or near the surface of Mars, enough to cover the whole planet to a depth of 35 meters (115 ft). Even more ice might be locked away in the deep subsurface. Some liquid water may occur transiently on the Martian surface today, but limited to traces of dissolved moisture from the atmosphere and thin films, which are challenging environments for known life. No evidence of present-day liquid water has been discovered on the planet's surface because under typical Martian conditions (water vapor pressure <1 Pa and ambient atmospheric pressure ~700 Pa ), warming water ice on the Martian surface would sublime at rates of up to 4 meters per year. Before about 3.8 billion years ago, Mars may have had a denser atmosphere and higher surface temperatures, potentially allowing greater amounts of liquid water on the surface, possibly including a large ocean that may have covered one-third of the planet. Water has also apparently flowed across the surface for short periods at various intervals more recently in Mars' history. Aeolis Palus in Gale Crater, explored by the Curiosity rover, is the geological remains of an ancient freshwater lake that could have been a hospitable environment for microbial life. The present-day inventory of water on Mars can be estimated from spacecraft images, remote sensing techniques (spectroscopic measurements, radar, etc.), and surface investigations from landers and rovers. Geologic evidence of past water includes enormous outflow channels carved by floods, ancient river valley networks, deltas, and lakebeds; and the detection of rocks and minerals on the surface that could only have formed in liquid water. Numerous geomorphic features suggest the presence of ground ice (permafrost) and the movement of ice in glaciers, both in the recent past and present. Gullies and slope lineae along cliffs and crater walls suggest that flowing water continues to shape the surface of Mars, although to a far lesser degree than in the ancient past.

Although the surface of Mars was periodically wet and could have been hospitable to microbial life billions of years ago, the current environment at the surface is dry and subfreezing, probably presenting an insurmountable obstacle for living organisms. In addition, Mars lacks a thick atmosphere, ozone layer, and magnetic field, allowing solar and cosmic radiation to strike the surface unimpeded. The damaging effects of ionizing radiation on cellular structure is another one of the prime limiting factors on the survival of life on the surface. Therefore, the best potential locations for discovering life on Mars may be in subsurface environments. Large amounts of underground ice have been found on Mars; the volume of water detected is equivalent to the volume of water in Lake Superior. In 2018, scientists reported the discovery of a subglacial lake on Mars, 1.5 km (0.93 mi) below the southern polar ice cap, with a horizontal extent of about 20 km (12 mi), the first known stable body of liquid water on the planet, but subsequent work has questioned this detection.

Understanding the extent and situation of water on Mars is vital to assess the planet's potential for harboring life and for providing usable resources for future human exploration. For this reason, "Follow the Water" was the science theme of NASA's Mars Exploration Program (MEP) in the first decade of the 21st century. NASA and ESA missions including 2001 Mars Odyssey, Mars Express, Mars Exploration Rovers (MERs), Mars Reconnaissance Orbiter (MRO), and Mars Phoenix lander have provided information about water's abundance and distribution on Mars. Mars Odyssey, Mars Express, MRO, and Mars Science Lander Curiosity rover are still operating, and discoveries continue to be made. In September 2020, scientists confirmed the existence of several large saltwater lakes under ice in the south polar region of the planet Mars. According to one of the researchers, "We identified the same body of water , but we also found three other bodies of water around the main one ... It's a complex system." In March 2021, researchers reported that a considerable amount of water on ancient Mars has remained but that, for the most part, has likely been sequestered into the rocks and crust of the planet over the years. In August 2024, further analysis of data from NASA's InSight Mars Lander enabled researchers to discover a reservoir of liquid water at depths of 10–20 kilometres (6.2–12.4 mi) under the Martian crust.

Historical background

Main article: History of Mars observation

The notion of water on Mars preceded the space age by hundreds of years. Early telescopic observers correctly assumed that the white polar caps and clouds were indications of water's presence. These observations, coupled with the fact that Mars has a 24-hour day, led astronomer William Herschel to declare in 1784 that Mars probably offered its inhabitants "a situation in many respects similar to ours."

Historical map of Mars drawn by Giovanni Schiaparelli during the planet's "Great Opposition" of 1877.Mars canals illustrated by astronomer Percival Lowell, 1898.

By the start of the 20th century, most astronomers recognized that Mars was far colder and drier than Earth. The presence of oceans was no longer accepted, so the paradigm changed to an image of Mars as a "dying" planet with only a meager amount of water. The dark areas, which could be seen to change seasonally, were then thought to be tracts of vegetation. The person most responsible for popularizing this view of Mars was Percival Lowell (1855–1916), who imagined a race of Martians constructing a network of canals to bring water from the poles to the inhabitants at the equator. Although generating tremendous public enthusiasm, Lowell's ideas were rejected by most astronomers. The majority view of the scientific establishment at the time is probably best summarized by English astronomer Edward Walter Maunder (1851–1928) who compared the climate of Mars to conditions atop a twenty-thousand-foot (6,100 m) peak on an arctic island where only lichen might be expected to survive.

In the meantime, many astronomers were refining the tool of planetary spectroscopy in hope of determining the composition of the Martian atmosphere. Between 1925 and 1943, Walter Adams and Theodore Dunham at the Mount Wilson Observatory tried to identify oxygen and water vapor in the Martian atmosphere, with generally negative results. The only component of the Martian atmosphere known for certain was carbon dioxide (CO2) identified spectroscopically by Gerard Kuiper in 1947. Water vapor was not unequivocally detected on Mars until 1963.

Mariner 4 acquired this image showing a barren planet (1965).

The composition of the polar caps, assumed to be water ice since the time of Cassini (1666), was questioned by a few scientists in the late 1800s who favored CO2 ice, because of the planet's overall low temperature and apparent lack of appreciable water. This hypothesis was confirmed theoretically by Robert Leighton and Bruce Murray in 1966. Today it is known that the winter caps at both poles are primarily composed of CO2 ice, but that a permanent (or perennial) cap of water ice remains during the summer at the northern pole. At the southern pole, a small cap of CO2 ice remains during summer, but this cap too is underlain by water ice.

The final piece of the Martian climate puzzle was provided by Mariner 4 in 1965. Grainy television pictures from the spacecraft showed a surface dominated by impact craters, which implied that the surface was very old and had not experienced the level of erosion and tectonic activity seen on Earth. Little erosion meant that liquid water had probably not played a large role in the planet's geomorphology for billions of years. Furthermore, the variations in the radio signal from the spacecraft as it passed behind the planet allowed scientists to calculate the density of the atmosphere. The results showed an atmospheric pressure less than 1% of Earth's at sea level, effectively precluding the existence of liquid water, which would rapidly boil or freeze at such low pressures. Thus, a vision of Mars was born of a world much like the Moon, but with just a wisp of an atmosphere to blow the dust around. This view of Mars would last nearly another decade until Mariner 9 showed a much more dynamic Mars with hints that the planet's past environment was more clement than the present one.

On January 24, 2014, NASA reported that current studies on Mars by the Curiosity and Opportunity rovers will be searching for evidence of ancient life, including a biosphere based on autotrophic, chemotrophic and/or chemo-litho-autotrophic microorganisms, as well as ancient water, including fluvio-lacustrine environments (plains related to ancient rivers or lakes) that may have been habitable.

For many years it was thought that the observed remains of floods were caused by the release of water from a global water table, but research published in 2015 reveals regional deposits of sediment and ice emplaced 450 million years earlier to be the source. "Deposition of sediment from rivers and glacial melt filled giant canyons beneath primordial ocean contained within the planet's northern lowlands. It was the water preserved in these canyon sediments that was later released as great floods, the effects of which can be seen today."

Evidence from rocks and minerals

Main article: Composition of Mars

It is widely accepted that Mars had abundant water very early in its history, but all large areas of liquid water have since disappeared. A fraction of this water is retained on modern Mars as both ice and locked into the structure of abundant water-rich materials, including clay minerals (phyllosilicates) and sulfates. Studies of hydrogen isotopic ratios indicate that asteroids and comets from beyond 2.5 astronomical units (AU) provide the source of Mars' water, that currently totals 6% to 27% of the Earth's present ocean.

History of water on Mars. Numbers represent how many billions of years ago.

Water in weathering products (aqueous minerals)

The primary rock type on the surface of Mars is basalt, a fine-grained igneous rock made up mostly of the mafic silicate minerals olivine, pyroxene, and plagioclase feldspar. When exposed to water and atmospheric gases, these minerals chemically weather into new (secondary) minerals, some of which may incorporate water into their crystalline structures, either as H2O or as hydroxyl (OH). Examples of hydrated (or hydroxylated) minerals include the iron hydroxide goethite (a common component of terrestrial soils); the evaporite minerals gypsum and kieserite; opaline silica; and phyllosilicates (also called clay minerals), such as kaolinite and montmorillonite. All of these minerals have been detected on Mars.

One direct effect of chemical weathering is to consume water and other reactive chemical species, taking them from mobile reservoirs like the atmosphere and hydrosphere and sequestering them in rocks and minerals. The amount of water in the Martian crust stored as hydrated minerals is currently unknown, but may be quite large. For example, mineralogical models of the rock outcroppings examined by instruments on the Opportunity rover at Meridiani Planum suggest that the sulfate deposits there could contain up to 22% water by weight.

On Earth, all chemical weathering reactions involve water to some degree. Thus, many secondary minerals do not actually incorporate water, but still require water to form. Some examples of anhydrous secondary minerals include many carbonates, some sulfates (e.g., anhydrite), and metallic oxides such as the iron oxide mineral hematite. On Mars, a few of these weathering products may theoretically form without water or with scant amounts present as ice or in thin molecular-scale films (monolayers). The extent to which such exotic weathering processes operate on Mars is still uncertain. Minerals that incorporate water or form in the presence of water are generally termed "aqueous minerals".

Aqueous minerals are sensitive indicators of the type of environment that existed when the minerals formed. The ease with which aqueous reactions occur (see Gibbs free energy) depends on the pressure, temperature, and on the concentrations of the gaseous and soluble species involved. Two important properties are pH and oxidation-reduction potential (Eh). For example, the sulfate mineral jarosite forms only in low pH (highly acidic) water. Phyllosilicates usually form in water of neutral to high pH (alkaline). Eh is a measure of the oxidation state of an aqueous system. Together Eh and pH indicate the types of minerals that are thermodynamically most stable and therefore most likely to form from a given set of aqueous components. Thus, past environmental conditions on Mars, including those conducive to life, can be inferred from the types of minerals present in the rocks.

Hydrothermal alteration

Aqueous minerals can also form in the subsurface by hydrothermal fluids migrating through pores and fissures. The heat source driving a hydrothermal system may be nearby magma bodies or residual heat from large impacts. One important type of hydrothermal alteration in the Earth's oceanic crust is serpentinization, which occurs when seawater migrates through ultramafic and basaltic rocks. The water-rock reactions result in the oxidation of ferrous iron in olivine and pyroxene to produce ferric iron (as the mineral magnetite) yielding molecular hydrogen (H2) as a byproduct. The process creates a highly alkaline and reducing (low Eh) environment favoring the formation of certain phyllosilicates (serpentine minerals) and various carbonate minerals, which together form a rock called serpentinite. The hydrogen gas produced can be an important energy source for chemosynthetic organisms or it can react with CO2 to produce methane gas, a process that has been considered as a non-biological source for the trace amounts of methane reported in the Martian atmosphere. Serpentine minerals can also store a lot of water (as hydroxyl) in their crystal structure. A recent study has argued that hypothetical serpentinites in the ancient highland crust of Mars could hold as much as a 500 metres (1,600 ft)-thick global equivalent layer (GEL) of water. Although some serpentine minerals have been detected on Mars, no widespread outcroppings are evident from remote sensing data. This fact does not preclude the presence of large amounts of serpentinite hidden at depth in the Martian crust.

Weathering rates

The rates at which primary minerals convert to secondary aqueous minerals vary. Primary silicate minerals crystallize from magma under pressures and temperatures vastly higher than conditions at the surface of a planet. When exposed to a surface environment these minerals are out of equilibrium and will tend to interact with available chemical components to form more stable mineral phases. In general, the silicate minerals that crystallize at the highest temperatures (solidify first in a cooling magma) weather the most rapidly. On Earth and Mars, the most common mineral to meet this criterion is olivine, which readily weathers to clay minerals in the presence of water. Olivine is widespread on Mars, suggesting that Mars' surface has not been pervasively altered by water; abundant geological evidence suggests otherwise.

Martian meteorites

Mars meteorite ALH84001.

Over 60 meteorites have been found that came from Mars. Some of them contain evidence that they were exposed to water when on Mars. Some Martian meteorites called basaltic shergottites, appear (from the presence of hydrated carbonates and sulfates) to have been exposed to liquid water prior to ejection into space. It has been shown that another class of meteorites, the nakhlites, were suffused with liquid water around 620 million years ago and that they were ejected from Mars around 10.75 million years ago by an asteroid impact. They fell to Earth within the last 10,000 years. Martian meteorite NWA 7034 has one order of magnitude more water than most other Martian meteorites. It is similar to the basalts studied by rover missions, and it was formed in the early Amazonian epoch.

In 1996, a group of scientists reported the possible presence of microfossils in the Allan Hills 84001, a meteorite from Mars. Many studies disputed the validity of their interpretation mainly based on the shape of these presumed fossils. It was found that most of the organic matter in the meteorite was of terrestrial origin. In addition, the scientific consensus is that "morphology alone cannot be used unambiguously as a tool for primitive life detection". Interpretation of morphology is notoriously subjective, and its use alone has led to numerous errors of interpretation.

Geomorphic evidence

Lakes and river valleys

See also: Lakes on Mars

The 1971 Mariner 9 spacecraft caused a revolution in our ideas about water on Mars. Huge river valleys were found in many areas. Images showed that floods of water broke through dams, carved deep valleys, eroded grooves into bedrock, and traveled thousands of kilometers. Areas of branched streams, in the southern hemisphere, suggested that rain once fell. The numbers of recognised valleys has increased through time. Research published in June 2010 mapped 40,000 river valleys on Mars, roughly quadrupling the number of river valleys that had previously been identified. Martian water-worn features can be classified into two distinct classes: 1) dendritic (branched), terrestrial-scale, widely distributed, Noachian-age valley networks and 2) exceptionally large, long, single-thread, isolated, Hesperian-age outflow channels. Recent work suggests that there may also be a class of currently enigmatic, smaller, younger (Hesperian to Amazonian) channels in the mid-latitudes, perhaps associated with the occasional local melting of ice deposits.

Kasei Valles—a major outflow channel—seen in MOLA elevation data. Flow was from bottom left to right. Image is approx. 1600 km across. The channel system extends another 1200 km south of this image to Echus Chasma.

Some parts of Mars show inverted relief. This occurs when sediments are deposited on the floor of a stream and then become resistant to erosion, perhaps by cementation. Later the area may be buried. Eventually, erosion removes the covering layer and the former streams become visible since they are resistant to erosion. Mars Global Surveyor found several examples of this process. Many inverted streams have been discovered in various regions of Mars, especially in the Medusae Fossae Formation, Miyamoto Crater, Saheki Crater, and the Juventae Plateau.

Inverted stream channels in Antoniadi Crater. Location is Syrtis Major quadrangle.

A variety of lake basins have been discovered on Mars. Some are comparable in size to the largest lakes on Earth, such as the Caspian Sea, Black Sea, and Lake Baikal. Lakes that were fed by valley networks are found in the southern highlands. There are places that are closed depressions with river valleys leading into them. These areas are thought to have once contained lakes; one is in Terra Sirenum that had its overflow move through Ma'adim Vallis into Gusev Crater, explored by the Mars Exploration Rover Spirit. Another is near Parana Valles and Loire Vallis. Some lakes are thought to have formed by precipitation, while others were formed from groundwater. Lakes are estimated to have existed in the Argyre basin, the Hellas basin, and maybe in Valles Marineris. It is likely that at times in the Noachian, many craters hosted lakes. These lakes are consistent with a cold, dry (by Earth standards) hydrological environment somewhat like that of the Great Basin of the western USA during the Last Glacial Maximum.

Research from 2010 suggests that Mars also had lakes along parts of the equator. Although earlier research had showed that Mars had a warm and wet early history that has long since dried up, these lakes existed in the Hesperian Epoch, a much later period. Using detailed images from NASA's Mars Reconnaissance Orbiter, the researchers speculate that there may have been increased volcanic activity, meteorite impacts or shifts in Mars' orbit during this period to warm Mars' atmosphere enough to melt the abundant ice present in the ground. Volcanoes would have released gases that thickened the atmosphere for a temporary period, trapping more sunlight and making it warm enough for liquid water to exist. In this study, channels were discovered that connected lake basins near Ares Vallis. When one lake filled up, its waters overflowed the banks and carved the channels to a lower area where another lake would form. These dry lakes would be targets to look for evidence (biosignatures) of past life.

On September 27, 2012, NASA scientists announced that the Curiosity rover found direct evidence for an ancient streambed in Gale Crater, suggesting an ancient "vigorous flow" of water on Mars. In particular, analysis of the now dry streambed indicated that the water ran at 3.3 km/h (0.92 m/s), possibly at hip-depth. Proof of running water came in the form of rounded pebbles and gravel fragments that could have only been weathered by strong liquid currents. Their shape and orientation suggests long-distance transport from above the rim of the crater, where a channel named Peace Vallis feeds into the alluvial fan.

Eridania Lake is a theorized ancient lake with a surface area of roughly 1.1 million square kilometers. Its maximum depth is 2,400 meters and its volume is 562,000 km. It was larger than the largest landlocked sea on Earth, the Caspian Sea, and contained more water than all the other Martian lakes together. The Eridania sea held more than nine times as much water as all of North America's Great Lakes. The upper surface of the lake was assumed to be at the elevation of valley networks that surround the lake; they all end at the same elevation, suggesting that they emptied into a lake. Research on this basin with CRISM found thick deposits, greater than 400 meters thick, that contained the minerals saponite, talc-saponite, Fe-rich mica (for example, glauconite-nontronite), Fe- and Mg-serpentine, Mg-Fe-Ca-carbonate and probable Fe-sulfide. The Fe-sulfide probably formed in deep water from water heated by volcanoes. Such a process, classified as hydrothermal may have been a place where life on Earth began.

  • Map showing estimated water depth in different parts of Eridania Sea. This map is about 530 miles across. Map showing estimated water depth in different parts of Eridania Sea.
    This map is about 530 miles across.
  • Deep-basin deposits from the floor of Eridania Sea. The mesas on the floor are there because they were protected against intense erosion by deep water/ice cover. CRISM measurements show minerals may be from seafloor hydrothermal deposits. Deep-basin deposits from the floor of Eridania Sea. The mesas on the floor are there because they were protected against intense erosion by deep water/ice cover. CRISM measurements show minerals may be from seafloor hydrothermal deposits.
  • Diagram showing how volcanic activity may have caused deposition of minerals on floor of Eridania Sea. Chlorides were deposited along the shoreline by evaporation. Diagram showing how volcanic activity may have caused deposition of minerals on floor of Eridania Sea. Chlorides were deposited along the shoreline by evaporation.

Lake deltas

Delta in Eberswalde crater.

Researchers have found a number of examples of deltas that formed in Martian lakes. Finding deltas is a major sign that Mars once had a lot of liquid water. Deltas usually require deep water over a long period of time to form. Also, the water level needs to be stable to keep sediment from washing away. Deltas have been found over a wide geographical range, though there is some indication that deltas may be concentrated around the edges of the putative former northern ocean of Mars.

Groundwater

Main article: Groundwater on Mars
Layers may be formed by groundwater rising up gradually.

By 1979 it was thought that outflow channels formed in single, catastrophic ruptures of subsurface water reservoirs, possibly sealed by ice, discharging colossal quantities of water across an otherwise arid Mars surface. In addition, evidence in favor of heavy or even catastrophic flooding is found in the giant ripples in the Athabasca Vallis. Many outflow channels begin at Chaos or Chasma features, providing evidence for the rupture that could have breached a subsurface ice seal.

The branching valley networks of Mars are not consistent with formation by sudden catastrophic release of groundwater, both in terms of their dendritic shapes that do not come from a single outflow point, and in terms of the discharges that apparently flowed along them. Instead, some authors have argued that they were formed by slow seepage of groundwater from the subsurface essentially as springs. In support of this interpretation, the upstream ends of many valleys in such networks begin with box canyon or "amphitheater" heads, which on Earth are typically associated with groundwater seepage. There is also little evidence of finer scale channels or valleys at the tips of the channels, which some authors have interpreted as showing the flow appeared suddenly from the subsurface with appreciable discharge, rather than accumulating gradually across the surface. Others have disputed the link between amphitheater heads of valleys and formation by groundwater for terrestrial examples, and have argued that the lack of fine scale heads to valley networks is due to their removal by weathering or impact gardening. Most authors accept that most valley networks were at least partly influenced and shaped by groundwater seep processes.

The preservation and cementation of aeolian dune stratigraphy in Burns Cliff in Endurance Crater are thought to have been controlled by flow of shallow groundwater.

Groundwater also played a vital role in controlling broad scale sedimentation patterns and processes on Mars. According to this hypothesis, groundwater with dissolved minerals came to the surface, in and around craters, and helped to form layers by adding minerals—especially sulfate—and cementing sediments. In other words, some layers may have been formed by groundwater rising up depositing minerals and cementing existing, loose, aeolian sediments. The hardened layers are consequently more protected from erosion. A study published in 2011 using data from the Mars Reconnaissance Orbiter, show that the same kinds of sediments exist in a large area that includes Arabia Terra. It has been argued that areas that are rich in sedimentary rocks are also those areas that most likely experienced groundwater upwelling on a regional scale.

In February 2019, European scientists published geological evidence of an ancient planet-wide groundwater system that was, arguably, connected to a putative vast ocean. In September 2019, researchers reported that the InSight lander uncovered unexplained magnetic pulses, and magnetic oscillations consistent with a planet-wide reservoir of liquid water deep underground.

Mars ocean hypothesis

Main article: Mars ocean hypothesis
The blue region of low topography in the Martian northern hemisphere is hypothesized to be the site of a primordial ocean of liquid water.

The Mars ocean hypothesis proposes that the Vastitas Borealis basin was the site of an ocean of liquid water at least once, and presents evidence that nearly a third of the surface of Mars was covered by a liquid ocean early in the planet's geologic history. This ocean, dubbed Oceanus Borealis, would have filled the Vastitas Borealis basin in the northern hemisphere, a region that lies 4–5 kilometres (2.5–3.1 mi) below the mean planetary elevation. Two major putative shorelines have been suggested: a higher one, dating to a time period of approximately 3.8 billion years ago and concurrent with the formation of the valley networks in the Highlands, and a lower one, perhaps correlated with the younger outflow channels. The higher one, the 'Arabia shoreline', can be traced all around Mars except through the Tharsis volcanic region. The lower, the 'Deuteronilus', follows the Vastitas Borealis formation.

A study in June 2010 concluded that the more ancient ocean would have covered 36% of Mars. Data from the Mars Orbiter Laser Altimeter (MOLA), which measures the altitude of all terrain on Mars, was used in 1999 to determine that the watershed for such an ocean would have covered about 75% of the planet. Early Mars would have required a warmer climate and denser atmosphere to allow liquid water to exist at the surface. In addition, the large number of valley networks strongly supports the possibility of a hydrological cycle on the planet in the past.

The existence of a primordial Martian ocean remains controversial among scientists, and the interpretations of some features as 'ancient shorelines' has been challenged. One problem with the conjectured 2-billion-year-old (2 Ga) shoreline is that it is not flat—i.e., does not follow a line of constant gravitational potential. This could be due to a change in distribution in Mars' mass, perhaps due to volcanic eruption or meteor impact; the Elysium volcanic province or the massive Utopia basin that is buried beneath the northern plains have been put forward as the most likely causes.

In March 2015, scientists stated that evidence exists for an ancient Martian ocean, likely in the planet's northern hemisphere and about the size of Earth's Arctic Ocean, or approximately 19% of the Martian surface. This finding was derived from the ratio of water and deuterium in the modern Martian atmosphere compared to the ratio found on Earth. Eight times as much deuterium was found at Mars than exists on Earth, suggesting that ancient Mars had significantly higher levels of water. Results from the Curiosity rover had previously found a high ratio of deuterium in Gale Crater, though not significantly high enough to suggest the presence of an ocean. Other scientists caution that this new study has not been confirmed, and point out that Martian climate models have not yet shown that the planet was warm enough in the past to support bodies of liquid water.

Additional evidence for a northern ocean was published in May 2016, describing how some of the surface in Ismenius Lacus quadrangle was altered by two tsunamis. The tsunamis were caused by asteroids striking the ocean. Both were thought to have been strong enough to create 30 km diameter craters. The first tsunami picked up and carried boulders the size of cars or small houses. The backwash from the wave formed channels by rearranging the boulders. The second came in when the ocean was 300 m lower. The second carried a great deal of ice which was dropped in valleys. Calculations show that the average height of the waves would have been 50 m, but the heights would vary from 10 m to 120 m. Numerical simulations show that in this particular part of the ocean two impact craters of the size of 30 km in diameter would form every 30 million years. The implication here is that a great northern ocean may have existed for millions of years. One argument against an ocean has been the lack of shoreline features. These features may have been washed away by these tsunami events. The parts of Mars studied in this research are Chryse Planitia and northwestern Arabia Terra. These tsunamis affected some surfaces in the Ismenius Lacus quadrangle and in the Mare Acidalium quadrangle.

In July 2019, support was reported for an ancient ocean on Mars that may have been formed by a possible mega-tsunami source resulting from a meteorite impact creating Lomonosov crater.

In January 2022, a study about the climate 3 Gy ago on Mars shows that an ocean is stable with a water cycle that is closed. They estimate a return water flow, in form of ice in glacier, from the icy highlands to the ocean is in magnitude less than the Earth at the last glacial maximum. This simulation includes for the first time a circulatin of the ocean. They demonstrate that the ocean's circulation prevent the ocean to freeze. These also shows that simulations are in agreement with observed geomorphological features identified as ancient glacial valleys.

Evidence for recent flows

Main article: Seasonal flows on warm Martian slopes See also: Gully (Mars)
Warm-season flows on slope in Newton Crater.
Branched gullies.
Group of deep gullies.

Pure liquid water cannot exist in a stable form on the surface of Mars with its present low atmospheric pressure and low temperature because it would boil, except at the lowest elevations for a few hours. So, a geological mystery commenced in 2006 when observations from NASA's Mars Reconnaissance Orbiter revealed gully deposits that were not there ten years prior, possibly caused by flowing liquid brine during the warmest months on Mars. The images were of two craters in Terra Sirenum and Centauri Montes that appear to show the presence of flows (wet or dry) on Mars at some point between 1999 and 2001.

There is disagreement in the scientific community as to whether or not gullies are formed by liquid water. While some scientists believe that most gullies are formed by liquid water formed from snow or ice melting, other scientists believe that gullies are formed by dry flows possibly lubricated by sublimating carbon dioxide that forms from freezing of the martian atmosphere.

Some studies attest that gullies forming in the southern highlands could not be formed by water due to improper conditions. The low pressure, non-geothermal, colder regions would not give way to liquid water at any point in the year but would be ideal for solid carbon dioxide. The carbon dioxide melting in the warmer summer would yield liquid carbon dioxide which would then form the gullies. Even if gullies are carved by flowing water at the surface, the exact source of the water and the mechanisms behind its motion are not understood.

In August 2011, NASA announced the discovery of current seasonal changes on steep slopes below rocky outcrops near crater rims in the Southern hemisphere. These dark streaks, now called recurrent slope lineae (RSL), were seen to grow downslope during the warmest part of the Martian Summer, then to gradually fade through the rest of the year, recurring cyclically between years. The researchers suggested these marks were consistent with salty water (brines) flowing downslope and then evaporating, possibly leaving some sort of residue. The CRISM spectroscopic instrument has since made direct observations of hydrous salts appearing at the same time that these recurrent slope lineae form, confirming in 2015 that these lineae are produced by the flow of liquid brines through shallow soils. The lineae contain hydrated chlorate and perchlorate salts (ClO
4), which contain liquid water molecules. The lineae flow downhill in Martian summer, when the temperature is above −23 °C (−9 °F; 250 K). However, the source of the water remains unknown. However, neutron spectrometer data by the Mars Odyssey orbiter obtained over one decade, was published in December 2017, and shows no evidence of water (hydrogenated regolith) at the active sites, so its authors also support the hypotheses of either short-lived atmospheric water vapour deliquescence, or dry granular flows. They conclude that liquid water on today's Mars may be limited to traces of dissolved moisture from the atmosphere and thin films, which are challenging environments for life as it is currently known.

An alternative scenario is a Knudsen pump effect, from photophoretic when shadows occurs in a granular material. The authors demonstrated that the RSLs stopped at an angle of 28° in Garni crater, in agreement with dry granular avalanche. In addition, the authors pointed out several limitations of the wet hypothesis, such as the fact that the detection of water was only indirect (salt detection but not water).

Present water

Proportion of water ice present in the upper meter of the Martian surface for lower (top) and higher (bottom) latitudes. The percentages are derived through stoichiometric calculations based on epithermal neutron fluxes. These fluxes were detected by the Neutron Spectrometer aboard the 2001 Mars Odyssey spacecraft. See also: Groundwater on Mars

A significant amount of surface hydrogen has been observed globally by the Mars Odyssey neutron spectrometer and gamma ray spectrometer and the Mars Express High Resolution Stereo Camera (HRSC). This hydrogen is thought to be incorporated into the molecular structure of ice, and through stoichiometric calculations the observed fluxes have been converted into concentrations of water ice in the upper meter of the Martian surface. This process has revealed that ice is both widespread and abundant on the present surface. Below 60 degrees of latitude, ice is concentrated in several regions, particularly around the Elysium volcanoes, Terra Sabaea, and northwest of Terra Sirenum, and exists in concentrations up to 18% ice in the subsurface. Above 60 degrees latitude, ice is highly abundant. Polewards on 70 degrees of latitude, ice concentrations exceed 25% almost everywhere, and approach 100% at the poles. The SHARAD and MARSIS radar sounding instruments have also confirmed that individual surface features are ice rich. Due to the known instability of ice at current Martian surface conditions, it is thought that almost all of this ice is covered by a thin layer of rocky or dusty material.

The Mars Odyssey neutron spectrometer observations indicate that if all the ice in the top meter of the Martian surface were spread evenly, it would give a Water Equivalent Global layer (WEG) of at least ≈14 centimetres (5.5 in)—in other words, the globally averaged Martian surface is approximately 14% water. The water ice currently locked in both Martian poles corresponds to a WEG of 30 metres (98 ft), and geomorphic evidence favors significantly larger quantities of surface water over geologic history, with WEG as deep as 500 metres (1,600 ft). It is thought that part of this past water has been lost to the deep subsurface, and part to space, although the detailed mass balance of these processes remains poorly understood. The current atmospheric reservoir of water is important as a conduit allowing gradual migration of ice from one part of the surface to another on both seasonal and longer timescales, but it is insignificant in volume, with a WEG of no more than 10 micrometres (0.00039 in).

It is possible that liquid water could also exist on the surface of Mars through the formation of brines suggested by the abundance of hydrated salts. Brines are significant on Mars because they can stabilize liquid water at lower temperatures than pure water on its own. Pure liquid water is unstable on the surface of the planet, as it is subjected to freezing, evaporation, and boiling. Similar to how salt is applied to roads on Earth to prevent them from icing over, briny mixtures of water and salt on Mars may have low enough freezing points to lead to stable liquid at the surface. Given the complex nature of the Martian regolith, mixtures of salts are known to change the stability of brines. Modeling the deliquescence of salt mixtures can be used to test for brine stability and can help us determine if liquid brines are present on the surface of Mars. The composition of the Martian regolith, determined by the Phoenix lander, can be used to constrain these models and give an accurate representation of how brines may actually form on the planet. Results of these models give water activity values for various salts at different temperatures, where the lower the water activity, the more stable the brine. At temperatures between 208 K and 253 K, chlorate salts exhibit the lowest water activity values, and below 208 K chloride salts exhibit the lowest values. Results of modeling show that the aforementioned complex mixtures of salts do not significantly increase the stability of brines, indicating that brines may not be a significant source of liquid water at the surface of Mars.

Polar ice caps

Main article: Martian polar ice caps
The Mars Global Surveyor acquired this image of the Martian north polar ice cap in early northern summer.

The existence of ice in the Martian northern (Planum Boreum) and southern (Planum Australe) polar caps has been known since the time of Mariner 9 orbiter. However, the amount and purity of this ice were not known until the early 2000s. In 2004, the MARSIS radar sounder on the European Mars Express satellite confirmed the existence of relatively clean ice in the south polar ice cap that extends to a depth of 3.7 kilometres (2.3 mi) below the surface. Similarly, the SHARAD radar sounder on board the Mars Reconnaissance Orbiter observed the base of the north polar cap 1.5 – 2 km beneath the surface. Together, the volume of ice present in the Martian north and south polar ice caps is similar to that of the Greenland ice sheet.

Cross-section of a portion of the north polar ice cap of Mars, derived from satellite radar sounding.

An even larger ice sheet on south polar region sheet is suspected to have retreated in ancient times (Hesperian period), that may have contained 20 million km of water ice, which is equivalent to a layer 137 m deep over the entire planet.

Both polar caps reveal abundant internal layers of ice and dust when examined with images of the spiral-shaped troughs that cut through their volume, and the subsurface radar measurements showed that these layers extend continuously across the ice sheets. This layering contains a record of past climates on Mars, just how Earth's ice sheets have a record for Earth's climate. Reading this record is not straightforward however, so, many researchers have studied this layering not only to understand the structure, history, and flow properties of the caps, but also to understand the evolution of climate on Mars.

Surrounding the polar caps are many smaller ice sheets inside craters, some of which lie under thick deposits of sand or martian dust. Particularly, the 81.4 kilometres (50.6 mi) wide Korolev Crater, is estimated to contain approximately 2,200 cubic kilometres (530 cu mi) of water ice exposed to the surface. Korolev's floor lies about 2 kilometres (1.2 mi) below the rim, and is covered by a 1.8 kilometres (1.1 mi) deep central mound of permanent water ice, up to 60 kilometres (37 mi) in diameter.

Subglacial liquid water

Main article: Subglacial lakes on Mars
Site of south polar subglacial water body (reported July 2018).

The existence of subglacial lakes on Mars was hypothesised when modelling of Lake Vostok in Antarctica showed that this lake could have existed before the Antarctic glaciation, and that a similar scenario could potentially have occurred on Mars. In July 2018, scientists from the Italian Space Agency reported the detection of such a subglacial lake on Mars, 1.5 kilometres (1 mi) below the southern polar ice cap, and spanning 20 kilometres (10 mi) horizontally, the first evidence for a stable body of liquid water on the planet. The evidence for this Martian lake was deduced from a bright spot in the radar echo sounding data of the MARSIS radar on board the European Mars Express orbiter, collected between May 2012 and December 2015. The detected lake is centred at 193°E, 81°S, a flat area that does not exhibit any peculiar topographic characteristics but is surrounded by higher ground, except on its eastern side where there is a depression. The SHARAD radar on board NASA's Mars Reconnaissance Orbiter has seen no sign of the lake. The operating frequencies of SHARAD are designed for higher resolution, but lower penetration depth, so if the overlying ice contains a significant amount of silicates, it is unlikely that SHARAD will be able to detect the putative lake.

On 28 September 2020, the MARSIS discovery was confirmed, using new data, and reanalysing all the data with a new technique. These new radar studies report three more subglacial lakes on Mars. All are 1.5 km (0.93 mi) below the southern polar ice cap. The size of the first lake found, and the largest, has been corrected to 30 km (19 mi) wide. It is surrounded by 3 smaller lakes, each a few kilometres wide.

Patch of water ice sitting on the floor of the Frouin Crater near the North Pole of Mars (70.5° North and 103° East)

Because the temperature at the base of the polar cap is estimated to be 205 K (−68 °C; −91 °F), scientists assume that the water may remain liquid through the antifreeze effect of magnesium and calcium perchlorates. The 1.5-kilometre (0.93 mi) ice layer covering the lake is composed of water ice with 10 to 20% admixed dust, and seasonally covered by a 1-metre-thick (3 ft 3 in) layer of CO2 ice. Since the raw-data coverage of the south polar ice cap is limited, the discoverers stated that "there is no reason to conclude that the presence of subsurface water on Mars is limited to a single location."

In 2019, a study was published that explored the physical conditions necessary for such a lake to exist. The study calculated the amount of geothermal heat necessary to reach temperatures under which a liquid water and perchlorate mix would be stable under the ice. The authors concluded that "even if there are local concentrations of large amounts of perchlorate salts at the base of the south polar ice, typical Martian conditions are too cold to melt the ice ... a local heat source within the crust is needed to increase the temperatures, and a magma chamber within 10 km of the ice could provide such a heat source. This result suggests that if the liquid water interpretation of the observations is correct, magmatism on Mars may have been active extremely recently."

China's Zhurong rover that studied Utopia Planitia region of Mars found a shift in sand dunes at around the same time as layers in the North polar region changed. Researchers believe that the tilt of Mars changed at that time and produced changes in the winds at Zhurong's landing site and in the layers in the ice cap.

If a liquid lake does indeed exist, its salty water may also be mixed with soil to form a sludge. The lake's high levels of salt would present difficulties for most lifeforms. On Earth, organisms called halophiles exist that thrive in extremely salty conditions, though not in dark, cold, concentrated perchlorate solutions. Nevertheless, halotolerant organisms might be able to cope with enhanced perchlorate concentrations by drawing on physiological adaptations similar to those observed in the yeast Debaryomyces hansenii exposed in lab experiments to increasing NaClO4 concentrations.

Ground ice and subsurface ice

See also: Groundwater on Mars

For many years, various scientists have suggested that some Martian surfaces look like periglacial regions on Earth. By analogy with these terrestrial features, it has been argued for many years that these may be regions of permafrost. This would suggest that frozen water lies right beneath the surface. A common feature in the higher latitudes, patterned ground, can occur in a number of shapes, including stripes and polygons. On the Earth, these shapes are caused by the freezing and thawing of soil. There are other types of evidence for large amounts of frozen water under the surface of Mars, such as terrain softening, which rounds sharp topographical features. Evidence from Mars Odyssey's gamma ray spectrometer and direct measurements with the Phoenix lander have corroborated that many of these features are intimately associated with the presence of ground ice.

A cross-section of underground water ice is exposed at the steep slope that appears bright blue in this enhanced-color view from the MRO. The scene is about 500 meters wide. The scarp drops about 128 meters from the level ground. The ice sheets extend from just below the surface to a depth of 100 meters or more.

In 2018, using the HiRISE camera on board the Mars Reconnaissance Orbiter (MRO), researchers found at least eight eroding slopes showing exposed water ice sheets as thick as 100 meters, covered by a layer of about 1 or 2 meters thick of soil. The sites are at latitudes from about 55 to 58 degrees, suggesting that there is shallow ground ice under roughly a third of the Martian surface. This image confirms what was previously detected with the spectrometer on 2001 Mars Odyssey, the ground-penetrating radars on MRO and on Mars Express, and by the Phoenix lander in situ excavation. These ice layers hold easily accessible clues about Mars' climate history and make frozen water accessible to future robotic or human explorers. Some researchers suggested these deposits could be the remnants of glaciers that existed millions of years ago when the planet's spin axis and orbit were different. (See section Mars' Ice ages below.) A more detailed study published in 2019 discovered that water ice exists at latitudes north of 35°N and south of 45°S, with some ice patches only a few centimeters from the surface covered by dust. Extraction of water ice at these conditions would not require complex equipment.

  • Ice disappearing after being exposed by impact. Ice disappearing after being exposed by impact.
  • Close view of wall of triangular depression, as seen by HiRISE layers are visible in the wall. These layers contain ice. The lower layers are tilted, while layers near the surface are more or less horizontal. Such an arrangement of layers is called an "angular unconformity". Close view of wall of triangular depression, as seen by HiRISE layers are visible in the wall. These layers contain ice. The lower layers are tilted, while layers near the surface are more or less horizontal. Such an arrangement of layers is called an "angular unconformity".
  • Impact crater that may have formed in ice-rich ground, as seen by HiRISE under HiWish program Location is the Ismenius Lacus quadrangle. Impact crater that may have formed in ice-rich ground, as seen by HiRISE under HiWish program Location is the Ismenius Lacus quadrangle.
  • Close view of impact crater that may have formed in ice-rich ground, as seen by HiRISE under HiWish program. Note that the ejecta seems lower than the surroundings. The hot ejecta may have caused some of the ice to go away, thus lowering the level of the ejecta. Close view of impact crater that may have formed in ice-rich ground, as seen by HiRISE under HiWish program. Note that the ejecta seems lower than the surroundings. The hot ejecta may have caused some of the ice to go away, thus lowering the level of the ejecta.
  • Map of near surface ice Map of near surface ice

Scalloped topography

Main article: Scalloped topography

Certain regions of Mars display scalloped-shaped depressions. The depressions are suspected to be the remains of a degrading ice-rich mantle deposit. Scallops are caused by ice sublimating from frozen soil. The landforms of scalloped topography can be formed by the subsurface loss of water ice by sublimation under current Martian climate conditions. A model predicts similar shapes when the ground has large amounts of pure ice, up to many tens of meters in depth. This mantle material was probably deposited from the atmosphere as ice formed on dust when the climate was different due to changes in the tilt of the Mars pole (see § Ice ages, below). The scallops are typically tens of meters deep and from a few hundred to a few thousand meters across. They can be almost circular or elongated. Some appear to have coalesced causing a large heavily pitted terrain to form. The process of forming the terrain may begin with sublimation from a crack. There are often polygonal cracks where scallops form, and the presence of scalloped topography seems to be an indication of frozen ground.

On November 22, 2016, NASA reported finding a large amount of underground ice in the Utopia Planitia region of Mars. The volume of water detected has been estimated to be equivalent to the volume of water in Lake Superior.

The volume of water ice in the region were based on measurements from the ground-penetrating radar instrument on Mars Reconnaissance Orbiter, called SHARAD. From the data obtained from SHARAD, “dielectric permittivity”, or the dielectric constant was determined. The dielectric constant value was consistent with a large concentration of water ice.

These scalloped features are superficially similar to Swiss cheese features, found around the south polar cap. Swiss cheese features are thought to be due to cavities forming in a surface layer of solid carbon dioxide, rather than water ice—although the floors of these holes are probably H2O-rich.

Ice patches

Precipitated water ice covering the Martian plain Utopia Planitia, the water ice precipitated by adhering to dry ice (observed by the Viking 2 lander)

On July 28, 2005, the European Space Agency announced the existence of a crater partially filled with frozen water; some then interpreted the discovery as an "ice lake". Images of the crater, taken by the High Resolution Stereo Camera on board the European Space Agency's Mars Express orbiter, clearly show a broad sheet of ice in the bottom of an unnamed crater located on Vastitas Borealis, a broad plain that covers much of Mars' far northern latitudes, at approximately 70.5° North and 103° East. The crater is 35 kilometres (22 mi) wide and about 2 kilometres (1.2 mi) deep. The height difference between the crater floor and the surface of the water ice is about 200 metres (660 ft). ESA scientists have attributed most of this height difference to sand dunes beneath the water ice, which are partially visible. While scientists do not refer to the patch as a "lake", the water ice patch is remarkable for its size and for being present throughout the year. Deposits of water ice and layers of frost have been found in many different locations on the planet.

As more and more of the surface of Mars has been imaged by the modern generation of orbiters, it has become gradually more apparent that there are probably many more patches of ice scattered across the Martian surface. Many of these putative patches of ice are concentrated in the Martian mid-latitudes (≈30–60° N/S of the equator). For example, many scientists think that the widespread features in those latitude bands variously described as "latitude dependent mantle" or "pasted-on terrain" consist of dust- or debris-covered ice patches, which are slowly degrading. A cover of debris is required both to explain the dull surfaces seen in the images that do not reflect like ice, and also to allow the patches to exist for an extended period of time without subliming away completely. These patches have been suggested as possible water sources for some of the enigmatic channelized flow features like gullies also seen in those latitudes.

Surface features consistent with existing pack ice have been discovered in the southern Elysium Planitia. What appear to be plates, ranging in size from 30 metres (98 ft) to 30 kilometres (19 mi), are found in channels leading to a large flooded area. The plates show signs of break up and rotation that clearly distinguish them from lava plates elsewhere on the surface of Mars. The source for the flood is thought to be the nearby geological fault Cerberus Fossae that spewed water as well as lava aged some 2 to 10 million years. It was suggested that the water exited the Cerberus Fossae then pooled and froze in the low, level plains and that such frozen lakes may still exist.


Glaciers

Main article: Glaciers on Mars
View of a 5-km-wide, glacial-like lobe deposit sloping up into a box canyon. The surface has moraines, deposits of rocks that show how the glacier advanced.

Many large areas of Mars either appear to host glaciers, or carry evidence that they used to be present. Much of the areas in high latitudes, especially the Ismenius Lacus quadrangle, are suspected to still contain enormous amounts of water ice. Recent evidence has led many planetary scientists to conclude that water ice still exists as glaciers across much of the Martian mid- and high latitudes, protected from sublimation by thin coverings of insulating rock and/or dust. An example of this are the glacier-like features called lobate debris aprons in an area called Deuteronilus Mensae, which display widespread evidence of ice lying beneath a few meters of rock debris. Glaciers are associated with fretted terrain, and many volcanoes. Researchers have described glacial deposits on Hecates Tholus, Arsia Mons, Pavonis Mons, and Olympus Mons. Glaciers have also been reported in a number of larger Martian craters in the mid-latitudes and above.

Reull Vallis with lineated floor deposits. Location is Hellas quadrangle

Glacier-like features on Mars are known variously as viscous flow features, Martian flow features, lobate debris aprons, or lineated valley fill, depending on the form of the feature, its location, the landforms it is associated with, and the author describing it. Many, but not all, small glaciers seem to be associated with gullies on the walls of craters and mantling material. The lineated deposits known as lineated valley fill are probably rock-covered glaciers that are found on the floors of most channels within the fretted terrain found around Arabia Terra in the northern hemisphere. Their surfaces have ridged and grooved materials that deflect around obstacles. Lineated floor deposits may be related to lobate debris aprons, which have been proven to contain large amounts of ice by orbiting radar. For many years, researchers interpreted that features called 'lobate debris aprons' were glacial flows and it was thought that ice existed under a layer of insulating rocks. With new instrument readings, it has been confirmed that lobate debris aprons contain almost pure ice that is covered with a layer of rocks.

A ridge interpreted as the terminal moraine of an alpine glacier. Location is Ismenius Lacus quadrangle.

Moving ice carries rock material, then drops it as the ice disappears. This typically happens at the snout or edges of the glacier. On Earth, such features would be called moraines, but on Mars they are typically known as moraine-like ridges, concentric ridges, or arcuate ridges. Since ice tends to sublime rather than melt on Mars, and because Mars's low temperatures tend to make glaciers "cold based" (frozen down to their beds, and unable to slide), the remains of these glaciers and the ridges they leave do not appear the exactly same as normal glaciers on Earth. In particular, Martian moraines tend to be deposited without being deflected by the underlying topography, which is thought to reflect the fact that the ice in Martian glaciers is normally frozen down and cannot slide. Ridges of debris on the surface of the glaciers indicate the direction of ice movement. The surface of some glaciers have rough textures due to sublimation of buried ice. The ice evaporates without melting and leaves behind an empty space. Overlying material then collapses into the void. Sometimes chunks of ice fall from the glacier and get buried in the land surface. When they melt, a more or less round hole remains. Many of these "kettle holes" have been identified on Mars.

Despite strong evidence for glacial flow on Mars, there is little convincing evidence for landforms carved by glacial erosion, e.g., U-shaped valleys, crag and tail hills, arêtes, drumlins. Such features are abundant in glaciated regions on Earth, so their absence on Mars has proven puzzling. The lack of these landforms is thought to be related to the cold-based nature of the ice in most recent glaciers on Mars. Because the solar insolation reaching the planet, the temperature and density of the atmosphere, and the geothermal heat flux are all lower on Mars than they are on Earth, modelling suggests the temperature of the interface between a glacier and its bed stays below freezing and the ice is literally frozen down to the ground. This prevents it from sliding across the bed, which is thought to inhibit the ice's ability to erode the surface.

Groundwater

See also: Groundwater on Mars

In August 2024, a reservoir of liquid water was discovered on Mars - deep in the rocky outer crust of the planet. The findings came from a new analysis of data from Nasa’s Mars Insight Lander, which recorded four years' of vibrations - Mars quakes - from deep inside the Red Planet. The analysis revealed reservoirs of water at depths of about six to 12 miles (10 to 20km) in the Martian crust.

As per estimates, there may be enough water, trapped in tiny cracks and pores of rock in the middle of the Martian crust, to fill oceans on the planet’s surface. The groundwater would likely cover the entirety of Mars to a depth of 1 mile (1.6 kilometers), the study found.

Development of Mars' water inventory

The variation in Mars's surface water content is strongly coupled to the evolution of its atmosphere and may have been marked by several key stages. Head and others put together a detailed history of water on Mars and presented it in March, 2023.

Dry channels near Warrego Valles.

Early Noachian era (4.6 Ga to 4.1 Ga)

Further information: Noachian

The early Noachian era was characterized by atmospheric loss to space from heavy meteoritic bombardment and hydrodynamic escape. Ejection by meteorites may have removed ~60% of the early atmosphere. Significant quantities of phyllosilicates may have formed during this period requiring a sufficiently dense atmosphere to sustain surface water, as the spectrally dominant phyllosilicate group, smectite, suggests moderate water-to-rock ratios. However, the pH-pCO2 between smectite and carbonate show that the precipitation of smectite would constrain pCO2 to a value not more than 1×10 atm (1.0 kPa). As a result, the dominant component of a dense atmosphere on early Mars becomes uncertain, if the clays formed in contact with the Martian atmosphere, particularly given the lack of evidence for carbonate deposits. An additional complication is that the ~25% lower brightness of the young Sun would have required an ancient atmosphere with a significant greenhouse effect to raise surface temperatures to sustain liquid water. Higher CO2 content alone would have been insufficient, as CO2 precipitates at partial pressures exceeding 1.5 atm (1,500 hPa), reducing its effectiveness as a greenhouse gas.

Middle to late Noachean era (4.1 Ga to 3.8 Ga)

During the middle to late Noachean era, Mars underwent potential formation of a secondary atmosphere by outgassing dominated by the Tharsis volcanoes, including significant quantities of H2O, CO2, and SO2. Martian valley networks date to this period, indicating globally widespread and temporally sustained surface water as opposed to catastrophic floods. The end of this period coincides with the termination of the internal magnetic field and a spike in meteoritic bombardment. The cessation of the internal magnetic field and subsequent weakening of any local magnetic fields allowed unimpeded atmospheric stripping by the solar wind. For example, when compared with their terrestrial counterparts, Ar/Ar, N/N, and C/C ratios of the Martian atmosphere are consistent with ~60% loss of Ar, N2, and CO2 by solar wind stripping of an upper atmosphere enriched in the lighter isotopes via Rayleigh fractionation. Supplementing the solar wind activity, impacts would have ejected atmospheric components in bulk without isotopic fractionation. Nevertheless, cometary impacts in particular may have contributed volatiles to the planet.

Hesperian to Amazonian era (present) (~3.8 Ga to present)

Further information: Hesperian and Amazonian (Mars)

Atmospheric enhancement by sporadic outgassing events were countered by solar wind stripping of the atmosphere, albeit less intensely than by the young Sun. Catastrophic floods date to this period, favoring sudden subterranean release of volatiles, as opposed to sustained surface flows. While the earlier portion of this era may have been marked by aqueous acidic environments and Tharsis-centric groundwater discharge dating to the late Noachian, much of the surface alteration processes during the latter portion is marked by oxidative processes including the formation of Fe oxides that impart a reddish hue to the Martian surface. Such oxidation of primary mineral phases can be achieved by low-pH (and possibly high temperature) processes related to the formation of palagonitic tephra, by the action of H2O2 that forms photochemically in the Martian atmosphere, and by the action of water, none of which require free O2. The action of H2O2 may have dominated temporally given the drastic reduction in aqueous and igneous activity in this recent era, making the observed Fe oxides volumetrically small, though pervasive and spectrally dominant. Nevertheless, aquifers may have driven sustained, but highly localized surface water in recent geologic history, as evident in the geomorphology of craters such as Mojave. Furthermore, the Lafayette Martian meteorite shows evidence of aqueous alteration as recently as 650 Ma.

Mars before and after/during the 2018 global dust storm

In 2020 scientists reported that Mars' current loss of atomic hydrogen from water is largely driven by seasonal processes and dust storms that transport water directly to the upper atmosphere and that this has influenced the planet's climate likely during the last 1 Ga. More recent studies have suggested that upward propagating atmospheric gravity waves can play an important role during global dust storms in modulating water escape.

Ice ages

North polar layered deposits of ice and dust.

Mars has experienced about 40 large scale changes in the amount and distribution of ice on its surface over the past five million years, with the most recent happening about 2.1 to 0.4 Myr ago, during the Late Amazonian glaciation at the dichotomy boundary. These changes are known as ice ages. Ice ages on Mars are very different from the ones that the Earth experiences. Ice ages are driven by changes in Mars's orbit and tilt —also known as obliquity. Orbital calculations show that Mars wobbles on its axis far more than Earth does. The Earth is stabilized by its proportionally large moon, so it only wobbles a few degrees. Mars may change its tilt by many tens of degrees. When this obliquity is high, its poles get much more direct sunlight and heat; this causes the ice caps to warm and become smaller as ice sublimes. Adding to the variability of the climate, the eccentricity of the orbit of Mars changes twice as much as Earth's eccentricity. As the poles sublime, the ice is redeposited closer to the equator, which receive somewhat less solar insolation at these high obliquities. Computer simulations have shown that a 45° tilt of the Martian axis would result in ice accumulation in areas that display glacial landforms.

The moisture from the ice caps travels to lower latitudes in the form of deposits of frost or snow mixed with dust. The atmosphere of Mars contains a great deal of fine dust particles, the water vapor condenses on these particles that then fall down to the ground due to the additional weight of the water coating. When ice at the top of the mantling layer returns to the atmosphere, it leaves behind dust that serves to insulate the remaining ice. The total volume of water removed is a few percent of the ice caps, or enough to cover the entire surface of the planet under one meter of water. Much of this moisture from the ice caps results in a thick smooth mantle with a mixture of ice and dust. This ice-rich mantle, that can be 100 meters thick at mid-latitudes, smoothes the land at lower latitudes, but in places it displays a bumpy texture or patterns that give away the presence of former water ice underneath.

Habitability assessments

Main article: Life on Mars
ExoMars rover prototype being tested in the Atacama Desert, 2013.

Since the Viking landers that searched for current microbial life in 1976, NASA has pursued a "follow the water" strategy on Mars. However, liquid water is a necessary but not sufficient condition for life as we know it because habitability is a function of a multitude of environmental parameters. Chemical, physical, geological, and geographic attributes shape the environments on Mars. Isolated measurements of these factors may be insufficient to deem an environment habitable, but the sum of measurements can help predict locations with greater or lesser habitability potential.

Habitable environments need not be inhabited, and for purposes of planetary protection, scientists are trying to identify potential habitats where stowaway bacteria from Earth on spacecraft could contaminate Mars. If life exists—or existed—on Mars, evidence or biosignatures could be found in the subsurface, away from present-day harsh surface conditions such as perchlorates, ionizing radiation, desiccation and freezing. Habitable locations could occur kilometers below the surface in a hypothetical hydrosphere, or it could occur near the sub-surface in contact with permafrost.

The Curiosity rover is assessing Mars' past and present habitability potential. The European-Russian ExoMars programme is an astrobiology project dedicated to the search for and identification of biosignatures on Mars. It includes the ExoMars Trace Gas Orbiter that started mapping the atmospheric methane in April 2018, and the 2022 ExoMars rover that will drill and analyze subsurface samples 2 meters deep. NASA's Mars 2020 rover will cache dozens of drilled core samples for their potential transport to Earth laboratories in the late 2020s or 2030s.

Findings by probes

Main article: Chronology of discoveries of water on Mars

Mariner 9

Meander in Scamander Vallis, as seen by Mars Global Surveyor. Such images implied that large amounts of water once flowed on the surface of Mars.

The images acquired by the Mariner 9 Mars orbiter, launched in 1971, revealed the first direct evidence of past water in the form of dry river beds, canyons (including the Valles Marineris, a system of canyons over about 4,020 kilometres (2,500 mi) long), evidence of water erosion and deposition, weather fronts, fogs, and more. The findings from the Mariner 9 missions underpinned the later Viking program. The enormous Valles Marineris canyon system is named after Mariner 9 in honor of its achievements.

Viking program

Main article: Viking program
Streamlined islands in Maja Valles suggest that large floods occurred on Mars.

By discovering many geological forms that are typically formed from large amounts of water, the two Viking orbiters and the two landers caused a revolution in our knowledge about water on Mars. Huge outflow channels were found in many areas. They showed that floods of water broke through dams, carved deep valleys, eroded grooves into bedrock, and traveled thousands of kilometers. Large areas in the southern hemisphere contained branched valley networks, suggesting that rain once fell. Many craters look as if the impactor fell into mud. When they were formed, ice in the soil may have melted, turned the ground into mud, then the mud flowed across the surface. Regions, called "Chaotic Terrain," seemed to have quickly lost great volumes of water that caused large channels to form downstream. Estimates for some channel flows run to ten thousand times the flow of the Mississippi River. Underground volcanism may have melted frozen ice; the water then flowed away and the ground collapsed to leave chaotic terrain. Also, general chemical analysis by the two Viking landers suggested the surface has been either exposed to or submerged in water in the past.

Mars Global Surveyor

Main article: Mars Global Surveyor
Map showing the distribution of hematite in Sinus Meridiani. This data was used to target the landing of the Opportunity rover that found definite evidence of past water.

The Mars Global Surveyor's Thermal Emission Spectrometer (TES) is an instrument able to determine the mineral composition on the surface of Mars. Mineral composition gives information on the presence or absence of water in ancient times. TES identified a large (30,000 square kilometres (12,000 sq mi)) area in the Nili Fossae formation that contains the mineral olivine. It is thought that the ancient asteroid impact that created the Isidis basin resulted in faults that exposed the olivine. The discovery of olivine is strong evidence that parts of Mars have been extremely dry for a long time. Olivine was also discovered in many other small outcrops within 60 degrees north and south of the equator. The probe has imaged several channels that suggest past sustained liquid flows, two of them are found in Nanedi Valles and in Nirgal Vallis.

Inner channel (near top of the image) on floor of Nanedi Valles that suggests that water flowed for a fairly long period. Image from Lunae Palus quadrangle.

Mars Pathfinder

Main article: Mars Pathfinder

The Pathfinder lander recorded the variation of diurnal temperature cycle. It was coldest just before sunrise, about −78 °C (−108 °F; 195 K), and warmest just after Mars noon, about −8 °C (18 °F; 265 K). At this location, the highest temperature never reached the freezing point of water (0 °C (32 °F; 273 K)), too cold for pure liquid water to exist on the surface.

The atmospheric pressure measured by the Pathfinder on Mars is very low —about 0.6% of Earth's, and it would not permit pure liquid water to exist on the surface.

Other observations were consistent with water being present in the past. Some of the rocks at the Mars Pathfinder site leaned against each other in a manner geologists term imbricated. It is suspected that strong flood waters in the past pushed the rocks around until they faced away from the flow. Some pebbles were rounded, perhaps from being tumbled in a stream. Parts of the ground are crusty, maybe due to cementing by a fluid containing minerals. There was evidence of clouds and maybe fog.

Mars Odyssey

Main article: Evidence of water on Mars from Mars Odyssey
Complex drainage system in Semeykin Crater. Location is Ismenius Lacus quadrangle

The 2001 Mars Odyssey found much evidence for water on Mars in the form of images, and with its neutron spectrometer, it proved that much of the ground is loaded with water ice. Mars has enough ice just beneath the surface to fill Lake Michigan twice. In both hemispheres, from 55° latitude to the poles, Mars has a high density of ice just under the surface; one kilogram of soil contains about 500 grams (18 oz) of water ice. But close to the equator, there is only 2% to 10% of water in the soil. Scientists think that much of this water is also locked up in the chemical structure of minerals, such as clay and sulfates. Although the upper surface contains a few percent of chemically-bound water, ice lies just a few meters deeper, as it has been shown in Arabia Terra, Amazonis quadrangle, and Elysium quadrangle that contain large amounts of water ice. The orbiter also discovered vast deposits of bulk water ice near the surface of equatorial regions. Evidence for equatorial hydration is both morphological and compositional and is seen at both the Medusae Fossae formation and the Tharsis Montes. Analysis of the data suggests that the southern hemisphere may have a layered structure, suggestive of stratified deposits beneath a now extinct large water mass.

Blocks in Aram showing a possible ancient source of water. Location is Oxia Palus quadrangle.

The instruments aboard the Mars Odyssey are able to study the top meter of soil. In 2002, available data were used to calculate that if all soil surfaces were covered by an even layer of water, this would correspond to a global layer of water (GLW) 0.5–1.5 kilometres (0.31–0.93 mi).

Thousands of images returned from Odyssey orbiter also support the idea that Mars once had great amounts of water flowing across its surface. Some images show patterns of branching valleys; others show layers that may have been formed under lakes; even river and lake deltas have been identified. For many years researchers suspected that glaciers exist under a layer of insulating rocks. Lineated valley fill is one example of these rock-covered glaciers. They are found on the floors of some channels. Their surfaces have ridged and grooved materials that deflect around obstacles. Lineated floor deposits may be related to lobate debris aprons, which have been shown by orbiting radar to contain large amounts of ice.

Phoenix

Main article: Phoenix (spacecraft)
Permafrost polygons imaged by the Phoenix lander.

The Phoenix lander also confirmed the existence of large amounts of water ice in the northern region of Mars. This finding was predicted by previous orbital data and theory, and was measured from orbit by the Mars Odyssey instruments. On June 19, 2008, NASA announced that dice-sized clumps of bright material in the "Dodo-Goldilocks" trench, dug by the robotic arm, had vaporized over the course of four days, strongly indicating that the bright clumps were composed of water ice that sublimes following exposure. Recent radiative transfer modeling has shown that this water ice was snow with a grain size of ~350 μm with 0.015% dust. Even though CO2 (dry ice) also sublimes under the conditions present, it would do so at a rate much faster than observed. On July 31, 2008, NASA announced that Phoenix further confirmed the presence of water ice at its landing site. During the initial heating cycle of a sample, the mass spectrometer detected water vapor when the sample temperature reached 0 °C (32 °F; 273 K). Stable liquid water cannot exist on the surface of Mars with its present low atmospheric pressure and temperature (it would boil), except at the lowest elevations for short periods.

The presence of the perchlorate (ClO4) anion, a strong oxidizer, in the martian soil was confirmed. This salt can considerably lower the water freezing point.

View underneath Phoenix lander showing water ice exposed by the landing retrorockets.

When Phoenix landed, the retrorockets splashed soil and melted ice onto the vehicle. Photographs showed the landing had left blobs of material stuck to the landing struts. The blobs expanded at a rate consistent with deliquescence, darkened before disappearing (consistent with liquefaction followed by dripping), and appeared to merge. These observations, combined with thermodynamic evidence, indicated that the blobs were likely liquid brine droplets. Other researchers suggested the blobs could be "clumps of frost." In 2015 it was confirmed that perchlorate plays a role in forming recurring slope lineae on steep gullies.

For about as far as the camera can see, the landing site is flat, but shaped into polygons between 2–3 metres (6 ft 7 in – 9 ft 10 in) in diameter which are bounded by troughs that are 20–50 centimetres (7.9–19.7 in) deep. These shapes are due to ice in the soil expanding and contracting due to major temperature changes. The microscope showed that the soil on top of the polygons is composed of rounded particles and flat particles, probably a type of clay. Ice is present a few inches below the surface in the middle of the polygons, and along its edges, the ice is at least 8 inches (200 mm) deep.

Snow was observed to fall from cirrus clouds. The clouds formed at a level in the atmosphere that was around −65 °C (−85 °F; 208 K), so the clouds would have to be composed of water-ice, rather than carbon dioxide-ice (CO2 or dry ice), because the temperature for forming carbon dioxide ice is much lower than −120 °C (−184 °F; 153 K). As a result of mission observations, it is now suspected that water ice (snow) would have accumulated later in the year at this location. The highest temperature measured during the mission, which took place during the Martian summer, was −19.6 °C (−3.3 °F; 253.6 K), while the coldest was −97.7 °C (−143.9 °F; 175.5 K). So, in this region the temperature remained far below the freezing point (0 °C (32 °F; 273 K)) of water.

Mars Exploration Rovers

Main article: Mars Exploration Rover
Close-up of a rock outcrop.
Thin rock layers, not all parallel to each other.
Hematite spherules.
Partly embedded spherules.

The Mars Exploration Rovers, Spirit and Opportunity found a great deal of evidence for past water on Mars. The Spirit rover landed in what was thought to be a large lake bed. The lake bed had been covered over with lava flows, so evidence of past water was initially hard to detect. On March 5, 2004, NASA announced that Spirit had found hints of water history on Mars in a rock dubbed "Humphrey".

As Spirit traveled in reverse in December 2007, pulling a seized wheel behind, the wheel scraped off the upper layer of soil, uncovering a patch of white ground rich in silica. Scientists think that it must have been produced in one of two ways. One: hot spring deposits produced when water dissolved silica at one location and then carried it to another (i.e. a geyser). Two: acidic steam rising through cracks in rocks stripped them of their mineral components, leaving silica behind. The Spirit rover also found evidence for water in the Columbia Hills of Gusev crater. In the Clovis group of rocks the Mössbauer spectrometer (MB) detected goethite, that forms only in the presence of water, iron in the oxidized form Fe, carbonate-rich rocks, which means that regions of the planet once harbored water.

The Opportunity rover was directed to a site that had displayed large amounts of hematite from orbit. Hematite often forms from water. The rover indeed found layered rocks and marble- or blueberry-like hematite concretions. Elsewhere on its traverse, Opportunity investigated aeolian dune stratigraphy in Burns Cliff in Endurance Crater. Its operators concluded that the preservation and cementation of these outcrops had been controlled by flow of shallow groundwater. In its years of continuous operation, Opportunity sent back evidence that this area on Mars was soaked in liquid water in the past.

The MER rovers found evidence for ancient wet environments that were very acidic. In fact, what Opportunity found evidence of sulfuric acid, a harsh chemical for life. But on May 17, 2013, NASA announced that Opportunity found clay deposits that typically form in wet environments that are near neutral acidity. This find provides additional evidence about a wet ancient environment possibly favorable for life.

Mars Reconnaissance Orbiter

Main article: Evidence of water on Mars found by Mars Reconnaissance Orbiter
Springs in Vernal Crater, as seen by HIRISE. These springs may be good places to look for evidence of past life, because hot springs can preserve evidence of life forms for a long time. Location is Oxia Palus quadrangle.

The Mars Reconnaissance Orbiter's HiRISE instrument has taken many images that strongly suggest that Mars has had a rich history of water-related processes. A major discovery was finding evidence of ancient hot springs. If they have hosted microbial life, they may contain biosignatures. Research published in January 2010, described strong evidence for sustained precipitation in the area around Valles Marineris. The types of minerals there are associated with water. Also, the high density of small branching channels indicates a great deal of precipitation.

Rocks on Mars have been found to frequently occur as layers, called strata, in many different places. Layers form by various ways, including volcanoes, wind, or water. Light-toned rocks on Mars have been associated with hydrated minerals like sulfates and clay.

Layers on the west slope of Asimov Crater. Location is Noachis quadrangle.

The orbiter helped scientists determine that much of the surface of Mars is covered by a thick smooth mantle that is thought to be a mixture of ice and dust.

The ice mantle under the shallow subsurface is thought to result from frequent, major climate changes. Changes in Mars' orbit and tilt cause significant changes in the distribution of water ice from polar regions down to latitudes equivalent to Texas. During certain climate periods water vapor leaves polar ice and enters the atmosphere. The water returns to the ground at lower latitudes as deposits of frost or snow mixed generously with dust. The atmosphere of Mars contains a great deal of fine dust particles. Water vapor condenses on the particles, then they fall down to the ground due to the additional weight of the water coating. When ice at the top of the mantling layer goes back into the atmosphere, it leaves behind dust, which insulates the remaining ice.

In 2008, research with the Shallow Radar on the Mars Reconnaissance Orbiter provided strong evidence that the lobate debris aprons (LDA) in Hellas Planitia and in mid northern latitudes are glaciers that are covered with a thin layer of rocks. Its radar also detected a strong reflection from the top and base of LDAs, meaning that pure water ice made up the bulk of the formation. The discovery of water ice in LDAs demonstrates that water is found at even lower latitudes.

Research published in September 2009, demonstrated that some new craters on Mars show exposed, pure water ice. After a time, the ice disappears, evaporating into the atmosphere. The ice is only a few feet deep. The ice was confirmed with the Compact Imaging Spectrometer (CRISM) on board the Mars Reconnaissance Orbiter. Similar exposures of ice have been detected within the mid-latitude mantle (originally proposed to contain buried dusty snow covered with dust and regolith;) that drapes most pole-facing slopes in the mid-latitudes using spectral analysis of HiRISE images.

Additional collaborating reports published in 2019 evaluated the amount of water ice located at the northern pole. One report used data from the MRO's SHARAD (SHAllow RADar sounder) probes. SHARAD has the capability scanning up to about 2 kilometres (1.2 miles) below the surface at 15 metres (49 ft) intervals. The analysis of past SHARAD runs showed evidence of strata of water ice and sand below the Planum Boreum, with as much as 60% to 88% of the volume being water ice. This supports the theory of the long-term global weather of Mars consisting of cycles of global warming and cooling; during cooling periods, water gathered at the poles to form the ice layers, and then as global warming occurred, the unthawed water ice was covered by dust and dirt from Mars' frequent dust storms. The total ice volume determine by this study indicated that there was approximately 2.2×10 cubic kilometres (5.3×10 cu mi), or enough water, if melted, to fully cover the Mars surface with a 1.5 metres (4.9 ft) layer of water. The work was corroborated by a separate study that used recorded gravity data to estimate the density of the Planum Boreum, indicating that on average, it contained up to 55% by volume of water ice.

Many features that look like the pingos on the Earth were found in Utopia Planitia (~35-50° N; ~80-115° E) by examining photos from HiRISE. Pingos contain a core of ice.

Curiosity rover

Main article: Timeline of Mars Science Laboratory
"Hottah" rock outcrop – an ancient streambed discovered by the Curiosity rover team (September 14, 2012) (close-up) (3-D version).
Rock outcrop on Mars – compared with a terrestrial fluvial conglomerate – suggesting water "vigorously" flowing in a stream.

Very early in its ongoing mission, NASA's Curiosity rover discovered unambiguous fluvial sediments on Mars. The properties of the pebbles in these outcrops suggested former vigorous flow on a streambed, with flow between ankle- and waist-deep. These rocks were found at the foot of an alluvial fan system descending from the crater wall, which had previously been identified from orbit.

In October 2012, the first X-ray diffraction analysis of a Martian soil was performed by Curiosity. The results revealed the presence of several minerals, including feldspar, pyroxenes and olivine, and suggested that the Martian soil in the sample was similar to the weathered basaltic soils of Hawaiian volcanoes. The sample used is composed of dust distributed from global dust storms and local fine sand. So far, the materials Curiosity has analyzed are consistent with the initial ideas of deposits in Gale Crater recording a transition through time from a wet to dry environment.

In December 2012, NASA reported that Curiosity performed its first extensive soil analysis, revealing the presence of water molecules, sulfur and chlorine in the Martian soil. And in March 2013, NASA reported evidence of mineral hydration, likely hydrated calcium sulfate, in several rock samples including the broken fragments of "Tintina" rock and "Sutton Inlier" rock as well as in veins and nodules in other rocks like "Knorr" rock and "Wernicke" rock. Analysis using the rover's DAN instrument provided evidence of subsurface water, amounting to as much as 4% water content, down to a depth of 60 cm (2.0 ft), in the rover's traverse from the Bradbury Landing site to the Yellowknife Bay area in the Glenelg terrain.

On September 26, 2013, NASA scientists reported the Mars Curiosity rover detected abundant chemically-bound water (1.5 to 3 weight percent) in soil samples at the Rocknest region of Aeolis Palus in Gale Crater. In addition, NASA reported the rover found two principal soil types: a fine-grained mafic type and a locally derived, coarse-grained felsic type. The mafic type, similar to other martian soils and martian dust, was associated with hydration of the amorphous phases of the soil. Also, perchlorates, the presence of which may make detection of life-related organic molecules difficult, were found at the Curiosity rover landing site (and earlier at the more polar site of the Phoenix lander) suggesting a "global distribution of these salts". NASA also reported that Jake M rock, a rock encountered by Curiosity on the way to Glenelg, was a mugearite and very similar to terrestrial mugearite rocks.

On December 9, 2013, NASA reported that Mars once had a large freshwater lake inside Gale Crater, that could have been a hospitable environment for microbial life.

On December 16, 2014, NASA reported detecting an unusual increase, then decrease, in the amounts of methane in the atmosphere of the planet Mars; in addition, organic chemicals were detected in powder drilled from a rock by the Curiosity rover. Also, based on deuterium to hydrogen ratio studies, much of the water at Gale Crater on Mars was found to have been lost during ancient times, before the lake bed in the crater was formed; afterwards, large amounts of water continued to be lost.

On April 13, 2015, Nature published an analysis of humidity and ground temperature data collected by Curiosity, showing evidence that films of liquid brine water form in the upper 5 cm of Mars's subsurface at night. The water activity and temperature remain below the requirements for reproduction and metabolism of known terrestrial microorganisms.

On October 8, 2015, NASA confirmed that lakes and streams existed in Gale crater 3.3 – 3.8 billion years ago delivering sediments to build up the lower layers of Mount Sharp.

On November 4, 2018, geologists presented evidence, based on studies in Gale Crater by the Curiosity rover, that there was plenty of water on early Mars.

Mars Express

The Mars Express Orbiter, launched by the European Space Agency, has been mapping the surface of Mars and using radar equipment to look for evidence of sub-surface water. Between 2012 and 2015, the Orbiter scanned the area beneath the ice caps on the Planum Australe. Scientists determined by 2018 that the readings indicated a sub-surface lake bearing water about 20 kilometres (12 mi) wide. The top of the lake is located 1.5 kilometres (0.93 mi) under the planet's surface; how much deeper the liquid water extends remains unknown.

Zhurong Rover

China's Zhurong touched down on Mars in the area called Utopia Planitia on May 14, 2021. Its six scientific instruments including two panoramic cameras, a ground-penetrating radar and a magnetic field detector. Zhurong used a laser to zap rocks to study their compositions.

Zhurong found evidence of water when it examined the crust at the surface, called "duricrust." The crust contained hydrated sulfate/silica materials in the Amazonian-age terrain of the landing site. The duricrust was produced either by subsurface ice melting or groundwater rising.

Looking at the dunes at Zhurong's landing site, researchers found a large shift in wind direction (as evidenced in the dune directions) that occurred about the same time that layers in the Martian northern ice caps changed. It was suggested that these events happened when the rotational tilt of the planet changed.

InSight

NASA's InSight lander discovered groundwater on Mars in 2024 by measuring the seismic waves from Marsquakes with its seismometer. At the area it was measuring, it is estimated that there is water 7 to 13 miles beneath the surface of Mars. It is estimated that there is enough groundwater on Mars that could theoretically cover all of Mars surface in water between 0.62 and 1.24 miles deep, if it was all surface water.

Interactive map

Map of MarsAcheron FossaeAcidalia PlanitiaAlba MonsAmazonis PlanitiaAonia PlanitiaArabia TerraArcadia PlanitiaArgentea PlanumArgyre PlanitiaChryse PlanitiaClaritas FossaeCydonia MensaeDaedalia PlanumElysium MonsElysium PlanitiaGale craterHadriaca PateraHellas MontesHellas PlanitiaHesperia PlanumHolden craterIcaria PlanumIsidis PlanitiaJezero craterLomonosov craterLucus PlanumLycus SulciLyot craterLunae PlanumMalea PlanumMaraldi craterMareotis FossaeMareotis TempeMargaritifer TerraMie craterMilankovič craterNepenthes MensaeNereidum MontesNilosyrtis MensaeNoachis TerraOlympica FossaeOlympus MonsPlanum AustralePromethei TerraProtonilus MensaeSirenumSisyphi PlanumSolis PlanumSyria PlanumTantalus FossaeTempe TerraTerra CimmeriaTerra SabaeaTerra SirenumTharsis MontesTractus CatenaTyrrhena TerraUlysses PateraUranius PateraUtopia PlanitiaValles MarinerisVastitas BorealisXanthe Terra
The image above contains clickable linksInteractive image map of the global topography of Mars. Hover your mouse over the image to see the names of over 60 prominent geographic features, and click to link to them. Coloring of the base map indicates relative elevations, based on data from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor. Whites and browns indicate the highest elevations (+12 to +8 km); followed by pinks and reds (+8 to +3 km); yellow is 0 km; greens and blues are lower elevations (down to −8 km). Axes are latitude and longitude; Polar regions are noted. (See also: Mars Rovers map and Mars Memorial map) (viewdiscuss)


See also

References

  1. Jakosky, B. M.; Haberle, R.M. (1992). "The Seasonal Behavior of Water on Mars". In Kieffer, H. H.; et al. (eds.). Mars. Tucson, Arizona: University of Arizona Press. pp. 969–1016.
  2. ^ Martín-Torres, F. Javier; Zorzano, María-Paz; Valentín-Serrano, Patricia; Harri, Ari-Matti; Genzer, Maria (April 13, 2015). "Transient liquid water and water activity at Gale crater on Mars". Nature Geoscience. 8 (5): 357–361. Bibcode:2015NatGe...8..357M. doi:10.1038/ngeo2412.
  3. ^ Ojha, L.; Wilhelm, M. B.; Murchie, S. L.; McEwen, A. S.; Wray, J. J.; Hanley, J.; Massé, M.; Chojnacki, M. (2015). "Spectral evidence for hydrated salts in recurring slope lineae on Mars". Nature Geoscience. 8 (11): 829–832. Bibcode:2015NatGe...8..829O. doi:10.1038/ngeo2546. S2CID 59152931.
  4. "Recurring Martian Streaks: Flowing Sand, Not Water?" Archived December 8, 2021, at the Wayback Machine NASA, November 20, 2017
  5. Byrne, Shane; Dundas, Colin M.; Kennedy, Megan R.; Mellon, Michael T.; McEwen, Alfred S.; Cull, Selby C.; Daubar, Ingrid J.; Shean, David E.; Seelos, Kimberly D.; Murchie, Scott L.; Cantor, Bruce A.; Arvidson, Raymond E.; Edgett, Kenneth S.; Reufer, Andreas; Thomas, Nicolas (September 25, 2009). "Distribution of Mid-Latitude Ground Ice on Mars from New Impact Craters". Science. 325 (5948): 1674–1676. Bibcode:2009Sci...325.1674B. doi:10.1126/science.1175307. ISSN 0036-8075. PMID 19779195. S2CID 10657508. Archived from the original on July 14, 2023. Retrieved July 14, 2023.
  6. Dundas, Colin M.; Bramson, Ali M.; Ojha, Lujendra; Wray, James J.; Mellon, Michael T.; Byrne, Shane; McEwen, Alfred S.; Putzig, Nathaniel E.; Viola, Donna; Sutton, Sarah; Clark, Erin; Holt, John W. (January 12, 2018). "Exposed subsurface ice sheets in the Martian mid-latitudes". Science. 359 (6372): 199–201. Bibcode:2018Sci...359..199D. doi:10.1126/science.aao1619. ISSN 0036-8075. PMID 29326269. S2CID 206662378.
  7. Khuller, Aditya; Christensen, Philip (January 18, 2021). "Evidence of Exposed Dusty Water Ice within Martian Gullies". Journal of Geophysical Research: Planets. 126 (2). Bibcode:2021JGRE..12606539R. doi:10.1029/2020JE006539. ISSN 2169-9097. S2CID 234174382. Archived from the original on June 11, 2024. Retrieved July 27, 2022.
  8. Carr, M. H. (1996). Water on Mars. New York: Oxford University Press. p. 197.
  9. ^ Christensen, P. R. (2006). "Water at the Poles and in Permafrost Regions of Mars". Elements. 3 (2): 151–155. Bibcode:2006Eleme...2..151C. doi:10.2113/gselements.2.3.151.
  10. Carr, 2006, p. 173.
  11. Chryse Planitia
  12. ^ Webster, Guy; Brown, Dwayne (December 10, 2013). "NASA Mars Spacecraft Reveals a More Dynamic Red Planet". NASA. Archived from the original on December 14, 2013. Retrieved December 11, 2013.
  13. "Liquid Water From Ice and Salt on Mars". Geophysical Research Letters. NASA Astrobiology. July 3, 2014. Archived from the original on August 14, 2014. Retrieved August 13, 2014.
  14. Fischer, E.; Martínez, G. M.; Rennó, N. O.; Tamppari, L. K.; Zent, A. P. (November 2019). "Relative Humidity on Mars: New Results From the Phoenix TECP Sensor". Journal of Geophysical Research: Planets. 124 (11): 2780–2792. Bibcode:2019JGRE..124.2780F. doi:10.1029/2019je006080. ISSN 2169-9097. PMC 6988475. PMID 32025455. Archived from the original on June 11, 2024. Retrieved April 11, 2024.
  15. Hess, Seymour L.; Henry, Robert M.; Tillman, James E. (June 10, 1979). "The seasonal variation of atmospheric pressure on Mars as affected by the south polar cap". Journal of Geophysical Research: Solid Earth. 84 (B6): 2923–2927. Bibcode:1979JGR....84.2923H. doi:10.1029/jb084ib06p02923. ISSN 0148-0227. Archived from the original on June 11, 2024. Retrieved April 11, 2024.
  16. Khuller, Aditya R.; Clow, Gary D. (April 2024). "Turbulent Fluxes and Evaporation/Sublimation Rates on Earth, Mars, Titan, and Exoplanets". Journal of Geophysical Research: Planets. 129 (4). Bibcode:2024JGRE..12908114K. doi:10.1029/2023JE008114. ISSN 2169-9097.
  17. Pollack, J. B. (1979). "Climatic Change on the Terrestrial Planets". Icarus. 37 (3): 479–553. Bibcode:1979Icar...37..479P. doi:10.1016/0019-1035(79)90012-5.
  18. Pollack, J. B.; Kasting, J. F.; Richardson, S. M.; Poliakoff, K. (1987). "The Case for a Wet, Warm Climate on Early Mars". Icarus. 71 (2): 203–224. Bibcode:1987Icar...71..203P. doi:10.1016/0019-1035(87)90147-3. hdl:2060/19870013977. PMID 11539035.
  19. Fairén, A. G. (2010). "A cold and wet Mars Mars". Icarus. 208 (1): 165–175. Bibcode:2010Icar..208..165F. doi:10.1016/j.icarus.2010.01.006.
  20. Fairén, A. G.; et al. (2009). "Stability against freezing of aqueous solutions on early Mars". Nature. 459 (7245): 401–404. Bibcode:2009Natur.459..401F. doi:10.1038/nature07978. PMID 19458717. S2CID 205216655. Archived from the original on August 3, 2020. Retrieved August 29, 2020.
  21. "releases/2015/03/150305140447". sciencedaily.com. Archived from the original on December 12, 2023. Retrieved May 25, 2015.
  22. Villanueva, G.; Mumma, M.; Novak, R.; Käufl, H.; Hartogh, P.; Encrenaz, T.; Tokunaga, A.; Khayat, A.; Smith, M. (2015). "Strong water isotopic anomalies in the martian atmosphere: Probing current and ancient reservoirs". Science. 348 (6231): 218–221. Bibcode:2015Sci...348..218V. doi:10.1126/science.aaa3630. PMID 25745065. S2CID 206633960. Archived from the original on November 1, 2021. Retrieved July 23, 2019.
  23. ^ Baker, V. R.; Strom, R. G.; Gulick, V. C.; Kargel, J. S.; Komatsu, G.; Kale, V. S. (1991). "Ancient oceans, ice sheets and the hydrological cycle on Mars". Nature. 352 (6348): 589–594. Bibcode:1991Natur.352..589B. doi:10.1038/352589a0. S2CID 4321529.
  24. Salese, F.; Ansan, V.; Mangold, N.; Carter, J.; Anouck, O.; Poulet, F.; Ori, G. G. (2016). "A sedimentary origin for intercrater plains north of the Hellas basin: Implications for climate conditions and erosion rates on early Mars" (PDF). Journal of Geophysical Research: Planets. 121 (11): 2239–2267. Bibcode:2016JGRE..121.2239S. doi:10.1002/2016JE005039. S2CID 132873898. Archived (PDF) from the original on March 10, 2020. Retrieved November 22, 2019.
  25. Parker, T. J.; Saunders, R. S.; Schneeberger, D. M. (1989). "Transitional Morphology in West Deuteronilus Mensae, Mars: Implications for Modification of the Lowland/Upland Boundary". Icarus. 82 (1): 111–145. Bibcode:1989Icar...82..111P. doi:10.1016/0019-1035(89)90027-4. S2CID 120460110.
  26. Dohm, J. M.; Baker, Victor R.; Boynton, William V.; Fairén, Alberto G.; Ferris, Justin C.; Finch, Michael; Furfaro, Roberto; Hare, Trent M.; Janes, Daniel M.; Kargel, Jeffrey S.; Karunatillake, Suniti; Keller, John; Kerry, Kris; Kim, Kyeong J.; Komatsu, Goro; Mahaney, William C.; Schulze-Makuch, Dirk; Marinangeli, Lucia; Ori, Gian G.; Ruiz, Javier; Wheelock, Shawn J. (2009). "GRS Evidence and the Possibility of Paleooceans on Mars" (PDF). Planetary and Space Science. 57 (5–6): 664–684. Bibcode:2009P&SS...57..664D. doi:10.1016/j.pss.2008.10.008. Archived from the original (PDF) on September 22, 2017. Retrieved July 23, 2019.
  27. "PSRD: Ancient Floodwaters and Seas on Mars". Planetary Science Research Discoveries. University of Hawaii. July 16, 2003. Archived from the original on January 4, 2011. Retrieved December 18, 2009.
  28. "Gamma-Ray Evidence Suggests Ancient Mars Had Oceans". SpaceRef. November 17, 2008.
  29. Clifford, S. M.; Parker, T. J. (2001). "The Evolution of the Martian Hydrosphere: Implications for the Fate of a Primordial Ocean and the Current State of the Northern Plains". Icarus. 154 (1): 40–79. Bibcode:2001Icar..154...40C. doi:10.1006/icar.2001.6671. S2CID 13694518.
  30. ^ Di Achille, Gaetano; Hynek, Brian M. (2010). "Ancient ocean on Mars supported by global distribution of deltas and valleys". Nature Geoscience. 3 (7): 459–463. Bibcode:2010NatGe...3..459D. doi:10.1038/ngeo891.
  31. ^ "Ancient ocean may have covered third of Mars". Science Daily. June 14, 2010. Archived from the original on October 9, 2021. Retrieved February 28, 2018.
  32. Carr, 2006, pp. 144–147.
  33. Fassett, C. I.; Dickson, James L.; Head, James W.; Levy, Joseph S.; Marchant, David R. (2010). "Supraglacial and Proglacial Valleys on Amazonian Mars". Icarus. 208 (1): 86–100. Bibcode:2010Icar..208...86F. doi:10.1016/j.icarus.2010.02.021.
  34. "Flashback: Water on Mars Announced 10 Years Ago". Space.com. June 22, 2000. Archived from the original on December 22, 2010. Retrieved June 23, 2010.
  35. ^ Chang, Kenneth (December 9, 2013). "On Mars, an Ancient Lake and Perhaps Life". The New York Times. Archived from the original on December 9, 2013. Retrieved February 26, 2017.
  36. ^ Various (December 9, 2013). "Science – Special Collection – Curiosity Rover on Mars". Science. Archived from the original on January 28, 2014. Retrieved June 30, 2022.
  37. ^ Parker, T.; Clifford, S. M.; Banerdt, W. B. (2000). "Argyre Planitia and the Mars Global Hydrologic Cycle" (PDF). Lunar and Planetary Science. XXXI: 2033. Bibcode:2000LPI....31.2033P. Archived (PDF) from the original on July 6, 2021. Retrieved December 19, 2010.
  38. ^ Heisinger, H.; Head, J. (2002). "Topography and morphology of the Argyre basin, Mars: implications for its geologic and hydrologic history". Planetary and Space Science. 50 (10–11): 939–981. Bibcode:2002P&SS...50..939H. doi:10.1016/S0032-0633(02)00054-5.
  39. Soderblom, L. A. (1992). Kieffer, H. H.; et al. (eds.). The composition and mineralogy of the Martian surface from spectroscopic observations – 0.3 micron to 50 microns. Tucson, Arizona: University of Arizona Press. pp. 557–593. ISBN 978-0-8165-1257-7.
  40. Glotch, T.; Christensen, P. (2005). "Geologic and mineralogical mapping of Aram Chaos: Evidence for water-rich history". Journal of Geophysical Research. 110 (E9): E09006. Bibcode:2005JGRE..110.9006G. doi:10.1029/2004JE002389. S2CID 53489327.
  41. ^ Holt, J. W.; Safaeinili, A.; Plaut, J. J.; Young, D. A.; Head, J. W.; Phillips, R. J.; Campbell, B. A.; Carter, L. M.; Gim, Y.; Seu, R.; Team, Sharad (2008). "Radar Sounding Evidence for Ice within Lobate Debris Aprons near Hellas Basin, Mid-Southern Latitudes of Mars" (PDF). Lunar and Planetary Science. XXXIX (1391): 2441. Bibcode:2008LPI....39.2441H. Archived (PDF) from the original on June 11, 2016. Retrieved December 19, 2010.
  42. ^ Amos, Jonathan (June 10, 2013). "Old Opportunity Mars rover makes rock discovery". BBC News. Archived from the original on October 9, 2021. Retrieved June 22, 2018.
  43. ^ "Mars Rover Opportunity Examines Clay Clues in Rock". Jet Propulsion Laboratory, NASA. May 17, 2013. Archived from the original on June 11, 2013. Retrieved June 16, 2013.
  44. ^ "Regional, Not Global, Processes Led to Huge Martian Floods". Planetary Science Institute. September 11, 2015. Archived from the original on September 29, 2015. Retrieved September 12, 2015 – via SpaceRef.
  45. Harrison, K; Grimm, R. (2005). "Groundwater-controlled valley networks and the decline of surface runoff on early Mars". Journal of Geophysical Research. 110 (E12): E12S16. Bibcode:2005JGRE..11012S16H. doi:10.1029/2005JE002455. S2CID 7755332.
  46. Howard, A.; Moore, Jeffrey M.; Irwin, Rossman P. (2005). "An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits". Journal of Geophysical Research. 110 (E12): E12S14. Bibcode:2005JGRE..11012S14H. doi:10.1029/2005JE002459. S2CID 14890033.
  47. Salese, F.; Di Achille, G.; Neesemann, A.; Ori, G. G.; Hauber, E. (2016). "Hydrological and sedimentary analyses of well-preserved paleofluvial-paleolacustrine systems at Moa Valles, Mars". Journal of Geophysical Research: Planets. 121 (2): 194–232. Bibcode:2016JGRE..121..194S. doi:10.1002/2015JE004891. S2CID 130651090.
  48. ^ Irwin, Rossman P.; Howard, Alan D.; Craddock, Robert A.; Moore, Jeffrey M. (2005). "An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development". Journal of Geophysical Research. 110 (E12): E12S15. Bibcode:2005JGRE..11012S15I. doi:10.1029/2005JE002460.
  49. ^ Fassett, C.; Head, III (2008). "Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology". Icarus. 198 (1): 37–56. Bibcode:2008Icar..198...37F. doi:10.1016/j.icarus.2008.06.016.
  50. ^ Moore, J.; Wilhelms, D. (2001). "Hellas as a possible site of ancient ice-covered lakes on Mars" (PDF). Icarus. 154 (2): 258–276. Bibcode:2001Icar..154..258M. doi:10.1006/icar.2001.6736. hdl:2060/20020050249. S2CID 122991710. Archived (PDF) from the original on October 9, 2021. Retrieved July 7, 2017.
  51. ^ Weitz, C.; Parker, T. (2000). "New evidence that the Valles Marineris interior deposits formed in standing bodies of water" (PDF). Lunar and Planetary Science. XXXI: 1693. Bibcode:2000LPI....31.1693W. Archived (PDF) from the original on July 6, 2021. Retrieved December 19, 2010.
  52. "New Signs That Ancient Mars Was Wet". Space.com. October 28, 2008. Archived from the original on November 10, 2021. Retrieved October 3, 2011.
  53. Squyres, S. W.; et al. (1992). "Ice in the Martian Regolith". In Kieffer, H. H. (ed.). Mars. Tucson, Arizona: University of Arizona Press. pp. 523–554. ISBN 978-0-8165-1257-7.
  54. ^ Head, J.; Marchant, D. (2006). "Modifications of the walls of a Noachian crater in Northern Arabia Terra (24 E, 39 N) during northern mid-latitude Amazonian glacial epochs on Mars: Nature and evolution of Lobate Debris Aprons and their relationships to lineated valley fill and glacial systems (abstract)". Lunar and Planetary Science. 37: 1128.
  55. Head, J.; et al. (2006). "Modification if the dichotomy boundary on Mars by Amazonian mid-latitude regional glaciation". Geophysical Research Letters. 33 (8): 33. Bibcode:2006GeoRL..33.8S03H. doi:10.1029/2005gl024360. S2CID 9653193.
  56. Head, J.; Marchant, D. (2006). "Evidence for global-scale northern mid-latitude glaciation in the Amazonian period of Mars: Debris-covered glacial and valley glacial deposits in the 30–50 N latitude band". Lunar and Planetary Science. 37: 1127.
  57. ^ Lewis, Richard (April 23, 2008). "Glaciers Reveal Martian Climate Has Been Recently Active". Brown University. Archived from the original on October 12, 2013. Retrieved October 12, 2009.
  58. ^ Plaut, Jeffrey J.; Safaeinili, Ali; Holt, John W.; Phillips, Roger J.; Head, James W.; Seu, Roberto; Putzig, Nathaniel E.; Frigeri, Alessandro (2009). "Radar Evidence for Ice in Lobate Debris Aprons in the Mid-Northern Latitudes of Mars" (PDF). Geophysical Research Letters. 36 (2): n/a. Bibcode:2009GeoRL..36.2203P. doi:10.1029/2008GL036379. S2CID 17530607. Archived from the original (PDF) on January 23, 2021. Retrieved April 4, 2010.
  59. Wall, Mike (March 25, 2011). "Q & A with Mars Life-Seeker Chris Carr". Space.com. Archived from the original on June 3, 2013. Retrieved June 16, 2013.
  60. ^ Dartnell, L. R.; Desorgher; Ward; Coates (January 30, 2007). "Modelling the surface and subsurface Martian radiation environment: Implications for astrobiology". Geophysical Research Letters. 34 (2): L02207. Bibcode:2007GeoRL..34.2207D. doi:10.1029/2006GL027494. S2CID 59046908. Archived from the original on October 7, 2019. Retrieved July 23, 2019. The damaging effect of ionising radiation on cellular structure is one of the prime limiting factors on the survival of life in potential astrobiological habitats.
  61. ^ Dartnell, L. R.; Desorgher, L.; Ward, J. M.; Coates, A. J. (2007). "Martian sub-surface ionising radiation: biosignatures and geology" (PDF). Biogeosciences. 4 (4): 545–558. Bibcode:2007BGeo....4..545D. doi:10.5194/bg-4-545-2007. Archived (PDF) from the original on July 9, 2014. Retrieved September 1, 2019. This ionising radiation field is deleterious to the survival of dormant cells or spores and the persistence of molecular biomarkers in the subsurface, and so its characterisation. ... Even at a depth of 2 meters beneath the surface, any microbes would likely be dormant, cryopreserved by the current freezing conditions, and so metabolically inactive and unable to repair cellular degradation as it occurs.
  62. ^ de Morais, A. (2012). "A Possible Biochemical Model for Mars" (PDF). 43rd Lunar and Planetary Science Conference. Archived (PDF) from the original on July 6, 2021. Retrieved June 5, 2013. The extensive volcanism at that time much possibly created subsurface cracks and caves within different strata, and the liquid water could have been stored in these subterraneous places, forming large aquifers with deposits of saline liquid water, minerals organic molecules, and geothermal heat – ingredients for life as we know on Earth.
  63. ^ Didymus, JohnThomas (January 21, 2013). "Scientists find evidence Mars subsurface could hold life". Digital Journal – Science. Archived from the original on December 13, 2013. Retrieved June 16, 2013. There can be no life on the surface of Mars, because it is bathed in radiation and it's completely frozen. Life in the subsurface would be protected from that. – Prof. Parnell.
  64. ^ Steigerwald, Bill (January 15, 2009). "Martian Methane Reveals the Red Planet is not a Dead Planet". NASA's Goddard Space Flight Center. NASA. Archived from the original on January 17, 2009. Retrieved June 16, 2013. If microscopic Martian life is producing the methane, it likely resides far below the surface, where it's still warm enough for liquid water to exist
  65. ^ Staff (November 22, 2016). "Scalloped Terrain Led to Finding of Buried Ice on Mars". NASA. Archived from the original on November 24, 2016. Retrieved November 23, 2016.
  66. ^ "Lake of frozen water the size of New Mexico found on Mars – NASA". The Register. November 22, 2016. Archived from the original on November 23, 2016. Retrieved November 23, 2016.
  67. ^ "Mars Ice Deposit Holds as Much Water as Lake Superior". NASA. November 22, 2016. Archived from the original on November 23, 2016. Retrieved November 23, 2016.
  68. ^ Orosei, R.; et al. (July 25, 2018). "Radar evidence of subglacial liquid water on Mars". Science. 361 (6401): 490–493. arXiv:2004.04587. Bibcode:2018Sci...361..490O. doi:10.1126/science.aar7268. hdl:11573/1148029. PMID 30045881. S2CID 206666385.
  69. Halton, Mary (July 25, 2018). "Liquid water 'lake' revealed on Mars". BBC News. Archived from the original on July 25, 2018. Retrieved July 26, 2018.
  70. Grima, Cyril; Mouginot, Jeremie; Kofman, Wlodek; Herique, A.; Beck, P. (January 2022). "The Basal Detectability of an Ice-Covered Mars by MARSIS" (PDF). Geophysical Research Letters. 49 (2). Bibcode:2022GeoRL..4996518G. doi:10.1029/2021GL096518. S2CID 246327935. Archived (PDF) from the original on June 11, 2024. Retrieved August 29, 2022.
  71. Howell, Elizabeth (January 25, 2022). "Mars' suspected underground lake could be just volcanic rock, new study finds". Space.com. Archived from the original on April 4, 2022. Retrieved April 4, 2022.
  72. Wilson, Jim; Dunbar, Brian (August 3, 2017). "Mars Overview". NASA.gov. Archived from the original on December 9, 2021.
  73. Lauro, Sebastian Emanuel; et al. (September 28, 2020). "Multiple subglacial water bodies below the south pole of Mars unveiled by new MARSIS data". Nature Astronomy. 5: 63–70. arXiv:2010.00870. Bibcode:2021NatAs...5...63L. doi:10.1038/s41550-020-1200-6. S2CID 222125007. Archived from the original on December 31, 2021. Retrieved September 29, 2020.
  74. O'Callaghan, Jonathan (September 28, 2020). "Water on Mars: discovery of three buried lakes intrigues scientists". Nature. doi:10.1038/d41586-020-02751-1. PMID 32989309. S2CID 222155190. Archived from the original on January 11, 2022. Retrieved September 29, 2020.
  75. Hautaluoma, Grey; Johnson, Alana; Good, Andrew (March 16, 2021). "New Study Challenges Long-Held Theory of Fate of Mars' Water". NASA. Archived from the original on October 11, 2021. Retrieved March 16, 2021.
  76. Mack, Eric (March 16, 2021). "Mars hides an ancient ocean beneath its surface". CNET. Archived from the original on March 17, 2021. Retrieved March 16, 2021.
  77. Scheller, E. L.; et al. (March 16, 2021). "Long-term drying of Mars by sequestration of ocean-scale volumes of water in the crust". Science. 372 (6537): 56–62. Bibcode:2021Sci...372...56S. doi:10.1126/science.abc7717. PMC 8370096. PMID 33727251.
  78. Chang, Kenneth (March 19, 2021). "The Water on Mars Vanished. This Might Be Where It Went". The New York Times. Archived from the original on November 24, 2021. Retrieved March 19, 2021.
  79. Wright, Vashan; Morzfeld, Matthias; Manga, Michael (August 12, 2024). David Kohlstedt (ed.). "Liquid water in the Martian mid-crust". PNAS. 121 (35): e2409983121. Bibcode:2024PNAS..12109983W. doi:10.1073/pnas.2409983121. PMC 11363344. PMID 39133865.
  80. Sheehan, 1996, p. 35.
  81. Kieffer, H.H.; Jakosky, B.M; Snyder, C. (1992). "The Planet Mars: From Antiquity to the Present". In Kieffer, H.H.; et al. (eds.). Mars. Tucson, AZ: University of Arizona Press. pp. 1–33.
  82. hartmann, 2003, p. 20.
  83. Sheehan, 1996, p. 150.
  84. Spinrad, H.; Münch, G.; Kaplan, L. D. (1963). "Letter to the Editor: the Detection of Water Vapor on Mars". Astrophysical Journal. 137: 1319. Bibcode:1963ApJ...137.1319S. doi:10.1086/147613.
  85. Leighton, R.B.; Murray, B.C. (1966). "Behavior of Carbon Dioxide and Other Volatiles on Mars". Science. 153 (3732): 136–144. Bibcode:1966Sci...153..136L. doi:10.1126/science.153.3732.136. PMID 17831495. S2CID 28087958.
  86. Leighton, R.B.; Murray, B.C.; Sharp, R.P.; Allen, J.D.; Sloan, R.K. (1965). "Mariner IV Photography of Mars: Initial Results". Science. 149 (3684): 627–630. Bibcode:1965Sci...149..627L. doi:10.1126/science.149.3684.627. PMID 17747569. S2CID 43407530.
  87. Kliore, A.; et al. (1965). "Occultation Experiment: Results of the First Direct Measurement of Mars's Atmosphere and Ionosphere". Science. 149 (3689): 1243–1248. Bibcode:1965Sci...149.1243K. doi:10.1126/science.149.3689.1243. PMID 17747455. S2CID 34369864.
  88. Grotzinger, John P. (January 24, 2014). "Introduction to Special Issue – Habitability, Taphonomy, and the Search for Organic Carbon on Mars". Science. 343 (6169): 386–387. Bibcode:2014Sci...343..386G. doi:10.1126/science.1249944. PMID 24458635.
  89. Various (January 24, 2014). "Special Issue – Table of Contents – Exploring Martian Habitability". Science. 343 (6169): 345–452. Archived from the original on January 29, 2014. Retrieved June 30, 2022.
  90. Grotzinger, J.P.; et al. (January 24, 2014). "A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars". Science. 343 (6169): 1242777. Bibcode:2014Sci...343A.386G. CiteSeerX 10.1.1.455.3973. doi:10.1126/science.1242777. PMID 24324272. S2CID 52836398.
  91. ^ Rodriguez, J. Alexis P.; Kargel, Jeffrey S.; Baker, Victor R.; Gulick, Virginia C.; et al. (September 8, 2015). "Martian outflow channels: How did their source aquifers form, and why did they drain so rapidly?". Scientific Reports. 5: 13404. Bibcode:2015NatSR...513404R. doi:10.1038/srep13404. PMC 4562069. PMID 26346067.
  92. "Ancient Mars Water Existed Deep Underground". Space.com. July 2, 2012. Archived from the original on May 9, 2021. Retrieved July 13, 2012.
  93. Craddock, R.; Howard, A. (2002). "The case for rainfall on a warm, wet early Mars". Journal of Geophysical Research. 107 (E11): E11. Bibcode:2002JGRE..107.5111C. doi:10.1029/2001je001505.
  94. Head, J.; et al. (2006). "Extensive valley glacier deposits in the northern mid-latitudes of Mars: Evidence for the late Amazonian obliquity-driven climate change". Earth and Planetary Science Letters. 241 (3–4): 663–671. Bibcode:2006E&PSL.241..663H. doi:10.1016/j.epsl.2005.11.016.
  95. Staff (October 28, 2008). "NASA Mars Reconnaissance Orbiter Reveals Details of a Wetter Mars". SpaceRef. NASA. Archived from the original on February 2, 2013.
  96. ^ Lunine, Jonathan I.; Chambers, John; et al. (September 2003). "The Origin of Water on Mars". Icarus. 165 (1): 1–8. Bibcode:2003Icar..165....1L. doi:10.1016/S0019-1035(03)00172-6.
  97. Soderblom, L. A.; Bell, J. F. (2008). "Exploration of the Martian Surface: 1992–2007". In Bell, J. F. (ed.). The Martian Surface: Composition, Mineralogy, and Physical Properties. Cambridge University Press. pp. 3–19. Bibcode:2008mscm.book.....B. ISBN 9780521866989.
  98. Ming, D. W.; Morris, R. V.; Clark, R. C. (2008). "Aqueous Alteration on Mars". In Bell, J. F. (ed.). The Martian Surface: Composition, Mineralogy, and Physical Properties. Cambridge University Press. pp. 519–540. Bibcode:2008mscm.book.....B. ISBN 9780521866989.
  99. Lewis, J. S. (1997). Physics and Chemistry of the Solar System (revised ed.). San Diego, California: Academic Press. ISBN 978-0-12-446742-2.
  100. Lasue, J.; et al. (2013). "Quantitative Assessments of the Martian Hydrosphere". Space Science Reviews. 174 (1–4): 155–212. Bibcode:2013SSRv..174..155L. doi:10.1007/s11214-012-9946-5. S2CID 122747118.
  101. Clark, B. C.; et al. (2005). "Chemistry and Mineralogy of Outcrops at Meridiani Planum". Earth and Planetary Science Letters. 240 (1): 73–94. Bibcode:2005E&PSL.240...73C. doi:10.1016/j.epsl.2005.09.040.
  102. Bloom, A. L. (1978). Geomorphology: A Systematic Analysis of Late Cenozoic Landforms. Englewood Cliffs, New Jersey: Prentice-Hall. p. 114. ISBN 9780133530865.
  103. Boynton, W. V.; et al. (2009). "Evidence for Calcium Carbonate at the Mars Phoenix Landing Site". Science. 325 (5936): 61–4. Bibcode:2009Sci...325...61B. doi:10.1126/science.1172768. PMID 19574384. S2CID 26740165.
  104. Gooding, J. L.; Arvidson, R. E.; Zolotov, M. Yu. (1992). "Physical and Chemical Weathering". In Kieffer, H. H.; et al. (eds.). Mars. Tucson, Arizona: University of Arizona Press. pp. 626–651. ISBN 978-0-8165-1257-7.
  105. Melosh, H. J. (2011). Planetary Surface Processes. Cambridge University Press. p. 296. ISBN 978-0-521-51418-7.
  106. Abramov, O.; Kring, D. A. (2005). "Impact-Induced Hydrothermal Activity on Early Mars". Journal of Geophysical Research. 110 (E12): E12S09. Bibcode:2005JGRE..11012S09A. doi:10.1029/2005JE002453. S2CID 20787765.
  107. Schrenk, M. O.; Brazelton, W. J.; Lang, S. Q. (2013). "Serpentinization, Carbon, and Deep Life". Reviews in Mineralogy & Geochemistry. 75 (1): 575–606. Bibcode:2013RvMG...75..575S. doi:10.2138/rmg.2013.75.18. S2CID 8600635.
  108. Baucom, Martin (March–April 2006). "Life on Mars?". American Scientist. 94 (2): 119. doi:10.1511/2006.58.119. Archived from the original on June 15, 2017. Retrieved October 23, 2013.
  109. Chassefière, E; Langlais, B.; Quesnel, Y.; Leblanc, F. (2013), "The Fate of Early Mars' Lost Water: The Role of Serpentinization" (PDF), EPSC Abstracts, vol. 8, p. EPSC2013-188, archived (PDF) from the original on July 6, 2021, retrieved October 23, 2013
  110. Ehlmann, B. L.; Mustard, J. F.; Murchie, S. L. (2010). "Geologic Setting of Serpentine Deposits on Mars" (PDF). Geophysical Research Letters. 37 (6): L06201. Bibcode:2010GeoRL..37.6201E. doi:10.1029/2010GL042596. S2CID 10738206. Archived (PDF) from the original on September 18, 2021. Retrieved July 23, 2019.
  111. Bloom, A. L. (1978). Geomorphology: A Systematic Analysis of Late Cenozoic Landforms. Englewood Cliffs, New Jersey: Prentice-Hall. ISBN 9780133530865.., p. 120
  112. Melosh, H.J., 2011. Planetary surface processes. Cambridge Univ. Press., pp. 500
  113. Ody, A.; et al. (2013). "Global Investigation of Olivine on Mars: Insights into Crust and Mantle Compositions". Journal of Geophysical Research. 118 (2): 234–262. Bibcode:2013JGRE..118..234O. doi:10.1029/2012JE004149.
  114. Swindle, T. D.; Treiman, A. H.; Lindstrom, D. J.; Burkland, M. K.; Cohen, B. A.; Grier, J. A.; Li, B.; Olson, E. K. (2000). "Noble Gases in Iddingsite from the Lafayette meteorite: Evidence for Liquid water on Mars in the last few hundred million years". Meteoritics and Planetary Science. 35 (1): 107–115. Bibcode:2000M&PS...35..107S. doi:10.1111/j.1945-5100.2000.tb01978.x.
  115. Head, J.; Kreslavsky, M. A.; Ivanov, M. A.; Hiesinger, H.; Fuller, E. R.; Pratt, S. (2001). "Water in Middle Mars History: New Insights From MOLA Data". AGU Spring Meeting Abstracts. 2001: P31A–02 INVITED. Bibcode:2001AGUSM...P31A02H.
  116. Head, J.; et al. (2001). "Exploration for standing Bodies of Water on Mars: When Were They There, Where did They go, and What are the Implications for Astrobiology?". AGU Fall Meeting Abstracts. 21: P21C–03. Bibcode:2001AGUFM.P21C..03H.
  117. Meyer, C. (2012) The Martian Meteorite Compendium; National Aronautics and Space Administration. http://curator.jsc.nasa.gov/antmet/mmc/ Archived May 7, 2021, at the Wayback Machine.
  118. "Shergotty Meteorite – JPL, NASA". NASA. Archived from the original on January 18, 2011. Retrieved December 19, 2010.
  119. Hamiliton, W.; Christensen, Philip R.; McSween, Harry Y. (1997). "Determination of Martian meteorite lithologies and mineralogies using vibrational spectroscopy". Journal of Geophysical Research. 102 (E11): 25593–25603. Bibcode:1997JGR...10225593H. doi:10.1029/97JE01874.
  120. Treiman, A. (2005). "The nakhlite meteorites: Augite-rich igneous rocks from Mars" (PDF). Chemie der Erde – Geochemistry. 65 (3): 203–270. Bibcode:2005ChEG...65..203T. doi:10.1016/j.chemer.2005.01.004. Archived (PDF) from the original on March 27, 2009. Retrieved September 8, 2006.
  121. Agee, Carl B.; Wilson, Nicole V.; McCubbin, Francis M.; Ziegler, Karen; Polyak, Victor J.; Sharp, Zachary D.; Asmerom, Yemane; Nunn, Morgan H.; Shaheen, Robina; Thiemens, Mark H.; Steele, Andrew; Fogel, Marilyn L.; Bowden, Roxane; Glamoclija, Mihaela; Zhang, Zhisheng; Elardo, Stephen M. (February 15, 2013). "Unique Meteorite from Early Amazonian Mars: Water-Rich Basaltic Breccia Northwest Africa 7034". Science. 339 (6121): 780–785. Bibcode:2013Sci...339..780A. doi:10.1126/science.1228858. PMID 23287721. S2CID 206544554.
  122. Agree, C.; et al. (2013). "Unique Meteorite from Early Amazonian Mars: Water-Rich Basaltic Breccia Northwest Africa 7034". Science. 339 (6121): 780–785. Bibcode:2013Sci...339..780A. doi:10.1126/science.1228858. PMID 23287721. S2CID 206544554.
  123. McKay, D. Jr.; Gibson, E. K.; Thomas-Keprta, K. L.; Vali, H.; Romanek, C. S.; Clemett, S. J.; Chillier, X. D.; Maechling, C. R.; Zare, R. N. (1996). "Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite AL84001". Science. 273 (5277): 924–930. Bibcode:1996Sci...273..924M. doi:10.1126/science.273.5277.924. PMID 8688069. S2CID 40690489.
  124. Gibbs, W.; Powell, C. (August 19, 1996). "Bugs in the Data?". Scientific American. Archived from the original on October 17, 2012. Retrieved December 19, 2010.
  125. "Controversy Continues: Mars Meteorite Clings to Life – Or Does It?". Space.com. March 20, 2002. Archived from the original on April 4, 2002. Retrieved November 27, 2009.
  126. Bada, J.; Glavin, D. P.; McDonald, G. D.; Becker, L. (1998). "A Search for Endogenous Amino Acids in Martian Meteorite AL84001". Science. 279 (5349): 362–365. Bibcode:1998Sci...279..362B. doi:10.1126/science.279.5349.362. PMID 9430583. S2CID 32301715.
  127. ^ Garcia-Ruiz, Juan-Manuel Garcia-Ruiz (December 30, 1999). "Morphological behavior of inorganic precipitation systems". In Hoover, Richard B. (ed.). Instruments, Methods, and Missions for Astrobiology II. Vol. 3755. pp. 74–82. doi:10.1117/12.375088. S2CID 84764520. It is concluded that 'morphology cannot be used unambiguously as a tool for primitive life detection'. {{cite book}}: |journal= ignored (help)
  128. Agresti; House; Jögi; Kudryavstev; McKeegan; Runnegar; Schopf; Wdowiak (December 3, 2008). "Detection and geochemical characterization of Earth's earliest life". NASA Astrobiology Institute. NASA. Archived from the original on January 23, 2013. Retrieved January 15, 2013.
  129. Schopf, J. William; Kudryavtsev, Anatoliy B.; Czaja, Andrew D.; Tripathi, Abhishek B. (April 28, 2007). "Evidence of Archean life: Stromatolites and microfossils" (PDF). Precambrian Research. 158 (3–4): 141–155. Bibcode:2007PreR..158..141S. doi:10.1016/j.precamres.2007.04.009. Archived from the original (PDF) on December 24, 2012. Retrieved January 15, 2013.
  130. ^ Raeburn, P. (1998). "Uncovering the Secrets of the Red Planet Mars". National Geographic. Washington D.C.
  131. ^ Moore, P.; et al. (1990). The Atlas of the Solar System. New York: Mitchell Beazley Publishers.
  132. Berman, Daniel C.; Crown, David A.; Bleamaster, Leslie F. (2009). "Degradation of mid-latitude craters on Mars". Icarus. 200 (1): 77–95. Bibcode:2009Icar..200...77B. doi:10.1016/j.icarus.2008.10.026.
  133. Fassett, Caleb I.; Head, James W. (2008). "The timing of martian valley network activity: Constraints from buffered crater counting". Icarus. 195 (1): 61–89. Bibcode:2008Icar..195...61F. doi:10.1016/j.icarus.2007.12.009.
  134. "HiRISE | HiPOD: 29 Jul 2023". Archived from the original on July 31, 2023. Retrieved July 31, 2023.
  135. Malin, Michael C. (2010). "An overview of the 1985–2006 Mars Orbiter Camera science investigation". The Mars Journal. 5: 1–60. Bibcode:2010IJMSE...5....1M. doi:10.1555/mars.2010.0001. S2CID 128873687.
  136. "Sinuous Ridges Near Aeolis Mensae". University of Arizona. January 31, 2007. Archived from the original on March 5, 2016. Retrieved October 8, 2009.
  137. Zimbelman, J.; Griffin, L. (2010). "HiRISE images of yardangs and sinuous ridges in the lower member of the Medusae Fossae Formation, Mars". Icarus. 205 (1): 198–210. Bibcode:2010Icar..205..198Z. doi:10.1016/j.icarus.2009.04.003.
  138. Newsom, H.; Lanza, Nina L.; Ollila, Ann M.; Wiseman, Sandra M.; Roush, Ted L.; Marzo, Giuseppe A.; Tornabene, Livio L.; Okubo, Chris H.; Osterloo, Mikki M.; Hamilton, Victoria E.; Crumpler, Larry S. (2010). "Inverted channel deposits on the floor of Miyamoto crater, Mars". Icarus. 205 (1): 64–72. Bibcode:2010Icar..205...64N. doi:10.1016/j.icarus.2009.03.030.
  139. Morgan, A. M.; Howard, A. D.; Hobley, D. E. J.; Moore, J. M.; Dietrich, W. E.; Williams, R. M. E.; Burr, D. M.; Grant, J. A.; Wilson, S. A.; Matsubara, Y. (2014). "Sedimentology and climatic environment of alluvial fans in the martian Saheki crater and a comparison with terrestrial fans in the Atacama Desert" (PDF). Icarus. 229: 131–156. Bibcode:2014Icar..229..131M. doi:10.1016/j.icarus.2013.11.007. Archived (PDF) from the original on July 20, 2018. Retrieved July 23, 2019.
  140. ^ Weitz, C.; Milliken, R.E.; Grant, J.A.; McEwen, A.S.; Williams, R.M.E.; Bishop, J.L.; Thomson, B.J. (2010). "Mars Reconnaissance Orbiter observations of light-toned layered deposits and associated fluvial landforms on the plateaus adjacent to Valles Marineris". Icarus. 205 (1): 73–102. Bibcode:2010Icar..205...73W. doi:10.1016/j.icarus.2009.04.017.
  141. ^ Zendejas, J.; Segura, A.; Raga, A.C. (December 2010). "Atmospheric mass loss by stellar wind from planets around main sequence M stars". Icarus. 210 (2): 539–1000. arXiv:1006.0021. Bibcode:2010Icar..210..539Z. doi:10.1016/j.icarus.2010.07.013. S2CID 119243879.
  142. ^ Cabrol, N.; Grin, E., eds. (2010). Lakes on Mars. New York: Elsevier.
  143. Goldspiel, J.; Squires, S. (2000). "Groundwater sapping and valley formation on Mars". Icarus. 148 (1): 176–192. Bibcode:2000Icar..148..176G. doi:10.1006/icar.2000.6465.
  144. ^ Carr, Michael H. The Surface of Mars. Cambridge Planetary Science. Cambridge University Press. ISBN 978-0-511-26688-1.
  145. Nedell, S.; Squyres, Steven W.; Andersen, David W. (1987). "Origin and evolution of the layered deposits in the Valles Marineris, Mars". Icarus. 70 (3): 409–441. Bibcode:1987Icar...70..409N. doi:10.1016/0019-1035(87)90086-8.
  146. Matsubara, Yo; Howard, Alan D.; Drummond, Sarah A. (2011). "Hydrology of early Mars: Lake basins". Journal of Geophysical Research: Planets. 116 (116.E4). Bibcode:2011JGRE..116.4001M. doi:10.1029/2010JE003739.
  147. "Spectacular Mars images reveal evidence of ancient lakes". Sciencedaily.com. January 4, 2010. Archived from the original on August 23, 2016. Retrieved February 28, 2018.
  148. Gupta, Sanjeev; Warner, Nicholas; Kim, Rack; Lin, Yuan; Muller, Jan; -1#Jung-, Shih- (2010). "Hesperian equatorial thermokarst lakes in Ares Vallis as evidence for transient warm conditions on Mars". Geology. 38 (1): 71–74. Bibcode:2010Geo....38...71W. doi:10.1130/G30579.1.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  149. ^ Brown, Dwayne; Cole, Steve; Webster, Guy; Agle, D.C. (September 27, 2012). "NASA Rover Finds Old Streambed On Martian Surface". NASA.
  150. ^ NASA (September 27, 2012). "NASA's Curiosity Rover Finds Old Streambed on Mars – video (51:40)". NASAtelevision. Archived from the original on November 13, 2021.
  151. ^ Chang, Alicia (September 27, 2012). "Mars rover Curiosity finds signs of ancient stream". Associated Press.
  152. "NASA Rover Finds Conditions Once Suited for Ancient Life on Mars". NASA. March 12, 2013. Archived from the original on July 3, 2013. Retrieved June 16, 2013.
  153. Parker, Timothy J.; Currey, Donald R. (April 2001). "Extraterrestrial coastal geomorphology". Geomorphology. 37 (3–4): 303–328. Bibcode:2001Geomo..37..303P. doi:10.1016/s0169-555x(00)00089-1. ISSN 0169-555X.
  154. de Pablo, M.A.; Druet, M. (2002). "Description, Origin and Evolution of a Basin in Sirenum Terrae, Mars, Including Atlantis Chaos: a Preliminary Study" (PDF). Lunar and Planetary Science Conference XXXIII 11-15 March, 2002: 1032. Bibcode:2002LPI....33.1032D. abstract no.1032.
  155. de Pablo, M.A. (2003). "Mola Topographic Data Analysis of the Atlantis Paleolake Basin, Sirenum Terrae, Mars" (PDF). Sixth International Conference on Mars. 20–25 July, 2003. Pasadena, California: 3037. Bibcode:2003mars.conf.3037D. abstract #3037.
  156. "Mars Study Yields Clues to Possible Cradle of Life". Astrobiology Magazine. October 8, 2017. Archived from the original on October 11, 2017.
  157. "Mars' Eridania Basin Once Held Vast Sea". Sci-News.com. October 9, 2017. Archived from the original on April 22, 2023. Retrieved June 6, 2022.
  158. ^ Michalski, J.; et al. (2017). "Ancient hydrothermal seafloor deposits in Eridania basin on Mars". Nature Communications. 8: 15978. Bibcode:2017NatCo...815978M. doi:10.1038/ncomms15978. PMC 5508135. PMID 28691699.
  159. Irwin, R.; et al. (2004). "Geomorphology of Ma'adim Vallis, Mars, and associated paleolake basins". Journal of Geophysical Research: Planets. 109 (E12): E12009. Bibcode:2004JGRE..10912009I. doi:10.1029/2004je002287. S2CID 12637702.
  160. Hynek, B.; et al. (2010). "Updated global map of Martian valley networks and implications for climate and hydrologic processes". Journal of Geophysical Research. 115 (E9): E09008. Bibcode:2010JGRE..115.9008H. doi:10.1029/2009je003548.
  161. Di Achille, Gaetano; Hynek, Brian M. (2010). "Ancient ocean on Mars supported by global distribution of deltas and valleys". Nature Geoscience. 3 (7): 459–463. Bibcode:2010NatGe...3..459D. doi:10.1038/ngeo891.
  162. Carr, M. H. (1979). "Formation of Martian flood features by release of water from confined aquifers" (PDF). Journal of Geophysical Research. 84: 2995–3007. Bibcode:1979JGR....84.2995C. doi:10.1029/JB084iB06p02995. Archived from the original (PDF) on September 24, 2015. Retrieved June 16, 2013.
  163. Baker, V.; Milton, D. (1974). "Erosion by Catastrophic Floods on Mars and Earth". Icarus. 23 (1): 27–41. Bibcode:1974Icar...23...27B. doi:10.1016/0019-1035(74)90101-8.
  164. "Mars Global Surveyor MOC2-862 Release". Malin Space Science Systems. Archived from the original on April 12, 2009. Retrieved January 16, 2012.
  165. Andrews-Hanna, Jeffrey C.; Phillips, Roger J.; Zuber, Maria T. (2007). "Meridiani Planum and the global hydrology of Mars". Nature. 446 (7132): 163–136. Bibcode:2007Natur.446..163A. doi:10.1038/nature05594. PMID 17344848. S2CID 4428510.
  166. Irwin; Rossman, P.; Craddock, Robert A.; Howard, Alan D. (2005). "Interior channels in Martian valley networks: Discharge and runoff production". Geology. 33 (6): 489–492. Bibcode:2005Geo....33..489I. doi:10.1130/g21333.1. S2CID 5663347.
  167. Jakosky, Bruce M. (1999). "Water, Climate, and Life". Science. 283 (5402): 648–649. doi:10.1126/science.283.5402.648. PMID 9988657. S2CID 128560172.
  168. Lamb, Michael P.; et al. (2006). "Can springs cut canyons into rock?". Journal of Geophysical Research: Planets. 111 (111.E7). Bibcode:2006JGRE..111.7002L. doi:10.1029/2005JE002663. Archived from the original on April 22, 2023. Retrieved June 23, 2022.
  169. ^ Grotzinger, J. P.; Arvidson, R. E.; Bell III, J. F.; Calvin, W.; Clark, B. C.; Fike, D. A.; Golombek, M.; Greeley, R.; Haldemann, A.; Herkenhoff, K. E.; Jolliff, B. L.; Knoll, A. H.; Malin, M.; McLennan, S. M.; Parker, T.; Soderblom, L.; Sohl-Dickstein, J. N.; Squyres, S. W.; Tosca, N. J.; Watters, W. A. (November 25, 2005). "Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum". Earth and Planetary Science Letters. 240 (1): 11–72. Bibcode:2005E&PSL.240...11G. doi:10.1016/j.epsl.2005.09.039. ISSN 0012-821X.
  170. Michalski, Joseph R.; Niles, Paul B.; Cuadros, Javier; Parnell, John; Rogers, A. Deanne; Wright, Shawn P. (January 20, 2013). "Groundwater activity on Mars and implications for a deep biosphere". Nature Geoscience. 6 (2): 133–138. Bibcode:2013NatGe...6..133M. doi:10.1038/ngeo1706. Here we present a conceptual model of subsurface habitability of Mars and evaluate evidence for groundwater upwelling in deep basins.
  171. ^ Zuber, Maria T. (2007). "Planetary Science: Mars at the tipping point". Nature. 447 (7146): 785–786. Bibcode:2007Natur.447..785Z. doi:10.1038/447785a. PMID 17568733. S2CID 4427572.
  172. Andrews-Hanna, J. C.; Zuber, M. T.; Arvidson, R. E.; Wiseman, S. M. (2010). "Early Mars hydrology: Meridiani playa deposits and the sedimentary record of Arabia Terra". Journal of Geophysical Research. 115 (E6): E06002. Bibcode:2010JGRE..115.6002A. doi:10.1029/2009JE003485. hdl:1721.1/74246.
  173. McLennan, S. M.; et al. (2005). "Provenance and diagenesis of the evaporitebearing Burns formation, Meridiani Planum, Mars". Earth and Planetary Science Letters. 240 (1): 95–121. Bibcode:2005E&PSL.240...95M. doi:10.1016/j.epsl.2005.09.041.
  174. Squyres, S. W.; Knoll, A. H. (2005). "Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars". Earth and Planetary Science Letters. 240 (1): 1–10. Bibcode:2005E&PSL.240....1S. doi:10.1016/j.epsl.2005.09.038..
  175. Squyres, S. W.; et al. (2006). "Two years at Meridiani Planum: Results from the Opportunity rover" (PDF). Science. 313 (5792): 1403–1407. Bibcode:2006Sci...313.1403S. doi:10.1126/science.1130890. PMID 16959999. S2CID 17643218. Archived (PDF) from the original on August 31, 2021. Retrieved March 16, 2019..
  176. Wiseman, M.; Andrews-Hanna, J. C.; Arvidson, R. E.; Mustard, J. F.; Zabrusky, K. J. (2011). Distribution of Hydrated Sulfates Across Arabia Terra Using CRISM Data: Implications for Martian Hydrology (PDF). 42nd Lunar and Planetary Science Conference. Archived (PDF) from the original on September 18, 2021. Retrieved October 3, 2018.
  177. Andrews-Hanna, Jeffrey C.; Lewis, Kevin W. (2011). "Early Mars hydrology: 2. Hydrological evolution in the Noachian and Hesperian epochs". Journal of Geophysical Research: Planets. 116 (E2): E2. Bibcode:2011JGRE..116.2007A. doi:10.1029/2010je003709. S2CID 17293290.
  178. ESA Staff (February 28, 2019). "First Evidence of 'Planet-Wide Groundwater System' on Mars Found". European Space Agency. Archived from the original on September 15, 2019. Retrieved February 28, 2019.
  179. Houser, Kristin (February 28, 2019). "First Evidence of 'Planet-Wide Groundwater System' on Mars Found". Futurism.com. Archived from the original on January 19, 2021. Retrieved February 28, 2019.
  180. Salese, Francesco; Pondrelli, Monica; Neeseman, Alicia; Schmidt, Gene; Ori, Gian Gabriele (2019). "Geological Evidence of Planet-Wide Groundwater System on Mars". Journal of Geophysical Research: Planets. 124 (2): 374–395. Bibcode:2019JGRE..124..374S. doi:10.1029/2018JE005802. PMC 6472477. PMID 31007995.
  181. "Mars: Planet-Wide Groundwater System – New Geological Evidence". February 19, 2019. Archived from the original on August 18, 2020. Retrieved March 2, 2019.
  182. Andrews, Robin George (September 20, 2019). "Mysterious magnetic pulses discovered on Mars". National Geographic Society. Archived from the original on September 20, 2019. Retrieved September 20, 2019.
  183. Brandenburg, John E. (1987), "The Paleo-Ocean of Mars", MECA Symposium on Mars: Evolution of its Climate and Atmosphere, Lunar and Planetary Institute, pp. 20–22, Bibcode:1987meca.symp...20B
  184. Clifford, S. M.; Parker, T. J. (2001). "The Evolution of the Martian Hydrosphere: Implications for the Fate of a Primordial Ocean and the Current State of the Northern Plains". Icarus. 154 (1): 40–79. Bibcode:2001Icar..154...40C. doi:10.1006/icar.2001.6671. S2CID 13694518.
  185. Smith, D.; et al. (1999). "The Gravity Field of Mars: Results from Mars Global Surveyor" (PDF). Science. 286 (5437): 94–97. Bibcode:1999Sci...286...94S. doi:10.1126/science.286.5437.94. PMID 10506567. Archived from the original (PDF) on March 5, 2016. Retrieved December 19, 2010.
  186. Read, Peter L.; Lewis, S. R. (2004). The Martian Climate Revisited: Atmosphere and Environment of a Desert Planet. Chichester, UK: Praxis. ISBN 978-3-540-40743-0. Archived from the original (Paperback) on July 24, 2011. Retrieved December 19, 2010.
  187. "Martian North Once Covered by Ocean". Astrobiology Magazine. November 26, 2009. Archived from the original on June 4, 2011. Retrieved December 19, 2010.
  188. "New Map Bolsters Case for Ancient Ocean on Mars". SPACE.com. November 23, 2009. Archived from the original on March 15, 2010. Retrieved November 24, 2009.
  189. Carr, M.; Head, J. (2003). "Oceans on Mars: An assessment of the observational evidence and possible fate". Journal of Geophysical Research. 108 (E5): 5042. Bibcode:2003JGRE..108.5042C. doi:10.1029/2002JE001963. S2CID 16367611.
  190. "Mars Ocean Hypothesis Hits the Shore". NASA Astrobiology. NASA. January 26, 2001. Archived from the original on February 20, 2012.
  191. Perron; Taylor, J.; et al. (2007). "Evidence for an ancient Martian ocean in the topography of deformed shorelines". Nature. 447 (7146): 840–843. Bibcode:2007Natur.447..840P. doi:10.1038/nature05873. PMID 17568743. S2CID 4332594.
  192. Kaufman, Marc (March 5, 2015). "Mars Had an Ocean, Scientists Say, Pointing to New Data". The New York Times. Archived from the original on March 7, 2020. Retrieved March 5, 2015.
  193. "Ancient Tsunami Evidence on Mars Reveals Life Potential". Astrobiology (Press release). Cornell University. May 20, 2016. Archived from the original on June 11, 2024. Retrieved May 30, 2016.
  194. Rodriguez, J. Alexis P.; Fairén, Alberto G.; Tanaka, Kenneth L.; Zarroca, Mario; Linares, Rogelio; Platz, Thomas; Komatsu, Goro; Miyamoto, Hideaki; Kargel, Jeffrey S.; Yan, Jianguo; Gulick, Virginia; Higuchi, Kana; Baker, Victor R.; Glines, Natalie (May 19, 2016). "Tsunami waves extensively resurfaced the shorelines of an early Martian ocean". Scientific Reports. 6 (1): 25106. Bibcode:2016NatSR...625106R. doi:10.1038/srep25106. PMC 4872529. PMID 27196957.
  195. "Ancient tsunami evidence on Mars reveals life potential". ScienceDaily (Press release). Cornell University. May 19, 2016. Archived from the original on October 9, 2021. Retrieved February 28, 2018.
  196. Andrews, Robin George (July 30, 2019). "When a Mega-Tsunami Drowned Mars, This Spot May Have Been Ground Zero". The New York Times. Archived from the original on December 14, 2021. Retrieved July 31, 2019.
  197. Costard, F.; et al. (June 26, 2019). "The Lomonosov Crater Impact Event: A Possible Mega-Tsunami Source on Mars". Journal of Geophysical Research: Planets. 124 (7): 1840–1851. Bibcode:2019JGRE..124.1840C. doi:10.1029/2019JE006008. hdl:20.500.11937/76439. S2CID 198401957.
  198. Schmidt, Frédéric; Way, Michael; et al. (2022). "Circumpolar ocean stability on Mars 3 Gy ago". Proceedings of the National Academy of Sciences. 119 (4). arXiv:2310.00461. Bibcode:2022PNAS..11912930S. doi:10.1073/pnas.2112930118. PMC 8795497. PMID 35042794.
  199. Stillman, D., et al. 2017. Characteristics of the numerous and widespread recurring slope lineae (RSL) in Valles Marineris, Mars. Icarus. Volume 285. Pages 195-210
  200. ^ Kostama, V.-P.; Kreslavsky, M. A.; Head, J. W. (June 3, 2006). "Recent high-latitude icy mantle in the northern plains of Mars: Characteristics and ages of emplacement". Geophysical Research Letters. 33 (11): L11201. Bibcode:2006GeoRL..3311201K. CiteSeerX 10.1.1.553.1127. doi:10.1029/2006GL025946. S2CID 17229252. Archived from the original on March 18, 2009. Retrieved October 8, 2009.
  201. ^ Heldmann, Jennifer L.; et al. (May 7, 2005). "Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions" (PDF). Journal of Geophysical Research. 110 (E5): Eo5004. Bibcode:2005JGRE..110.5004H. doi:10.1029/2004JE002261. hdl:2060/20050169988. S2CID 1578727. Archived from the original (PDF) on October 1, 2008. Retrieved October 8, 2009. 'conditions such as now occur on Mars, outside of the temperature-pressure stability regime of liquid water' … 'Liquid water is typically stable at the lowest elevations and at low latitudes on the planet, because the atmospheric pressure is greater than the vapor pressure of water and surface temperatures in equatorial regions can reach 220 K (−53 °C; −64 °F) for parts of the day.
  202. ^ Malin, Michael C.; Edgett, Kenneth S.; Posiolova, Liliya V.; McColley, Shawn M.; Dobrea, Eldar Z. Noe (December 8, 2006). "Present-Day Impact Cratering Rate and Contemporary Gully Activity on Mars". Science. 314 (5805): 1573–1577. Bibcode:2006Sci...314.1573M. doi:10.1126/science.1135156. PMID 17158321. S2CID 39225477.
  203. ^ Head, J. W.; Marchant, D. R; Kreslavsky, M. A. (2008). "Formation of gullies on Mars: Link to recent climate history and insolation microenvironments implicate surface water flow origin". PNAS. 105 (36): 13258–13263. Bibcode:2008PNAS..10513258H. doi:10.1073/pnas.0803760105. PMC 2734344. PMID 18725636.
  204. Henderson, Mark (December 7, 2006). "Water has been flowing on Mars within past five years, Nasa says". The Times. London. Archived from the original on April 22, 2023. Retrieved June 6, 2022.
  205. Malin, Michael C.; Edgett, Kenneth S. (2000). "Evidence for Recent Groundwater Seepage and Surface Runoff on Mars". Science. 288 (5475): 2330–2335. Bibcode:2000Sci...288.2330M. doi:10.1126/science.288.5475.2330. PMID 10875910. S2CID 14232446.
  206. Christensen, Philip R. (February 19, 2003). "Formation of recent martian gullies through melting of extensive water-rich snow deposits". Nature. 422 (6927): 45–48. Bibcode:2003Natur.422...45C. doi:10.1038/nature01436. ISSN 0028-0836. PMID 12594459. Archived from the original on June 11, 2024. Retrieved April 11, 2024.
  207. Rai Khuller, Aditya; Russel Christensen, Philip (February 2021). "Evidence of Exposed Dusty Water Ice within Martian Gullies". Journal of Geophysical Research: Planets. 126 (2). Bibcode:2021JGRE..12606539R. doi:10.1029/2020je006539. ISSN 2169-9097. Archived from the original on June 11, 2024. Retrieved April 11, 2024.
  208. Dickson, J. L.; Palumbo, A. M.; Head, J. W.; Kerber, L.; Fassett, C. I.; Kreslavsky, M. A. (2023). "Gullies on Mars could have formed by melting of water ice during periods of high obliquity". Science. 380 (6652): 1363–1367. Bibcode:2023Sci...380.1363D. doi:10.1126/science.abk2464. PMID 37384686. S2CID 259287608.
  209. Dundas, Colin M.; McEwen, Alfred S.; Diniega, Serina; Hansen, Candice J.; Byrne, Shane; McElwaine, Jim N. (November 27, 2017). "The formation of gullies on Mars today". Geological Society, London, Special Publications. 467 (1): 67–94. doi:10.1144/sp467.5. hdl:10150/633371. ISSN 0305-8719.
  210. ^ Wilson, Jack T.; et al. (January 2018). "Equatorial locations of water on Mars: Improved resolution maps based on Mars Odyssey Neutron Spectrometer data". Icarus. 299: 148–160. arXiv:1708.00518. Bibcode:2018Icar..299..148W. doi:10.1016/j.icarus.2017.07.028. S2CID 59520156.
  211. Kolb, K.; Pelletier, Jon D.; McEwen, Alfred S. (2010). "Modeling the formation of bright slope deposits associated with gullies in Hale Crater, Mars: Implications for recent liquid water". Icarus. 205 (1): 113–137. Bibcode:2010Icar..205..113K. doi:10.1016/j.icarus.2009.09.009.
  212. Hoffman, Nick (2002). "Active polar gullies on Mars and the role of carbon dioxide". Astrobiology. 2 (3): 313–323. Bibcode:2002AsBio...2..313H. doi:10.1089/153110702762027899. PMID 12530241.
  213. Musselwhite, Donald S.; Swindle, Timothy D.; Lunine, Jonathan I. (2001). "Liquid CO2 breakout and the formation of recent small gullies on Mars". Geophysical Research Letters. 28 (7): 1283–1285. Bibcode:2001GeoRL..28.1283M. doi:10.1029/2000gl012496.
  214. McEwen, Alfred. S.; Ojha, Lujendra; Dundas, Colin M. (June 17, 2011). "Seasonal Flows on Warm Martian Slopes". Science. 333 (6043). American Association for the Advancement of Science: 740–743. Bibcode:2011Sci...333..740M. doi:10.1126/science.1204816. ISSN 0036-8075. PMID 21817049. S2CID 10460581.
  215. "NASA Spacecraft Data Suggest Water Flowing on Mars". NASA. August 4, 2011. Archived from the original on March 4, 2016. Retrieved August 4, 2011.
  216. McEwen, Alfred; Lujendra, Ojha; Dundas, Colin; Mattson, Sarah; Bryne, S; Wray, J.; Cull, Selby; Murchie, Scott; Thomas, Nicholas; Gulick, Virginia (August 5, 2011). "Seasonal Flows On Warm Martian Slopes". Science. 333 (6043): 743. Bibcode:2011Sci...333..740M. doi:10.1126/science.1204816. PMID 21817049. S2CID 10460581.
  217. Drake, Nadia (September 28, 2015). "NASA Finds 'Definitive' Liquid Water on Mars". National Geographic News. Archived from the original on September 30, 2015. Retrieved September 30, 2015.
  218. Moskowitz, Clara. "Water Flows on Mars Today, NASA Announces". Scientific American. Archived from the original on May 15, 2021. Retrieved September 30, 2015.
  219. "NASA News Conference: Evidence of Liquid Water on Today's Mars". NASA. September 28, 2015. Archived from the original on October 1, 2015. Retrieved September 30, 2015.
  220. "NASA Confirms Evidence That Liquid Water Flows on Today's Mars". September 28, 2015. Archived from the original on January 4, 2022. Retrieved September 30, 2015.
  221. "Recurring Martian Streaks: Flowing Sand, Not Water?". JPL NASA News. Jet Propulsion Laboratory, NASA. November 20, 2017. Archived from the original on November 9, 2020. Retrieved December 18, 2017.
  222. Schmidt, Frédéric; Andrieu, François; Costard, François; Kocifaj, Miroslav; Meresescu, Alina G. (2017). "Formation of recurring slope lineae on Mars by rarefied gas-triggered granular flows". Nature Geoscience. 10 (4): 270–273. arXiv:1802.05018. Bibcode:2017NatGe..10..270S. doi:10.1038/ngeo2917. S2CID 55016186.
  223. Boynton, W. V.; et al. (2007). "Concentration of H, Si, Cl, K, Fe, and Th in the low and mid latitude regions of Mars". Journal of Geophysical Research: Planets. 112 (E12): E12S99. Bibcode:2007JGRE..11212S99B. doi:10.1029/2007JE002887.
  224. "Mars Express". www.esa.int. Archived from the original on January 21, 2022. Retrieved January 21, 2022.
  225. Feldman, W. C.; Prettyman, T. H.; Maurice, S.; Plaut, J. J.; Bish, D. L.; Vaniman, D. T.; Tokar, R. L. (2004). "Global distribution of near-surface hydrogen on Mars". Journal of Geophysical Research. 109 (E9): E9. Bibcode:2004JGRE..109.9006F. doi:10.1029/2003JE002160. E09006.
  226. ^ Feldman, W. C.; et al. (2004). "Global distribution of near-surface hydrogen on Mars". Journal of Geophysical Research. 109 (E9): E09006. Bibcode:2004JGRE..109.9006F. doi:10.1029/2003JE002160.
  227. Chevrier, Vincent F.; Rivera-Valentin, Edgard G. (November 2012). "Formation of recurring slope lineae by liquid brines on present-day Mars: LIQUID BRINES ON MARS". Geophysical Research Letters. 39 (21): n/a. doi:10.1029/2012GL054119. S2CID 1077206.
  228. Gough, R.V.; Primm, K.M.; Rivera-Valentín, E.G.; Martínez, G.M.; Tolbert, M.A. (March 2019). "Solid-solid hydration and dehydration of Mars-relevant chlorine salts: Implications for Gale Crater and RSL locations". Icarus. 321: 1–13. Bibcode:2019Icar..321....1G. doi:10.1016/j.icarus.2018.10.034. S2CID 106323485. Archived from the original on July 7, 2022. Retrieved May 13, 2022.
  229. ^ Chevrier, Vincent F.; Altheide, Travis S. (November 18, 2008). "Low temperature aqueous ferric sulfate solutions on the surface of Mars". Geophysical Research Letters. 35 (22): L22101. Bibcode:2008GeoRL..3522101C. doi:10.1029/2008GL035489. ISSN 0094-8276. S2CID 97468338.
  230. Chevrier, Vincent F.; Hanley, Jennifer; Altheide, Travis S. (May 20, 2009). "Stability of perchlorate hydrates and their liquid solutions at the Phoenix landing site, Mars". Geophysical Research Letters. 36 (10): L10202. Bibcode:2009GeoRL..3610202C. doi:10.1029/2009GL037497. ISSN 0094-8276. S2CID 42150205.
  231. Gough, R.V.; Chevrier, V.F.; Tolbert, M.A. (May 2014). "Formation of aqueous solutions on Mars via deliquescence of chloride–perchlorate binary mixtures". Earth and Planetary Science Letters. 393: 73–82. Bibcode:2014E&PSL.393...73G. doi:10.1016/j.epsl.2014.02.002. Archived from the original on July 7, 2022. Retrieved May 13, 2022.
  232. Hecht, M. H.; Kounaves, S. P.; Quinn, R. C.; West, S. J.; Young, S. M. M.; Ming, D. W.; Catling, D. C.; Clark, B. C.; Boynton, W. V.; Hoffman, J.; DeFlores, L. P. (July 3, 2009). "Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site". Science. 325 (5936): 64–67. Bibcode:2009Sci...325...64H. doi:10.1126/science.1172466. ISSN 0036-8075. PMID 19574385. S2CID 24299495. Archived from the original on May 13, 2022. Retrieved May 13, 2022.
  233. Kounaves, Samuel P.; Hecht, Michael H.; Kapit, Jason; Quinn, Richard C.; Catling, David C.; Clark, Benton C.; Ming, Douglas W.; Gospodinova, Kalina; Hredzak, Patricia; McElhoney, Kyle; Shusterman, Jennifer (May 2010). "Soluble sulfate in the martian soil at the Phoenix landing site: SULFATE AT THE PHOENIX LANDING SITE". Geophysical Research Letters. 37 (9): n/a. Bibcode:2010GeoRL..37.9201K. doi:10.1029/2010GL042613. S2CID 12914422.
  234. Chevrier, Vincent (2022). "Limited stability of multi-component brines on the surface of Mars". The Planetary Science Journal. 3 (5): 125. Bibcode:2022PSJ.....3..125C. doi:10.3847/PSJ/ac6603. S2CID 249227810.
  235. Cutts, James A. (July 10, 1973). "Nature and origin of layered deposits of the Martian polar regions". Journal of Geophysical Research. 78 (20): 4231–4249. Bibcode:1973JGR....78.4231C. doi:10.1029/JB078i020p04231.
  236. "Mars' South Pole Ice Deep and Wide". NASA News & Media Resources. NASA. March 15, 2007. Archived from the original on December 8, 2021. Retrieved March 18, 2013.
  237. Plaut, J. J.; et al. (March 15, 2007). "Subsurface Radar Sounding of the South Polar Layered Deposits of Mars". Science. 316 (5821): 92–95. Bibcode:2007Sci...316...92P. doi:10.1126/science.1139672. PMID 17363628. S2CID 23336149.
  238. Byrne, Shane (2009). "The Polar Deposits of Mars". Annual Review of Earth and Planetary Sciences. 37 (1): 535–560. Bibcode:2009AREPS..37..535B. doi:10.1146/annurev.earth.031208.100101. S2CID 54874200.
  239. Scanlon, K., et al. 2018. The Dorsa Argentea Formation and the Noachian-Hesperian climate transition. Icarus: 299, 339–363.
  240. Head, J, S. Pratt. 2001. Extensive Hesperian-aged south polar ice sheet on Mars: Evidence for massive melting and retreat, and lateral flow and pending of meltwater. J. Geophys. Res.-Planet, 106 (E6), 12275-12299.
  241. Fishbaugh, KE; Byrne, Shane; Herkenhoff, Kenneth E.; Kirk, Randolph L.; Fortezzo, Corey; Russell, Patrick S.; McEwen, Alfred (2010). "Evaluating the meaning of "layer" in the Martian north polar layered depsoits and the impact on the climate connection" (PDF). Icarus. 205 (1): 269–282. Bibcode:2010Icar..205..269F. doi:10.1016/j.icarus.2009.04.011. Archived (PDF) from the original on July 6, 2021. Retrieved January 19, 2012.
  242. "How Mars Got Its Layered North Polar Cap". Eos. February 8, 2017. Archived from the original on November 10, 2021. Retrieved September 26, 2019.
  243. "Peeling Back the Layers of the Climate of Mars". Eos. July 18, 2019. Archived from the original on December 5, 2021. Retrieved September 26, 2019.
  244. Conway, Susan J.; Hovius, Niels; Barnie, Talfan; Besserer, Jonathan; Le Mouélic, Stéphane; Orosei, Roberto; Read, Natalie Anne (July 1, 2012). "Climate-driven deposition of water ice and the formation of mounds in craters in Mars' north polar region" (PDF). Icarus. 220 (1): 174–193. Bibcode:2012Icar..220..174C. doi:10.1016/j.icarus.2012.04.021. ISSN 0019-1035. S2CID 121435046. Archived (PDF) from the original on September 18, 2021. Retrieved October 14, 2019.
  245. "Ice islands on Mars and Pluto could reveal past climate change". phys.org. Archived from the original on October 9, 2021. Retrieved September 26, 2019.
  246. ^ "A winter wonderland in red and white – Korolev Crater on Mars". German Aerospace Center (DLR). Archived from the original on October 17, 2020. Retrieved December 20, 2018.
  247. Sample, Ian (December 21, 2018). "Mars Express beams back images of ice-filled Korolev crater". The Guardian. Archived from the original on February 8, 2020. Retrieved December 21, 2018.
  248. Duxbury, N. S.; Zotikov, I. A.; Nealson, K. H.; Romanovsky, V. E.; Carsey, F. D. (2001). "A numerical model for an alternative origin of Lake Vostok and its exobiological implications for Mars" (PDF). Journal of Geophysical Research. 106 (E1): 1453. Bibcode:2001JGR...106.1453D. doi:10.1029/2000JE001254.
  249. Chang, Kenneth; Overbye, Dennis (July 25, 2018). "A Watery Lake Is Detected on Mars, Raising the Potential for Alien Life – The discovery suggests that watery conditions beneath the icy southern polar cap may have provided one of the critical building blocks for life on the red planet". The New York Times. Archived from the original on July 25, 2018. Retrieved July 25, 2018.
  250. "Huge reservoir of liquid water detected under the surface of Mars". EurekAlert. July 25, 2018. Archived from the original on July 25, 2018. Retrieved July 25, 2018.
  251. "Liquid water 'lake' revealed on Mars". BBC News. July 25, 2018. Archived from the original on July 25, 2018. Retrieved July 25, 2018.
  252. Supplementary Materials Archived July 9, 2022, at the Wayback Machine for: Orosei, R; Lauro, SE; Pettinelli, E; Cicchetti, A; Coradini, M; Cosciotti, B; Di Paolo, F; Flamini, E; Mattei, E; Pajola, M; Soldovieri, F; Cartacci, M; Cassenti, F; Frigeri, A; Giuppi, S; Martufi, R; Masdea, A; Mitri, G; Nenna, C; Noschese, R; Restano, M; Seu, R (2018). "Radar evidence of subglacial liquid water on Mars". Science. 361 (6401): 490–493. arXiv:2004.04587. Bibcode:2018Sci...361..490O. doi:10.1126/science.aar7268. PMID 30045881.
  253. Lauro, Sebastian Emanuel; Pettinelli, Elena; Caprarelli, Graziella; Guallini, Luca; Rossi, Angelo Pio; Mattei, Elisabetta; Cosciotti, Barbara; Cicchetti, Andrea; Soldovieri, Francesco; Cartacci, Marco; Di Paolo, Federico; Noschese, Raffaella; Orosei, Roberto (September 28, 2020). "Multiple subglacial water bodies below the south pole of Mars unveiled by new MARSIS data". Nature Astronomy. 5: 63–70. arXiv:2010.00870. Bibcode:2021NatAs...5...63L. doi:10.1038/s41550-020-1200-6. ISSN 2397-3366. S2CID 222125007.
  254. Halton, Mary (July 25, 2018). "Liquid water 'lake' revealed on Mars". BBC News. Archived from the original on July 25, 2018. Retrieved July 25, 2018.
  255. Sori, Michael M.; Bramson, Ali M. (2019). "Water on Mars, With a Grain of Salt: Local Heat Anomalies Are Required for Basal Melting of Ice at the South Pole Today". Geophysical Research Letters. 46 (3): 1222–1231. Bibcode:2019GeoRL..46.1222S. doi:10.1029/2018GL080985. hdl:10150/633584. ISSN 1944-8007. S2CID 134166238.
  256. Liu, J., et al. 2023. "Martian dunes indicative of wind regime shift in line with end of ice age". Nature. doi:10.1038/s41586-023-06206-1
  257. ^ "Giant liquid water lake found under Martian ice". RTÉ. July 25, 2018. Archived from the original on July 25, 2021. Retrieved July 26, 2018.
  258. Heinz, Jacob; Doellinger, Joerg; Maus, Deborah; Schneider, Andy; Lasch, Peter; Grossart, Hans-Peter; Schulze-Makuch, Dirk (August 10, 2022). "Perchlorate-specific proteomic stress responses of Debaryomyces hansenii could enable microbial survival in Martian brines". Environmental Microbiology. 24 (11): 1462–2920.16152. Bibcode:2022EnvMi..24.5051H. doi:10.1111/1462-2920.16152. ISSN 1462-2912. PMID 35920032.
  259. ^ Kieffer, Hugh H. (1992). Mars. University of Arizona Press. ISBN 978-0-8165-1257-7. Retrieved March 7, 2011.
  260. Howell, Elizabeth (October 2, 2017). "Water Ice Mystery Found at Martian Equator". Space.com. Archived from the original on November 11, 2021. Retrieved October 2, 2017.
  261. "Polygonal Patterned Ground: Surface Similarities Between Mars and Earth". SpaceRef. September 28, 2002.
  262. Squyres, S. (1989). "Urey Prize Lecture: Water on Mars". Icarus. 79 (2): 229–288. Bibcode:1989Icar...79..229S. doi:10.1016/0019-1035(89)90078-X.
  263. ^ Lefort, A.; Russell, P.S.; Thomas, N. (2010). "Scalloped terrains in the Peneus and Amphitrites Paterae region of Mars as observed by HiRISE". Icarus. 205 (1): 259–268. Bibcode:2010Icar..205..259L. doi:10.1016/j.icarus.2009.06.005.
  264. ^ Steep Slopes on Mars Reveal Structure of Buried Ice Archived June 17, 2019, at the Wayback Machine. NASA Press Release. January 11, 2018.
  265. Dundas, Colin M.; Bramson, Ali M.; Ojha, Lujendra; Wray, James J.; Mellon, Michael T.; Byrne, Shane; McEwen, Alfred S.; Putzig, Nathaniel E.; Viola, Donna; Sutton, Sarah; Clark, Erin; Holt, John W. (2018). "Exposed subsurface ice sheets in the Martian mid-latitudes". Science. 359 (6372): 199–201. Bibcode:2018Sci...359..199D. doi:10.1126/science.aao1619. PMID 29326269.
  266. Ice cliffs spotted on Mars Archived January 28, 2018, at the Wayback Machine. Science News. Paul Voosen. January 11, 2018.
  267. Piqueux, Sylvain; Buz, Jennifer; Edwards, Christopher S.; Bandfield, Joshua L.; Kleinböhl, Armin; Kass, David M.; Hayne, Paul O. (December 10, 2019). "Widespread Shallow Water Ice on Mars at High and Mid Latitudes" (PDF). Geophysical Research Letters. doi:10.1029/2019GL083947. S2CID 212982895. Archived (PDF) from the original on September 18, 2021. Retrieved December 12, 2019.
  268. "NASA's Treasure Map for Water Ice on Mars". Jet Propulsion Laboratory. December 10, 2019. Archived from the original on June 29, 2021. Retrieved December 12, 2019.
  269. Dundas, Colin M.; Bramson, Ali M.; Ojha, Lujendra; Wray, James J.; Mellon, Michael T.; Byrne, Shane; McEwen, Alfred S.; Putzig, Nathaniel E.; Viola, Donna; Sutton, Sarah; Clark, Erin; Holt, John W. (January 12, 2018). "Exposed subsurface ice sheets in the Martian mid-latitudes". Science. 359 (6372): 199–201. Bibcode:2018Sci...359..199D. doi:10.1126/science.aao1619. ISSN 0036-8075. PMID 29326269.
  270. Dundas, C.; Bryrne, S.; McEwen, A. (2015). "Modeling the development of martian sublimation thermokarst landforms". Icarus 262, 154–169.
  271. ^ Christensen, Philip R. (March 2003). "Formation of recent martian gullies through melting of extensive water-rich snow deposits". Nature. 422 (6927): 45–48. Bibcode:2003Natur.422...45C. doi:10.1038/nature01436. ISSN 1476-4687. PMID 12594459. S2CID 4385806. Archived from the original on August 9, 2021. Retrieved July 27, 2022.
  272. ^ Head, James W.; Mustard, John F.; Kreslavsky, Mikhail A.; Milliken, Ralph E.; Marchant, David R. (2003). "Recent ice ages on Mars". Nature. 426 (6968): 797–802. Bibcode:2003Natur.426..797H. doi:10.1038/nature02114. PMID 14685228. S2CID 2355534.
  273. ^ "HiRISE Dissected Mantled Terrain (PSP_002917_2175)". Arizona University. Archived from the original on August 21, 2017. Retrieved December 19, 2010.
  274. "Huge Underground Ice Deposit on Mars Is Bigger Than New Mexico". Space.com. November 22, 2016. Archived from the original on January 12, 2018. Retrieved November 29, 2016.
  275. Bramson, A, et al. (2015). "Widespread excess ice in Arcadia Planitia, Mars". Geophysical Research Letters 42, 6566–6574.
  276. Stuurman, Cassie. "Widespread, Thick Water Ice found in Utopia Planitia, Mars". Archived from the original on November 30, 2016. Retrieved November 29, 2016.
  277. Stuurman, C., et al. 2016. "SHARAD detection and characterization of subsurface water ice deposits in Utopia Planitia, Mars". Geophysical Research Letters 43, 9484–9491.
  278. Byrne, S.; Ingersoll, A. P. (2002). "A Sublimation Model for the Formation of the Martian Polar Swiss-cheese Features". American Astronomical Society. 34: 837. Bibcode:2002DPS....34.0301B.
  279. "Water ice in crater at Martian north pole" (Press release). ESA. July 27, 2005. Archived from the original on October 6, 2012. Retrieved October 8, 2009.
  280. "Ice lake found on the Red Planet". BBC. July 29, 2005. Archived from the original on January 13, 2010. Retrieved October 8, 2009.
  281. Murray, John B.; et al. (2005). "Evidence from the Mars Express High Resolution Stereo Camera for a frozen sea close to Mars' equator". Nature. 434 (7031): 352–356. Bibcode:2005Natur.434..352M. doi:10.1038/nature03379. PMID 15772653. S2CID 4373323. Here we present High Resolution Stereo Camera images from the European Space Agency Mars Express spacecraft that indicate that such lakes may still exist.
  282. Orosei, R.; Cartacci, M.; Cicchetti, A.; Federico, C.; Flamini, E.; Frigeri, A.; Holt, J. W.; Marinangeli, L.; Noschese, R.; Pettinelli, E.; Phillips, R. J.; Picardi, G.; Plaut, J. J.; Safaeinili, A.; Seu, R. (2008). "Radar subsurface sounding over the putative frozen sea in Cerberus Palus, Mars" (PDF). Proceedings of the XIII Internarional Conference on Ground Penetrating Radar. Vol. XXXIX. pp. P14B–05. Bibcode:2007AGUFM.P14B..05O. doi:10.1109/ICGPR.2010.5550143. ISBN 978-1-4244-4604-9. S2CID 23296246. Archived (PDF) from the original on March 27, 2009. Retrieved January 5, 2010. {{cite book}}: |journal= ignored (help)
  283. Barlow, Nadine G. (January 10, 2008). Mars: an introduction to its interior, surface and atmosphere. Cambridge University Press. ISBN 978-0-521-85226-5.
  284. Strom, R.G.; Croft, Steven K.; Barlow, Nadine G. (1992). The Martian Impact Cratering Record, Mars. University of Arizona Press. ISBN 978-0-8165-1257-7.
  285. "ESA – Mars Express – Breathtaking views of Deuteronilus Mensae on Mars". Esa.int. March 14, 2005. Archived from the original on October 18, 2012. Retrieved October 9, 2009.
  286. Hauber, E.; et al. (2005). "Discovery of a flank caldera and very young glacial activity at Hecates Tholus, Mars". Nature. 434 (7031): 356–61. Bibcode:2005Natur.434..356H. doi:10.1038/nature03423. PMID 15772654. S2CID 4427179.
  287. Shean, David E.; Head, James W.; Fastook, James L.; Marchant, David R. (2007). "Recent glaciation at high elevations on Arsia Mons, Mars: Implications for the formation and evolution of large tropical mountain glaciers". Journal of Geophysical Research. 112 (E3): E03004. Bibcode:2007JGRE..112.3004S. doi:10.1029/2006JE002761.
  288. ^ Shean, D.; et al. (2005). "Origin and evolution of a cold-based mountain glacier on Mars: The Pavonis Mons fan-shaped deposit". Journal of Geophysical Research. 110 (E5): E05001. Bibcode:2005JGRE..110.5001S. doi:10.1029/2004JE002360. S2CID 14749707.
  289. Basilevsky, A.; et al. (2006). "Geological recent tectonic, volcanic and fluvial activity on the eastern flank of the Olympus Mons volcano, Mars". Geophysical Research Letters. 33 (13). L13201. Bibcode:2006GeoRL..3313201B. CiteSeerX 10.1.1.485.770. doi:10.1029/2006GL026396. S2CID 16847310.
  290. Milliken, R.; et al. (2003). "Viscous flow features on the surface of Mars: Observations from high-resolution Mars Orbiter Camera (MOC) images". Journal of Geophysical Research. 108 (E6): 5057. Bibcode:2003JGRE..108.5057M. doi:10.1029/2002je002005. S2CID 12628857.
  291. Arfstrom, J.; Hartmann, W. (2005). "Martian flow features, moraine-like ridges, and gullies: Terrestrial analogs and interrelationships". Icarus. 174 (2): 321–35. Bibcode:2005Icar..174..321A. doi:10.1016/j.icarus.2004.05.026.
  292. Head, J. W.; Neukum, G.; Jaumann, R.; Hiesinger, H.; Hauber, E.; Carr, M.; Masson, P.; Foing, B.; Hoffmann, H.; Kreslavsky, M.; Werner, S.; Milkovich, S.; van Gasselt, S.; HRSC Co-Investigator Team (2005). "Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars". Nature. 434 (7031): 346–350. Bibcode:2005Natur.434..346H. doi:10.1038/nature03359. PMID 15772652. S2CID 4363630.
  293. Staff (October 17, 2005). "Mars' climate in flux: Mid-latitude glaciers". Marstoday. Brown University. Archived from the original on June 18, 2013.
  294. Berman, D.; et al. (2005). "The role of arcuate ridges and gullies in the degradation of craters in the Newton Basin region of Mars". Icarus. 178 (2): 465–86. Bibcode:2005Icar..178..465B. doi:10.1016/j.icarus.2005.05.011.
  295. "Fretted Terrain Valley Traverse". Hirise.lpl.arizona.edu. Archived from the original on October 13, 2017. Retrieved January 16, 2012.
  296. "Jumbled Flow Patterns". Arizona University. Archived from the original on August 23, 2016. Retrieved January 16, 2012.
  297. "Mars water: Liquid water reservoirs found under Martian crust". www.bbc.com. Retrieved August 16, 2024.
  298. ^ Strickland, Ashley (August 12, 2024). "Oceans of water may be trapped deep beneath the Martian surface". CNN. Retrieved August 16, 2024.
  299. *Head, J., et al. 2023. GEOLOGICAL AND CLIMATE HISTORY OF MARS: IDENTIFICATION OF POTENTIAL WARM AND WET CLIMATE 'FALSE POSITIVES'. 54th Lunar and Planetary Science Conference 2023 (LPI Contrib. No. 2806). 1731.pdf
  300. ^ Jakosky, B. M.; Phillips, R. J. (2001). "Mars' volatile and climate history". Nature. 412 (6843): 237–244. Bibcode:2001Natur.412..237J. doi:10.1038/35084184. PMID 11449285.
  301. ^ Chaufray, J. Y.; et al. (2007). "Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space" (PDF). Journal of Geophysical Research. 112 (E9): E09009. Bibcode:2007JGRE..112.9009C. doi:10.1029/2007JE002915. Archived (PDF) from the original on November 29, 2021. Retrieved November 22, 2019.
  302. ^ Chevrier, V.; et al. (2007). "Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates". Nature. 448 (7149): 60–63. Bibcode:2007Natur.448...60C. doi:10.1038/nature05961. PMID 17611538. S2CID 1595292.
  303. ^ Catling, D. C. (2007). "Mars: Ancient fingerprints in the clay". Nature. 448 (7149): 31–32. Bibcode:2007Natur.448...31C. doi:10.1038/448031a. PMID 17611529. S2CID 4387261.
  304. Andrews-Hanna, J. C.; et al. (2007). "Meridiani Planum and the global hydrology of Mars". Nature. 446 (7132): 163–6. Bibcode:2007Natur.446..163A. doi:10.1038/nature05594. PMID 17344848. S2CID 4428510.
  305. Morris, R. V.; et al. (2001). "Phyllosilicate-poor palagonitic dust from Mauna Kea Volcano (Hawaii): A mineralogical analogue for magnetic Martian dust?". Journal of Geophysical Research. 106 (E3): 5057–5083. Bibcode:2001JGR...106.5057M. doi:10.1029/2000JE001328.
  306. Chevrier, V.; et al. (2006). "Iron weathering products in a CO2+(H2O or H2O2) atmosphere: Implications for weathering processes on the surface of Mars" (PDF). Geochimica et Cosmochimica Acta. 70 (16): 4295–4317. Bibcode:2006GeCoA..70.4295C. doi:10.1016/j.gca.2006.06.1368. Archived (PDF) from the original on July 13, 2022. Retrieved June 23, 2022.
  307. Bibring, J-P.; et al. (2006). "Global mineralogical and aqueous mars history derived from OMEGA/Mars Express data". Science. 312 (5772): 400–4. Bibcode:2006Sci...312..400B. doi:10.1126/science.1122659. PMID 16627738.
  308. McEwen, A. S.; et al. (2007). "A Closer Look at Water-Related Geologic Activity on Mars". Science. 317 (5845): 1706–1709. Bibcode:2007Sci...317.1706M. doi:10.1126/science.1143987. PMID 17885125. S2CID 44822691.
  309. "Escape from Mars: How water fled the red planet". phys.org. Archived from the original on October 9, 2021. Retrieved December 8, 2020.
  310. Stone, Shane W.; Yelle, Roger V.; Benna, Mehdi; Lo, Daniel Y.; Elrod, Meredith K.; Mahaffy, Paul R. (November 13, 2020). "Hydrogen escape from Mars is driven by seasonal and dust storm transport of water". Science. 370 (6518): 824–831. Bibcode:2020Sci...370..824S. doi:10.1126/science.aba5229. ISSN 0036-8075. PMID 33184209. S2CID 226308137. Archived from the original on September 16, 2022. Retrieved December 8, 2020.
  311. Yiğit, Erdal (December 10, 2021). "Martian water escape and internal waves". Science. 374 (6573): 1323–1324. Bibcode:2021Sci...374.1323Y. doi:10.1126/science.abg5893. ISSN 0036-8075. PMID 34882460. S2CID 245012567. Archived from the original on December 16, 2021. Retrieved December 16, 2021.
  312. Yiğit, Erdal; Medvedev, Alexander S.; Benna, Mehdi; Jakosky, Bruce M. (March 16, 2021). "Dust Storm-Enhanced Gravity Wave Activity in the Martian Thermosphere Observed by MAVEN and Implication for Atmospheric Escape". Geophysical Research Letters. 48 (5). arXiv:2101.07698. Bibcode:2021GeoRL..4892095Y. doi:10.1029/2020GL092095. ISSN 0094-8276. S2CID 234356651. Archived from the original on June 11, 2024. Retrieved December 16, 2021.
  313. Schorghofer, Norbert (2007). "Dynamics of ice ages on Mars" (PDF). Nature. 449 (7159): 192–194. Bibcode:2007Natur.449..192S. doi:10.1038/nature06082. PMID 17851518. S2CID 4415456. Archived from the original (PDF) on January 13, 2018. Retrieved January 12, 2018.
  314. Dickson, James L.; Head, James W.; Marchant, David R. (2008). "Late Amazonian glaciation at the dichotomy boundary on Mars: Evidence for glacial thickness maxima and multiple glacial phases". Geology. 36 (5): 411–4. Bibcode:2008Geo....36..411D. doi:10.1130/G24382A.1. S2CID 14291132.
  315. Head, J. W.; III; Mustard, J. F.; Kreslavsky, M. A.; Milliken, R. E.; Marchant, D. R. (2003). "Recent ice ages on Mars". Nature. 426 (6968): 797–802. Bibcode:2003Natur.426..797H. doi:10.1038/nature02114. PMID 14685228. S2CID 2355534.
  316. Smith, Isaac B.; Putzig, Nathaniel E.; Holt, John W.; Phillips, Roger J. (May 27, 2016). "An ice age recorded in the polar deposits of Mars". Science. 352 (6289): 1075–1078. Bibcode:2016Sci...352.1075S. doi:10.1126/science.aad6968. PMID 27230372.
  317. Levrard, B.; Forget, F.; Montmessian, F.; Laskar, J. (2004). "Recent ice-rich deposits formed at high latitudes on Mars by sublimation of unstable equatorial ice during low obliquity". Nature. 431 (7012): 1072–1075. Bibcode:2004Natur.431.1072L. doi:10.1038/nature03055. PMID 15510141. S2CID 4420650.
  318. ^ "Mars may be emerging from an ice age". ScienceDaily. MLA NASA/Jet Propulsion Laboratory. December 18, 2003.
  319. Forget, F.; et al. (2006). "Formation of Glaciers on Mars by Atmospheric Precipitation at High Obliquity". Science. 311 (5759): 368–71. Bibcode:2006Sci...311..368F. doi:10.1126/science.1120335. PMID 16424337. S2CID 5798774.
  320. Mustard, J.; et al. (2001). "Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice". Nature. 412 (6845): 411–4. Bibcode:2001Natur.412..411M. doi:10.1038/35086515. PMID 11473309. S2CID 4409161.
  321. Kreslavsky, M.; Head, J. (2002). "Mars: Nature and evolution of young latitude-dependent water-ice-rich mantle". Geophysical Research Letters. 29 (15): 14–1–14–4. Bibcode:2002GeoRL..29.1719K. doi:10.1029/2002GL015392.
  322. Beatty, Kelly (January 23, 2018). "Water Ice Found Exposed in Martian Cliffs - Sky & Telescope". Sky & Telescope. Retrieved October 3, 2018.
  323. Astrobiology Strategy 2015 Archived December 22, 2016, at the Wayback Machine (PDF) NASA.
  324. Conrad, P. G.; Archer, D.; Coll, P.; De La Torre, M.; Edgett, K.; Eigenbrode, J. L.; Fisk, M.; Freissenet, C.; Franz, H.; et al. (2013). "Habitability Assessment at Gale Crater: Implications from Initial Results". 44th Lunar and Planetary Science Conference. 1719 (1719): 2185. Bibcode:2013LPI....44.2185C.
  325. Committee on an Astrobiology Strategy for the Exploration of Mars; National Research Council (2007). "Planetary Protection for Mars Missions". An Astrobiology Strategy for the Exploration of Mars. The National Academies Press. pp. 95–98. ISBN 978-0-309-10851-5.
  326. Daley, Jason (July 6, 2017). "Mars Surface May Be Too Toxic for Microbial Life - The combination of UV radiation and perchlorates common on Mars could be deadly for bacteria". Smithsonian. Retrieved July 8, 2017.
  327. Wadsworth, Jennifer; Cockell, Charles S. (July 6, 2017). "Perchlorates on Mars enhance the bacteriocidal effects of UV light". Scientific Reports. 7 (4662): 4662. Bibcode:2017NatSR...7.4662W. doi:10.1038/s41598-017-04910-3. PMC 5500590. PMID 28684729.
  328. "NASA Astrobiology Strategy" (PDF). NASA. 2015. Archived from the original (PDF) on December 22, 2016. Retrieved September 5, 2018.
  329. "Mars Exploration: Missions". Marsprogram.jpl.nasa.gov. Archived from the original on April 11, 2004. Retrieved December 19, 2010.
  330. Carr, M. H.; Baum, W. A.; Blasius, K. R.; Briggs, G. A.; Cutts, J. A.; Duxbury, T. C.; Greeley, R.; Guest, J.; Masursky, H.; Smith, B. A. (January 1980). "Viking Orbiter Views of Mars". History.nasa.gov. Retrieved December 19, 2010.
  331. Carr, M. H.; Baum, W. A.; Blasius, K. R.; Briggs, G. A.; Cutts, J. A.; Duxbury, T. C.; Greeley, R.; Guest, J.; Masursky, H.; Smith, B. A. (January 1980). "ch5". NASA History. NASA. Retrieved December 19, 2010.
  332. Carr, M. H.; Baum, W. A.; Blasius, K. R.; Briggs, G. A.; Cutts, J. A.; Duxbury, T. C.; Greeley, R.; Guest, J.; Masursky, H.; Smith, B. A. (January 1980). "Craters". NASA. Retrieved December 19, 2010.
  333. Morton, O. (2002). Mapping Mars. Picador, NY. ISBN 9780312245511.
  334. Arvidson, R; Gooding, James L.; Moore, Henry J. (1989). "The Martian surface as Imaged, Sampled, and Analyzed by the Viking Landers". Reviews of Geophysics. 27 (1): 39–60. Bibcode:1989RvGeo..27...39A. doi:10.1029/RG027i001p00039.
  335. Clark, B.; Baird, AK; Rose, HJ Jr.; Toulmin P, 3rd; Keil, K; Castro, AJ; Kelliher, WC; Rowe, CD; Evans, PH (1976). "Inorganic Analysis of Martian Samples at the Viking Landing Sites". Science. 194 (4271): 1283–1288. Bibcode:1976Sci...194.1283C. doi:10.1126/science.194.4271.1283. PMID 17797084. S2CID 21349024.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  336. Hoefen, T.M.; et al. (2003). "Discovery of Olivine in the Nili Fossae Region of Mars". Science. 302 (5645): 627–630. Bibcode:2003Sci...302..627H. doi:10.1126/science.1089647. PMID 14576430. S2CID 20122017.
  337. Hoefen, T.; Clark, RN; Bandfield, JL; Smith, MD; Pearl, JC; Christensen, PR (2003). "Discovery of Olivine in the Nili Fossae Region of Mars". Science. 302 (5645): 627–630. Bibcode:2003Sci...302..627H. doi:10.1126/science.1089647. PMID 14576430. S2CID 20122017.
  338. Malin, Michael C.; Edgett, Kenneth S. (2001). "Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission". Journal of Geophysical Research. 106 (E10): 23429–23570. Bibcode:2001JGR...10623429M. doi:10.1029/2000JE001455. S2CID 129376333.
  339. "Atmospheric and Meteorological Properties". NASA.
  340. ^ Golombek, M. P.; Cook, R. A.; Economou, T.; Folkner, W. M.; Haldemann, A. F. C.; Kallemeyn, P. H.; Knudsen, J. M.; Manning, R. M.; Moore, H. J.; Parker, T. J.; Rieder, R.; Schofield, J. T.; Smith, P. H.; Vaughan, R. M. (1997). "Overview of the Mars Pathfinder Mission and Assessment of Landing Site Predictions". Science. 278 (5344): 1743–1748. Bibcode:1997Sci...278.1743G. doi:10.1126/science.278.5344.1743. PMID 9388167.
  341. "Mars Odyssey: Newsroom". Mars.jpl.nasa.gov. May 28, 2002.
  342. ^ Feldman, W.C.; et al. (2004). "Global Distribution of Near-Surface Hydrogen on Mars". Journal of Geophysical Research. 109 (E9). Bibcode:2004JGRE..109.9006F. doi:10.1029/2003JE002160.
  343. Murche, S.; Mustard, John; Bishop, Janice; Head, James; Pieters, Carle; Erard, Stephane (1993). "Spatial Variations in the Spectral Properties of Bright Regions on Mars". Icarus. 105 (2): 454–468. Bibcode:1993Icar..105..454M. doi:10.1006/icar.1993.1141.
  344. "Home Page for Bell (1996) Geochemical Society paper". Marswatch.tn.cornell.edu. Retrieved December 19, 2010.
  345. Feldman, W. C.; Boynton, W. V.; Tokar, R. L.; Prettyman, T. H.; Gasnault, O.; Squyres, S. W.; Elphic, R. C.; Lawrence, D. J.; Lawson, S. L.; Maurice, S.; McKinney, G. W.; Moore, K. R.; Reedy, R. C. (2002). "Global Distribution of Neutrons from Mars: Results from Mars Odyssey". Science. 297 (5578): 75–78. Bibcode:2002Sci...297...75F. doi:10.1126/science.1073541. PMID 12040088. S2CID 11829477.
  346. Mitrofanov, I.; Anfimov, D.; Kozyrev, A.; Litvak, M.; Sanin, A.; Tret'yakov, V.; Krylov, A.; Shvetsov, V.; Boynton, W.; Shinohara, C.; Hamara, D.; Saunders, R. S. (2002). "Maps of Subsurface Hydrogen from the High Energy Neutron Detector, Mars Odyssey". Science. 297 (5578): 78–81. Bibcode:2002Sci...297...78M. doi:10.1126/science.1073616. PMID 12040089. S2CID 589477.
  347. Boynton, W. V.; Feldman, W. C.; Squyres, S. W.; Prettyman, T. H.; Brückner, J.; Evans, L. G.; Reedy, R. C.; Starr, R.; Arnold, J. R.; Drake, D. M.; Englert, P. A. J.; Metzger, A. E.; Mitrofanov, Igor; Trombka, J. I.; d'Uston, C.; Wänke, H.; Gasnault, O.; Hamara, D. K.; Janes, D. M.; Marcialis, R. L.; Maurice, S.; Mikheeva, I.; Taylor, G. J.; Tokar, R.; Shinohara, C. (2002). "Distribution of Hydrogen in the Near Surface of Mars: Evidence for Subsurface Ice Deposits". Science. 297 (5578): 81–85. Bibcode:2002Sci...297...81B. doi:10.1126/science.1073722. PMID 12040090. S2CID 16788398.
  348. "Dao Vallis". Mars Odyssey Mission. THEMIS. August 7, 2002. Retrieved December 19, 2010.
  349. ^ Smith, P. H.; Tamppari, L.; Arvidson, R. E.; Bass, D.; Blaney, D.; Boynton, W.; Carswell, A.; Catling, D.; Clark, B.; Duck, T.; DeJong, E.; Fisher, D.; Goetz, W.; Gunnlaugsson, P.; Hecht, M.; Hipkin, V.; Hoffman, J.; Hviid, S.; Keller, H.; Kounaves, S.; Lange, C. F.; Lemmon, M.; Madsen, M.; Malin, M.; Markiewicz, W.; Marshall, J.; McKay, C.; Mellon, M.; Michelangeli, D.; et al. (2008). "Introduction to special section on the phoenix mission: Landing site characterization experiments, mission overviews, and expected science". Journal of Geophysical Research. 113 (E12): E00A18. Bibcode:2008JGRE..113.0A18S. doi:10.1029/2008JE003083. hdl:2027.42/94752. S2CID 38911896.
  350. "NASA Data Shed New Light About Water and Volcanoes on Mars". NASA. September 9, 2010. Archived from the original on January 26, 2021. Retrieved March 21, 2014.
  351. Mellon, M.; Jakosky, B. (1993). "Geographic variations in the thermal and diffusive stability of ground ice on Mars". Journal of Geophysical Research. 98 (E2): 3345–3364. Bibcode:1993JGR....98.3345M. doi:10.1029/92JE02355.
  352. Khuller, Aditya R.; Christensen, Philip R.; Warren, Stephen G. (September 2021). "Spectral Albedo of Dusty Martian H 2 O Snow and Ice". Journal of Geophysical Research: Planets. 126 (9). Bibcode:2021JGRE..12606910K. doi:10.1029/2021JE006910. ISSN 2169-9097. S2CID 238721489.
  353. "Confirmation of Water on Mars". Nasa.gov. June 20, 2008. Archived from the original on July 1, 2008. Retrieved October 8, 2009.
  354. Johnson, John (August 1, 2008). "There's water on Mars, NASA confirms". Los Angeles Times.
  355. ^ "The Dirt on Mars Lander Soil Findings". SPACE.com. July 2, 2009. Retrieved December 19, 2010.
  356. ^ Martínez, G. M. & Renno, N. O. (2013). "Water and brines on Mars: current evidence and implications for MSL". Space Science Reviews. 175 (1–4): 29–51. Bibcode:2013SSRv..175...29M. doi:10.1007/s11214-012-9956-3.
  357. Rennó, Nilton O.; Bos, Brent J.; Catling, David; Clark, Benton C.; Drube, Line; Fisher, David; Goetz, Walter; Hviid, Stubbe F.; Keller, Horst Uwe; Kok, Jasper F.; Kounaves, Samuel P.; Leer, Kristoffer; Lemmon, Mark; Madsen, Morten Bo; Markiewicz, Wojciech J.; Marshall, John; McKay, Christopher; Mehta, Manish; Smith, Miles; Zorzano, M. P.; Smith, Peter H.; Stoker, Carol; Young, Suzanne M. M. (2009). "Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site". Journal of Geophysical Research. 114 (E1): E00E03. Bibcode:2009JGRE..114.0E03R. doi:10.1029/2009JE003362. hdl:2027.42/95444. S2CID 55050084.
  358. Chang, Kenneth (March 16, 2009). "Blobs in Photos of Mars Lander Stir a Debate: Are They Water?". New York Times (online).
  359. "Liquid Saltwater Is Likely Present On Mars, New Analysis Shows". ScienceDaily. March 20, 2009.
  360. "Astrobiology Top 10: Too Salty to Freeze". Astrobiology Magazine. Archived from the original on June 4, 2011. Retrieved December 19, 2010.
  361. Hecht, M. H.; Kounaves, S. P.; Quinn, R. C.; West, S. J.; Young, S. M. M.; Ming, D. W.; Catling, D. C.; Clark, B. C.; Boynton, W. V.; Hoffman, J.; DeFlores, L. P.; Gospodinova, K.; Kapit, J.; Smith, P. H. (2009). "Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site". Science. 325 (5936): 64–67. Bibcode:2009Sci...325...64H. doi:10.1126/science.1172466. PMID 19574385. S2CID 24299495.
  362. Smith, P. H.; Tamppari, L. K.; Arvidson, R. E.; Bass, D.; Blaney, D.; Boynton, W. V.; Carswell, A.; Catling, D. C.; Clark, B. C.; Duck, T.; DeJong, E.; Fisher, D.; Goetz, W.; Gunnlaugsson, H. P.; Hecht, M. H.; Hipkin, V.; Hoffman, J.; Hviid, S. F.; Keller, H. U.; Kounaves, S. P.; Lange, C. F.; Lemmon, M. T.; Madsen, M. B.; Markiewicz, W. J.; Marshall, J.; McKay, C. P.; Mellon, M. T.; Ming, D. W.; Morris, R. V.; et al. (2009). "H2O at the Phoenix Landing Site". Science. 325 (5936): 58–61. Bibcode:2009Sci...325...58S. doi:10.1126/science.1172339. PMID 19574383. S2CID 206519214.
  363. Whiteway, J. A.; Komguem, L.; Dickinson, C.; Cook, C.; Illnicki, M.; Seabrook, J.; Popovici, V.; Duck, T. J.; Davy, R.; Taylor, P. A.; Pathak, J.; Fisher, D.; Carswell, A. I.; Daly, M.; Hipkin, V.; Zent, A. P.; Hecht, M. H.; Wood, S. E.; Tamppari, L. K.; Renno, N.; Moores, J. E.; Lemmon, M. T.; Daerden, F.; Smith, P. H. (2009). "Mars Water-Ice Clouds and Precipitation". Science. 325 (5936): 68–70. Bibcode:2009Sci...325...68W. doi:10.1126/science.1172344. PMID 19574386. S2CID 206519222.
  364. "CSA – News Release". Asc-csa.gc.ca. July 2, 2009. Archived from the original on July 5, 2011.
  365. "Mars Exploration Rover Mission: Press Releases". Marsrovers.jpl.nasa.gov. March 5, 2004.
  366. "NASA – Mars Rover Spirit Unearths Surprise Evidence of Wetter Past". NASA. May 21, 2007. Archived from the original on March 8, 2013. Retrieved January 17, 2012.
  367. Bertster, Guy (December 10, 2007). "Mars Rover Investigates Signs of Steamy Martian Past". Press Release. Jet Propulsion Laboratory, Pasadena, California.
  368. Klingelhofer, G.; et al. (2005). "volume XXXVI". Lunar Planet. Sci. (abstr.): 2349.
  369. Schroder, C.; et al. (2005). "Journal of Geophysical Research" (abstr.). 7. European Geosciences Union, General Assembly: 10254. {{cite journal}}: Cite journal requires |journal= (help)
  370. Morris, S.; et al. (2006). "Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journal through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills". J. Geophys. Res. 111 (E2): n/a. Bibcode:2006JGRE..111.2S13M. doi:10.1029/2005je002584. hdl:1893/17159.
  371. Ming, D.; Mittlefehldt, D. W.; Morris, R. V.; Golden, D. C.; Gellert, R.; Yen, A.; Clark, B. C.; Squyres, S. W.; Farrand, W. H.; Ruff, S. W.; Arvidson, R. E.; Klingelhöfer, G.; McSween, H. Y.; Rodionov, D. S.; Schröder, C.; De Souza, P. A.; Wang, A. (2006). "Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars". J. Geophys. Res. 111 (E2): E02S12. Bibcode:2006JGRE..111.2S12M. doi:10.1029/2005JE002560. hdl:1893/17114.
  372. Bell, J, ed. (2008). The Martian Surface. Cambridge University Press. ISBN 978-0-521-86698-9.
  373. Morris, R. V.; Ruff, S. W.; Gellert, R.; Ming, D. W.; Arvidson, R. E.; Clark, B. C.; Golden, D. C.; Siebach, K.; Klingelhofer, G.; Schroder, C.; Fleischer, I.; Yen, A. S.; Squyres, S. W. (June 4, 2010). "Outcrop of long-sought rare rock on Mars found". Science. 329 (5990). Sciencedaily.com: 421–424. Bibcode:2010Sci...329..421M. doi:10.1126/science.1189667. PMID 20522738. S2CID 7461676.
  374. Morris, Richard V.; Ruff, Steven W.; Gellert, Ralf; Ming, Douglas W.; Arvidson, Raymond E.; Clark, Benton C.; Golden, D. C.; Siebach, Kirsten; et al. (June 3, 2010). "Identification of Carbonate-Rich Outcrops on Mars by the Spirit Rover". Science. 329 (5990): 421–424. Bibcode:2010Sci...329..421M. doi:10.1126/science.1189667. PMID 20522738. S2CID 7461676.
  375. "Opportunity Rover Finds Strong Evidence Meridiani Planum Was Wet". Retrieved July 8, 2006.
  376. Harwood, William (January 25, 2013). "Opportunity rover moves into 10th year of Mars operations". Space Flight Now.
  377. Benison, KC; Laclair, DA (2003). "Modern and ancient extremely acid saline deposits: terrestrial analogs for martian environments?". Astrobiology. 3 (3): 609–618. Bibcode:2003AsBio...3..609B. doi:10.1089/153110703322610690. PMID 14678669. S2CID 36757620.
  378. Benison, K; Bowen, B (2006). "Acid saline lake systems give clues about past environments and the search for life on Mars". Icarus. 183 (1): 225–229. Bibcode:2006Icar..183..225B. doi:10.1016/j.icarus.2006.02.018.
  379. Osterloo, MM; Hamilton, VE; Bandfield, JL; Glotch, TD; Baldridge, AM; Christensen, PR; Tornabene, LL; Anderson, FS (2008). "Chloride-Bearing Materials in the Southern Highlands of Mars". Science. 319 (5870): 1651–1654. Bibcode:2008Sci...319.1651O. CiteSeerX 10.1.1.474.3802. doi:10.1126/science.1150690. PMID 18356522. S2CID 27235249.
  380. Grotzinger, J.; Milliken, R., eds. (2012). Sedimentary Geology of Mars. SEPM.
  381. "HiRISE – High Resolution Imaging Science Experiment". HiriUniversity of Arizona. Retrieved December 19, 2010.
  382. "Target Zone: Nilosyrtis? | Mars Odyssey Mission THEMIS". Themis.asu.edu. Retrieved December 19, 2010.
  383. Mellon, M. T.; Jakosky, B. M.; Postawko, S. E. (1997). "The persistence of equatorial ground ice on Mars". J. Geophys. Res. 102 (E8). onlinelibrary.wiley.com: 19357–19369. Bibcode:1997JGR...10219357M. doi:10.1029/97JE01346.
  384. Arfstrom, John D. (2012). "A Conceptual Model of Equatorial Ice Sheets on Mars. J" (PDF). Comparative Climatology of Terrestrial Planets. Lunar and Planetary Institute.
  385. Byrne, Shane; Dundas, Colin M.; Kennedy, Megan R.; Mellon, Michael T.; McEwen, Alfred S.; Cull, Selby C.; Daubar, Ingrid J.; Shean, David E.; Seelos, Kimberly D.; Murchie, Scott L.; Cantor, Bruce A.; Arvidson, Raymond E.; Edgett, Kenneth S.; Reufer, Andreas; Thomas, Nicolas; Harrison, Tanya N.; Posiolova, Liliya V.; Seelos, Frank P. (2009). "Distribution of mid-latitude ground ice on Mars from new impact craters". Science. 325 (5948): 1674–1676. Bibcode:2009Sci...325.1674B. doi:10.1126/science.1175307. PMID 19779195. S2CID 10657508.
  386. "Water Ice Exposed in Mars Craters". SPACE.com. September 24, 2009. Retrieved December 19, 2010.
  387. Khuller, Aditya; Christensen, Philip (February 2021). "Evidence of Exposed Dusty Water Ice within Martian Gullies". Journal of Geophysical Research: Planets. 126 (2). Bibcode:2021JGRE..12606539R. doi:10.1029/2020JE006539. ISSN 2169-9097. S2CID 234174382.
  388. S. Nerozzi; J.W. Holt (May 22, 2019). "Buried ice and sand caps at the north pole of Mars: revealing a record of climate change in the cavi unit with SHARAD". Geophysical Research Letters. 46 (13): 7278–7286. Bibcode:2019GeoRL..46.7278N. doi:10.1029/2019GL082114. hdl:10150/634098. S2CID 182153656.
  389. Lujendra Ojha; Stefano Nerozzi; Kevin Lewis (May 22, 2019). "Compositional Constraints on the North Polar Cap of Mars from Gravity and Topography". Geophysical Research Letters. 46 (15): 8671–8679. Bibcode:2019GeoRL..46.8671O. doi:10.1029/2019GL082294. S2CID 181334027.
  390. Soare, E., et al. 2019. Possible (closed system) pingo and ice-wedge/thermokarst complexes at the mid latitudes of Utopia Planitia, Mars. Icarus. https://doi.org/10.1016/j.icarus.2019.03.010
  391. Brown, Dwayne (October 30, 2012). "NASA Rover's First Soil Studies Help Fingerprint Martian Minerals". NASA. Archived from the original on June 3, 2016. Retrieved June 16, 2013.
  392. Brown, Dwayne; Webster, Guy; Neal-Jones, Nance (December 3, 2012). "NASA Mars Rover Fully Analyzes First Martian Soil Samples". NASA. Archived from the original on December 5, 2012.
  393. Chang, Ken (December 3, 2012). "Mars Rover Discovery Revealed". New York Times.
  394. ^ Webster, Guy; Brown, Dwayne (March 18, 2013). "Curiosity Mars Rover Sees Trend In Water Presence". NASA. Archived from the original on March 22, 2013.
  395. Rincon, Paul (March 19, 2013). "Curiosity breaks rock to reveal dazzling white interior". BBC.
  396. Staff (March 20, 2013). "Red planet coughs up a white rock, and scientists freak out". MSN. Archived from the original on March 23, 2013.
  397. Lieberman, Josh (September 26, 2013). "Mars Water Found: Curiosity Rover Uncovers 'Abundant, Easily Accessible' Water In Martian Soil". iSciencetimes.
  398. Leshin, L. A.; et al. (September 27, 2013). "Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover". Science. 341 (6153): 1238937. Bibcode:2013Sci...341E...3L. doi:10.1126/science.1238937. PMID 24072926. S2CID 206549244.
  399. ^ Grotzinger, John (September 26, 2013). "Introduction To Special Issue: Analysis of Surface Materials by the Curiosity Mars Rover". Science. 341 (6153): 1475. Bibcode:2013Sci...341.1475G. doi:10.1126/science.1244258. PMID 24072916.
  400. Neal-Jones, Nancy; Zubritsky, Elizabeth; Webster, Guy; Martialay, Mary (September 26, 2013). "Curiosity's SAM Instrument Finds Water and More in Surface Sample". NASA.
  401. ^ Webster, Guy; Brown, Dwayne (September 26, 2013). "Science Gains From Diverse Landing Area of Curiosity". NASA. Archived from the original on May 2, 2019. Retrieved September 27, 2013.
  402. ^ Chang, Kenneth (October 1, 2013). "Hitting Pay Dirt on Mars". New York Times.
  403. ^ Meslin, P.-Y.; et al. (September 26, 2013). "Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars". Science. 341 (6153): 1238670. Bibcode:2013Sci...341E...1M. doi:10.1126/science.1238670. PMID 24072924. S2CID 7418294.
  404. Stolper, E.M.; Baker, M.B.; Newcombe, M.E.; Schmidt, M.E.; Treiman, A.H.; Cousin, A.; Dyar, M.D.; Fisk, M.R.; Gellert, R.; King, P.L.; Leshin, L.; Maurice, S.; McLennan, S.M.; Minitti, M.E.; Perrett, G.; Rowland, S.; Sautter, V.; Wiens, R.C.; MSL ScienceTeam (2013). "The Petrochemistry of Jake_M: A Martian Mugearite" (PDF). Science. 341 (6153). AAAS: 1239463. Bibcode:2013Sci...341E...4S. doi:10.1126/science.1239463. PMID 24072927. S2CID 16515295. Archived from the original (PDF) on August 11, 2021. Retrieved July 23, 2019.
  405. Webster, Guy; Neal-Jones, Nancy; Brown, Dwayne (December 16, 2014). "NASA Rover Finds Active and Ancient Organic Chemistry on Mars". NASA. Retrieved December 16, 2014.
  406. Chang, Kenneth (December 16, 2014). "'A Great Moment': Rover Finds Clue That Mars May Harbor Life". New York Times. Retrieved December 16, 2014.
  407. Mahaffy, P. R.; et al. (December 16, 2014). "Mars Atmosphere – The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars" (PDF). Science. 347 (6220): 412–414. Bibcode:2015Sci...347..412M. doi:10.1126/science.1260291. PMID 25515119. S2CID 37075396.
  408. Rincon, Paul (April 13, 2015). "Evidence of liquid water found on Mars". BBC News. Retrieved April 15, 2015.
  409. Clavin, Whitney (October 8, 2015). "NASA's Curiosity Rover Team Confirms Ancient Lakes on Mars". NASA. Retrieved October 9, 2015.
  410. Grotzinger, J.P. (October 9, 2015). "Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars". Science. 350 (6257): aac7575. Bibcode:2015Sci...350.7575G. doi:10.1126/science.aac7575. PMID 26450214. S2CID 586848.
  411. Geological Society of America (November 3, 2018). "Evidence of outburst flooding indicates plentiful water on early Mars". EurekAlert!. Retrieved November 5, 2018.
  412. Heydari, Ezat; et al. (November 4, 2018). "Significance of Flood Depositis in Gale Crater, Mars". Geological Society of America. Retrieved November 5, 2018.
  413. Orosei R, Lauro SE, Pettinelli E, Cicchetti A, Coradini M, Cosciotti B, Di Paolo F, Flamini E, Mattei E, Pajola M, Soldovieri F, Cartacci M, Cassenti F, Frigeri A, Giuppi S, Martufi R, Masdea A, Mitri G, Nenna C, Noschese R, Restano M, Seu R (July 25, 2018). "Radar evidence of subglacial liquid water on Mars". Science. 361 (3699): 490–493. arXiv:2004.04587. Bibcode:2018Sci...361..490O. doi:10.1126/science.aar7268. hdl:11573/1148029. PMID 30045881. S2CID 206666385.
  414. Halton, Mary (July 25, 2018). "Liquid water 'lake' revealed on Mars". BBC News. Retrieved July 25, 2018.
  415. "China's 1st Mars rover 'Zhurong' lands on the Red Planet". Space.com. May 15, 2021.
  416. Liu, Yang; Wu, Xing; Zhao, Yu-Yan Sara; Pan, Lu; Wang, Chi; Liu, Jia; Zhao, Zhenxing; Zhou, Xiang; Zhang, Chaolin; Wu, Yuchun; Wan, Wenhui; Zou, Yongliao (2022). "Zhurong reveals recent aqueous activities in Utopia Planitia, Mars". Science Advances. 8 (19): eabn8555. Bibcode:2022SciA....8N8555L. doi:10.1126/sciadv.abn8555. PMC 9094648. PMID 35544566.
  417. Liu, Y., et al. 2022. Zhurong reveals recent aqueous activities in Utopia Planitia, Mars. Science Advances. VOL. 8, NO. 19
  418. Liu, J., et al. 2023. Martian dunes indicative of wind regime shift in line with end of ice age. Nature
  419. "Ocean's worth of water may be buried within Mars — but can we get to it?". Space.com. August 13, 2024.
  420. "Mars Hosts a Giant Reservoir of Water Underground, We Just Can't Easily Reach It, Study Finds".

Bibliography

  • Boyce, Joseph, M. (2008). The Smithsonian Book of Mars; Konecky & Konecky: Old Saybrook, CT, ISBN 978-1-58834-074-0
  • Carr, Michael, H. (1996). Water on Mars; Oxford University Press: New York, ISBN 0-19-509938-9.
  • Carr, Michael, H. (2006). The Surface of Mars; Cambridge University Press: Cambridge, UK, ISBN 978-0-521-87201-0.
  • Hartmann, William, K. (2003). A Traveler's Guide to Mars: The Mysterious Landscapes of the Red Planet; Workman: New York, ISBN 0-7611-2606-6.
  • Hanlon, Michael (2004). The Real Mars: Spirit, Opportunity, Mars Express and the Quest to Explore the Red Planet; Constable: London, ISBN 1-84119-637-1.
  • Kargel, Jeffrey, S. (2004). Mars: A Warmer Wetter Planet; Springer-Praxis: London, ISBN 1-85233-568-8.
  • Morton, Oliver (2003). Mapping Mars: Science, Imagination, and the Birth of a World; Picador: New York, ISBN 0-312-42261-X.
  • Sheehan, William (1996). The Planet Mars: A History of Observation and Discovery; University of Arizona Press: Tucson, AZ, ISBN 0-8165-1640-5.
  • Viking Orbiter Imaging Team (1980). Viking Orbiter Views of Mars, C.R. Spitzer, Ed.; NASA SP-441: Washington DC.

External links

Mars
Outline of Mars
Geography
Atmosphere
Regions
Physical
features
Geology
History
Astronomy
Moons
Transits
Asteroids
Comets
General
Exploration
Concepts
Missions
Advocacy
Related
Geography and geology of Mars
Cartography
Regions
Quadrangles
Geology
Surface
features
History
Rocks
observed
Topography
Mountains,
volcanoes
(list by height)
Plains,
plateaus
Canyons,
valleys
Fossae, mensae,
rupes, labyrinthi
Catenae,
craters
Water
Overviews
Water droplet
Water droplet
States
Forms
On Earth
Extraterrestrial
Physical parameters
Portals: Categories: