Revision as of 12:19, 3 April 2016 editPacerier (talk | contribs)1,866 edits →Cardinal utility← Previous edit | Latest revision as of 05:51, 18 December 2024 edit undoClosed Limelike Curves (talk | contribs)Extended confirmed users, Pending changes reviewers6,829 edits more info in leadTag: Visual edit | ||
(245 intermediate revisions by more than 100 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Concept in economics and decision theory}} | |||
{{about|the economic concept}} | |||
{{About|the economic concept}} | |||
{{Use dmy dates|date=October 2014}} | {{Use dmy dates|date=October 2014}} | ||
{{Utilitarianism|expanded=Key concepts}} | {{Utilitarianism|expanded=Key concepts}} | ||
In ], '''utility''' is a measure of a certain person's satisfaction from a certain state of the world. Over time, the term has been used with at least two meanings. | |||
In ], '''utility''' is a measure of preferences over some set of goods and services. The concept is an important underpinning of ] in economics and ], because it represents satisfaction experienced by the ] of a ]. A good is something that satisfies human ]s. Since one cannot directly measure benefit, satisfaction or ] from a good or service, economists instead have devised ways of representing and measuring utility in terms of economic choices that can be measured. Economists have attempted to perfect highly abstract methods of comparing utilities by observing and calculating economic choices. In the simplest sense, economists consider utility to be revealed in people's willingness to pay different amounts for different goods. | |||
* In a ] context, utility refers to a goal or objective that we wish to maximize, i.e., an ]. This kind of utility bears a closer resemblance to the original ] concept, developed by moral philosophers such as ] and ]. | |||
* In a ] context, the term refers to an ''apparent'' objective function; such a function is ], and specifically by their preferences over ]. | |||
The relationship between these two kinds of utility functions has been a source of controversy among both ] and ], with most maintaining that the two are distinct but generally related. | |||
== Utility function == | |||
Consider a set of alternatives among which a person has a preference ordering. A '''utility function''' represents that ordering if it is possible to assign a ] to each alternative in such a manner that ''alternative a'' is assigned a number greater than ''alternative b'' if and only if the individual prefers ''alternative a'' to ''alternative b''. In this situation, someone who selects the most preferred alternative must also choose one that maximizes the associated utility function. | |||
Suppose James has utility function <math>U = \sqrt{xy}</math> such that <math>x</math> is the number of apples and <math>y</math> is the number of chocolates. Alternative A has <math>x = 9</math> apples and <math>y = 16</math> chocolates; alternative B has <math>x = 13</math> apples and <math>y = 13</math> chocolates. Putting the values <math>x, y</math> into the utility function yields <math>\sqrt{9 \times 16} = 12</math> for alternative A and <math>\sqrt{13 \times 13} = 13</math> for B, so James prefers alternative B. In general economic terms, a utility function ranks preferences concerning a set of goods and services. | |||
] derived the conditions required for a preference ordering to be representable by a utility function.<ref>{{citation|last=Debreu|first=Gérard|title=Decision processes|pages=159–167|year=1954|postscript=.|editor-last1=Thrall|editor-first1=Robert M.|contribution=Representation of a preference ordering by a numerical function|location=New York|publisher=Wiley|oclc=639321|editor-last2=Coombs|editor-first2=Clyde H.|editor-last3=Raiffa|editor-first3=Howard|editor-link2=Clyde H. Coombs|editor-link3=Howard Raiffa}}</ref> For a finite set of alternatives, these require only that the preference ordering is complete (so the individual can determine which of any two alternatives is preferred or that they are indifferent), and that the preference order is ]. | |||
Suppose the set of alternatives is not finite (for example, even if the number of goods is finite, the quantity chosen can be any real number on an interval). In that case, a continuous utility function exists representing a consumer's preferences if and only if the consumer's preferences are complete, transitive, and continuous.<ref>{{citation|last1=Jehle|first1=Geoffrey|last2=Reny|first2=Philipp|title=Advanced Microeconomic Theory|pages=13–16|year=2011|postscript=.|publisher=Prentice Hall, Financial Times|isbn=978-0-273-73191-7}}</ref> | |||
==Applications== | ==Applications== | ||
Utility |
Utility can be represented through sets of ], which are ] of the function itself and which plot the combination of commodities that an individual would accept to maintain a given level of satisfaction. Combining indifference curves with budget constraints allows for individual ] derivation. | ||
A diagram of a general indifference curve is shown below (Figure 1). The vertical and horizontal axes represent an individual's consumption of commodity Y and X respectively. All the combinations of commodity X and Y along the same indifference curve are regarded indifferently by individuals, which means all the combinations along an indifference curve result in the same utility value. | |||
Individual utility and social utility can be construed as the value of a utility function and a ] respectively. When coupled with production or commodity constraints, under some assumptions these functions can be used to analyze ], such as illustrated by ]es in ]s. Such efficiency is a central concept in ]. | |||
] | |||
Individual and social utility can be construed as the value of a utility function and a ], respectively. When coupled with production or commodity constraints, by some assumptions, these functions can be used to analyze ], such as illustrated by ]es in ]s. Such efficiency is a major concept in ]. | |||
==Preference== | |||
In ], utility is applied to generate an individual's price for an ] called the ]. Utility functions are also related to ]s, with the most common example being the ]. | |||
While ]s are the conventional foundation of choice theory in ], it is often convenient to represent preferences with a utility ]. Let ''X'' be the '''consumption set''', the set of all mutually exclusive baskets the consumer could consume. The consumer's '''utility function''' <math> u\colon X\to \R</math> ranks each possible outcome in the consumption set. If the consumer strictly prefers ''x'' to ''y'' or is indifferent between them, then <math>u(x)\geq u(y)</math>. | |||
For example, suppose a consumer's consumption set is ''X'' = {nothing, 1 apple,1 orange, 1 apple and 1 orange, 2 apples, 2 oranges}, and his utility function is ''u''(nothing) = 0, ''u''(1 apple) = 1, ''u''(1 orange) = 2, ''u''(1 apple and 1 orange) = 5, ''u''(2 apples) = 2 and ''u''(2 oranges) = 4. Then this consumer prefers 1 orange to 1 apple but prefers one of each to 2 oranges. | |||
==Revealed preference== | |||
It was recognized that utility could not be measured or observed directly, so instead economists devised a way to infer underlying relative utilities from observed choice. These 'revealed preferences', as they were named by ], were revealed e.g. in people's willingness to pay: <blockquote>Utility is taken to be correlative to Desire or Want. It has been already argued that desires cannot be measured directly, but only indirectly, by the outward phenomena to which they give rise: and that in those cases with which economics is chiefly concerned the measure is found in the price which a person is willing to pay for the fulfillment or satisfaction of his desire.<ref>{{cite book |first=Alfred |last=Marshall |year=1920 |title=Principles of Economics. An introductory volume |edition=8th |location=London |publisher=Macmillan }}</ref>{{RP|78}}</blockquote> | |||
In micro-economic models, there is usually a finite set of L commodities, and a consumer may consume an arbitrary amount of each commodity. This gives a consumption set of <math>\R^L_+</math>, and each package <math>x \in \R^L_+</math> is a vector containing the amounts of each commodity. For the example, there are two commodities: apples and oranges. If we say apples are the first commodity, and oranges the second, then the consumption set is <math>X =\R^2_+</math> and ''u''(0, 0) = 0, ''u''(1, 0) = 1, ''u''(0, 1) = 2, ''u''(1, 1) = 5, ''u''(2, 0) = 2, ''u''(0, 2) = 4 as before. For ''u'' to be a utility function on ''X'', however, it must be defined for every package in ''X'', so now the function must be defined for fractional apples and oranges too. One function that would fit these numbers is <math> u(x_\text{apples}, x_\text{oranges}) = x_\text{apples} + 2 x_\text{oranges} + 2x_\text{apples} x_\text{oranges}. </math> | |||
==Utility functions== | |||
Preferences have three main '''properties''': | |||
There has been some controversy over the question whether the utility of a ] can be measured or not. At one time, it was assumed that the consumer was able to say exactly how much utility he got from the commodity. The economists who made this assumption belonged to the 'cardinalist school' of economics. Today '''utility functions''', expressing utility as a function of the amounts of the various goods consumed, are treated as either ''cardinal'' or ''ordinal'', depending on whether they are or are not interpreted as providing more information than simply the rank ordering of preferences over bundles of goods, such as information on the strength of preferences. | |||
* '''Completeness''' | |||
===Cardinal utility=== | |||
{{Main|Cardinal utility}} | |||
Assume an individual has two choices, A and B. By ranking the two choices, one and only one of the following relationships is true: an individual strictly prefers A (A > B); an individual strictly prefers B (B>A); an individual is indifferent between A and B (A = B). | |||
When cardinal utility is used, the magnitude of utility differences is treated as an ethically or behaviorally significant quantity. For example, suppose a cup of orange juice has utility of 120 utils, a cup of tea has a utility of 80 utils, and a cup of water has a utility of 40 utils. With cardinal utility, it can be concluded that the cup of orange juice is better than the cup of tea by exactly the same amount by which the cup of tea is better than the cup of water. One cannot conclude, however, that the cup of tea is two thirds as good as the cup of juice, because {{cfy|text=this conclusion would depend not only on magnitudes of utility differences, but also on the "zero" of utility}}. | |||
Either ''a'' ≥ ''b'' OR ''b'' ≥ ''a'' (OR both) for all (''a'',''b'') | |||
* '''Transitivity''' | |||
] has largely retreated from using cardinal utility functions as the basis of economic behavior. A notable exception is in the context of analyzing choice under conditions of risk (see ]). | |||
Individuals' preferences are consistent over bundles. If an individual prefers bundle A to bundle B and bundle B to bundle C, then it can be assumed that the individual prefers bundle A to bundle C. | |||
Sometimes cardinal utility is used to aggregate utilities across persons, to create a ]. The argument against this is that interpersonal comparisons of utility are meaningless because there is no simple way to interpret how different people value consumption bundles.{{Citation needed|date=June 2013}} | |||
(If ''a'' ≥ ''b'' and ''b'' ≥ ''c'', then ''a'' ≥ ''c'' for all (''a'',''b'',''c'')). | |||
* '''Non-satiation''' or '''monotonicity''' | |||
===Ordinal utility=== | |||
If bundle A contains all the goods that a bundle B contains, but A also includes more of at least one good than B. The individual prefers A over B.<ref>{{Cite web |title=nonsatiation |url=https://www.oxfordreference.com/display/10.1093/oi/authority.20110803100237926 |access-date=2024-07-18 |website=Oxford Reference |language=en }}</ref> If, for example, bundle A = {1 apple,2 oranges}, and bundle B = {1 apple,1 orange}, then A is preferred over B. | |||
{{Main|Ordinal utility}} | |||
===Revealed preference=== | |||
When ordinal utilities are used, differences in utils (values taken on by the utility function) are treated as ethically or behaviorally meaningless: the utility index encodes a full behavioral ordering between members of a choice set, but tells nothing about the related ''strength of preferences''. In the above example, it would only be possible to say that juice is preferred to tea to water, but no more. | |||
It was recognized that utility could not be measured or observed directly, so instead economists devised a way to infer relative utilities from observed choice. These 'revealed preferences', as termed by ], were revealed e.g. in people's willingness to pay: | |||
<blockquote> | |||
Utility is assumed to be correlative to Desire or Want. It has been argued already that desires cannot be measured directly, but only indirectly, by the outward phenomena which they cause: and that in those cases with which economics is mainly concerned the measure is found by the price which a person is willing to pay for the fulfillment or satisfaction of his desire.<ref>{{cite book |first=Alfred |last=Marshall |year=1920 |title=Principles of Economics. An introductory volume |edition=8th |location=London |publisher=Macmillan }}</ref>{{RP|78}}</blockquote> | |||
=={{Visible anchor|Functions|Utility functions}}== | |||
Ordinal utility functions are unique ] increasing monotone transformations. For example, if a function <math>u(x)</math> is taken as ordinal, it is equivalent to the function <math>u(x)^3</math>, because taking the 3rd power is an increasing ]. This means that the ordinal preference induced by these functions is the same. In contrast, cardinal utilities are unique only up to increasing linear transformations, so if <math>u(x)</math> is taken as cardinal, it is not equivalent to <math>u(x)^3</math>. | |||
'''Utility functions''', expressing utility as a function of the amounts of the various goods consumed, are treated as either ''cardinal'' or ''ordinal'', depending on whether they are or are not interpreted as providing more information than simply the rank ordering of preferences among bundles of goods, such as information concerning the strength of preferences. | |||
===Preferences and utility functions=== | |||
===Cardinal=== | |||
Although ]s are the conventional foundation of ], it is often convenient to represent preferences with a utility ] and analyze human behavior indirectly with utility functions. Let ''X'' be the '''consumption set''', the set of all mutually-exclusive baskets the consumer could conceivably consume. The consumer's '''utility function''' <math> u\colon X\to \R</math> ranks each package in the consumption set. If the consumer strictly prefers ''x'' to ''y'' or is indifferent between them, then <math>u(x)\geq u(y)</math>. | |||
{{Main|Cardinal utility}} | |||
Cardinal utility states that the utilities obtained from consumption can be measured and ranked objectively and are representable by numbers.<ref name=":0">{{Cite book|last=Dominick|first=Salvatore|title=Principles Of Microeconomics|publisher=Oxford Higher Education/Oxford University Press|year=2008|isbn=9780198062301|location=New Delhi|pages=60}}</ref> There are fundamental assumptions of cardinal utility. Economic agents should be able to rank different bundles of goods based on their preferences or utilities and sort different transitions between two bundles of goods.<ref>{{Cite journal|last1=Lin|first1=Chung-Cheng|last2=Peng|first2=Shi-Shu|date=2019|title=The role of diminishing marginal utility in the ordinal and cardinal utility theories|url=https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8454.12151|journal=Australian Economic Papers|volume=58|issue=3|pages=233–246|doi=10.1111/1467-8454.12151|s2cid=159308055|via=Wiley Online Library}}</ref> | |||
For example, suppose a consumer's consumption set is ''X'' = {nothing, 1 apple,1 orange, 1 apple and 1 orange, 2 apples, 2 oranges}, and its utility function is ''u''(nothing) = 0, ''u''(1 apple) = 1, ''u''(1 orange) = 2, ''u''(1 apple and 1 orange) = 4, ''u''(2 apples) = 2 and ''u''(2 oranges) = 3. Then this consumer prefers 1 orange to 1 apple, but prefers one of each to 2 oranges. | |||
A cardinal utility function can be transformed to another utility function by a positive linear transformation (multiplying by a positive number, and adding some other number); however, both utility functions represent the same preferences.<ref>{{Cite journal|last=Moscati|first=Ivan|date=2013|title=How Cardinal Utility Entered Economic Analysis, 1909-1944|journal=SSRN Electronic Journal|doi=10.2139/ssrn.2296881 |doi-access=free |hdl=10419/149700 |s2cid=55651414 |s2cid-access=free |issn=1556-5068|hdl-access=free }}</ref> | |||
In micro-economic models, there are usually a finite set of L commodities, and a consumer may consume an arbitrary amount of each commodity. This gives a consumption set of <math>\R^L_+</math>, and each package <math>x \in \R^L_+</math> is a vector containing the amounts of each commodity. In the previous example, we might say there are two commodities: apples and oranges. If we say apples is the first commodity, and oranges the second, then the consumption set <math>X =\R^2_+</math> and ''u''(0, 0) = 0, ''u''(1, 0) = 1, ''u''(0, 1) = 2, ''u''(1, 1) = 4, ''u''(2, 0) = 2, ''u''(0, 2) = 3 as before. Note that for ''u'' to be a utility function on ''X'', it must be defined for every package in ''X''. | |||
When cardinal utility is assumed, the magnitude of utility differences is treated as an ethically or behaviorally significant quantity. For example, suppose a cup of orange juice has utility of 120 "utils", a cup of tea has a utility of 80 utils, and a cup of water has a utility of 40 utils. With cardinal utility, it can be concluded that the cup of orange juice is better than the cup of tea by the same amount by which the cup of tea is better than the cup of water. This means that if a person has a cup of tea, they would be willing to take any bet with a probability, p, greater than .5 of getting a cup of juice, with a risk of getting a cup of water equal to 1-p. One cannot conclude, however, that the cup of tea is two-thirds of the goodness of the cup of juice because this conclusion would depend not only on magnitudes of utility differences but also on the "zero" of utility. For example, if the "zero" of utility were located at -40, then a cup of orange juice would be 160 utils more than zero, a cup of tea 120 utils more than zero. Cardinal utility can be considered as the assumption that quantifiable characteristics, such as height, weight, temperature, etc can measure utility. | |||
A utility function <math> u\colon X\to \R</math> '''represents''' a preference relation <math>\preceq</math> on X ] for every <math>x, y \in X</math>, <math>u(x)\leq u(y)</math> implies <math>x\preceq y</math>. If u represents <math>\preceq</math>, then this implies <math>\preceq</math> is complete and transitive, and hence rational. | |||
] has largely retreated from using cardinal utility functions as the basis of economic behavior. A notable exception is in the context of analyzing choice with conditions of risk (see ]). | |||
===Examples of utility function forms=== | |||
Sometimes cardinal utility is used to aggregate utilities across persons, to create a ]. | |||
===Ordinal=== | |||
{{Main|Ordinal utility}} | |||
Instead of giving actual numbers over different bundles, ordinal utilities are only the rankings of utilities received from different bundles of goods or services.<ref name=":0" /> For example, ordinal utility could tell that having two ice creams provide a greater utility to individuals in comparison to one ice cream but could not tell exactly how much extra utility received by the individual. Ordinal utility, it does not require individuals to specify how much extra utility they received from the preferred bundle of goods or services in comparison to other bundles. They are only needed to tell which bundles they prefer. | |||
When ordinal utilities are used, differences in utils (values assumed by the utility function) are treated as ethically or behaviorally meaningless: the utility index encodes a full behavioral ordering between members of a choice set, but tells nothing about the related ''strength of preferences''. For the above example, it would only be possible to say that juice is preferred to tea to water. Thus, ordinal utility utilizes comparisons, such as "preferred to", "no more", "less than", etc. | |||
If a function <math>u(x)</math> is ordinal and non-negative, it is equivalent to the function <math>u(x)^2</math>, because taking the square is an increasing ]. This means that the ordinal preference induced by these functions is the same (although they are two different functions). In contrast, if <math>u(x)</math> is cardinal, it is not equivalent to <math>u(x)^2</math>. | |||
===Examples=== | |||
In order to simplify calculations, various alternative assumptions have been made concerning details of human preferences, and these imply various alternative utility functions such as: | In order to simplify calculations, various alternative assumptions have been made concerning details of human preferences, and these imply various alternative utility functions such as: | ||
* ] (''constant elasticity of substitution |
* ] (''constant elasticity of substitution''). | ||
* ] | * ] | ||
* ] | * ] | ||
* ] | * ] | ||
* ] | * ] | ||
* ]<ref>{{cite book |last=Blanchard |first=Olivier J. |last2=Fischer |first2=Stanley |chapter=Dependence of the Discount Rate on Utility |title=Lectures on Macroeconomics |location=Cambridge |publisher=MIT Press |year=1989 |isbn=0-262-02283-4 |pages=72–75 |chapterurl=https://books.google.com/books?id=j_zs7htz9moC&pg=PA72 }}</ref> | |||
* ] | * ] | ||
* ] | * ] | ||
Line 61: | Line 95: | ||
* ] | * ] | ||
Most utility functions used |
Most utility functions used for modeling or theory are '''well-behaved.''' They are usually monotonic and quasi-concave. However, it is possible for rational preferences not to be representable by a utility function. An example is ] which are not continuous and cannot be represented by a continuous utility function.<ref>{{cite book |first=Jonathan E. Jr. |last=Ingersoll |title=Theory of Financial Decision Making |url=https://archive.org/details/theoryoffinancia1987inge |url-access=registration |location=Totowa |publisher=Rowman and Littlefield |year=1987 |page= |isbn=0-8476-7359-6 }}</ref> | ||
== Marginal utility == | |||
Economists distinguish between total utility and marginal utility. Total utility is the utility of an alternative, an entire consumption bundle or situation in life. The rate of change of utility from changing the quantity of one good consumed is termed the marginal utility of that good. Marginal utility therefore measures the slope of the utility function with respect to the changes of one good.<ref name=":1">{{Cite journal|last1=Castro|first1=Luiz Carvalho|last2=Araujo|first2=Antônio Souza|date=2019|title=Marginal Utility & its Diminishing Methods|url=https://journals.seagullpublications.com/ijtem/archive/f_IJ0320191627.pdf|journal=International Journal of Tax Economics and Management|pages=36–47|eissn=2618-1118}}</ref> Marginal utility usually decreases with consumption of the good, the idea of "diminishing marginal utility". In calculus notation, the marginal utility of good X is <math>MU_x=\frac{\partial U}{\partial X}</math>. When a good's marginal utility is positive, additional consumption of it increases utility; if zero, the consumer is satiated and indifferent about consuming more; if negative, the consumer would pay to reduce his consumption.<ref>{{cite web |last1=Bloomenthal |first1=Andrew |title=Marginal Utility |url=https://www.investopedia.com/terms/m/marginalutility.asp |website=Investopedia |access-date=25 April 2021}}</ref> | |||
=== Law of diminishing marginal utility === | |||
Rational individuals only consume additional units of goods if it increases the marginal utility. However, the law of diminishing marginal utility means an additional unit consumed brings a lower marginal utility than that carried by the previous unit consumed. For example, drinking one bottle of water makes a thirsty person satisfied; as the consumption of water increases, he may feel begin to feel bad which causes the marginal utility to decrease to zero or even become negative. Furthermore, this is also used to analyze progressive taxes as the greater taxes can result in the loss of utility. | |||
=== Marginal rate of substitution (MRS) === | |||
Marginal rate of substitution is the slope of the indifference curve, which measures how much an individual is willing to switch from one good to another. Using a mathematic equation, <math>MRS=-\operatorname{d}\!x_2/\operatorname{d}\!x_1</math>keeping ''U''(''x''<sub>1</sub>,''x''<sub>2</sub>) constant. Thus, MRS is how much an individual is willing to pay for consuming a greater amount of ''x''<sub>1</sub>. | |||
MRS is related to marginal utility. The relationship between marginal utility and MRS is:<ref name=":1" /> | |||
: <math>MRS=\frac{MU_1}{MU_2}</math> | |||
==Expected utility== | ==Expected utility== | ||
{{Main|Expected utility hypothesis}} | {{Main|Expected utility hypothesis}} | ||
Expected utility theory deals with the analysis of choices among '''risky''' projects with multiple (possibly multidimensional) outcomes. | |||
The ] was first proposed by ] in 1713 and solved by ] in 1738, although the Swiss mathematician ] proposed taking the expectation of a square-root utility function of money in an 1728 letter to N. Bernoulli. D. Bernoulli argued that the paradox could be resolved if decision-makers displayed ] and argued for a logarithmic cardinal utility function. (Analysis of international survey data during the 21st century has shown that insofar as utility represents happiness, as for ], it is indeed proportional to log of income.) | |||
The expected utility theory deals with the analysis of choices among '''risky''' projects with (possibly multidimensional) outcomes. | |||
The ] was first proposed by ] in 1713 and solved by ] in 1738. D. Bernoulli argued that the paradox could be resolved if decision-makers displayed ] and argued for a logarithmic cardinal utility function. | |||
The first important use of the expected utility theory was that of ] and ], who used the assumption of expected utility maximization in their formulation of ]. | The first important use of the expected utility theory was that of ] and ], who used the assumption of expected utility maximization in their formulation of ]. | ||
In finding the probability-weighted average of the utility from each possible outcome: | |||
===von Neumann–Morgenstern expected utility=== | |||
:<math>\text{EU} = \Pr(z) \cdot u(\text{Value}(z)) + \Pr(y) \cdot u(\text{Value}(y))</math> | |||
===Von Neumann–Morgenstern=== | |||
{{Main|Von Neumann–Morgenstern utility theorem}} | {{Main|Von Neumann–Morgenstern utility theorem}} | ||
Von Neumann and Morgenstern addressed situations in which the outcomes of choices are not known with certainty, but have probabilities |
Von Neumann and Morgenstern addressed situations in which the outcomes of choices are not known with certainty, but have probabilities associated with them. | ||
A notation for a '']'' is as follows: if options A and B have probability ''p'' and 1 − ''p'' in the lottery, we write it as a linear combination: | A notation for a '']'' is as follows: if options A and B have probability ''p'' and 1 − ''p'' in the lottery, we write it as a linear combination: | ||
Line 90: | Line 140: | ||
where <math>\sum_i p_i =1</math>. | where <math>\sum_i p_i =1</math>. | ||
By making some reasonable assumptions about the way choices behave, von Neumann and Morgenstern showed that if an agent can choose between the lotteries, then this agent has a utility function such that the desirability of an arbitrary lottery can be |
By making some reasonable assumptions about the way choices behave, von Neumann and Morgenstern showed that if an agent can choose between the lotteries, then this agent has a utility function such that the desirability of an arbitrary lottery can be computed as a linear combination of the utilities of its parts, with the weights being their probabilities of occurring. | ||
This is |
This is termed the ''expected utility theorem''. The required assumptions are four axioms about the properties of the agent's ] over 'simple lotteries', which are lotteries with just two options. Writing <math>B\preceq A</math> to mean 'A is weakly preferred to B' ('A is preferred at least as much as B'), the axioms are: | ||
# completeness: For any two simple lotteries <math>L</math> and <math>M</math>, either <math>L\preceq M</math> or <math>M\preceq L</math> (or both, in which case they are viewed as equally desirable). | # completeness: For any two simple lotteries <math>L</math> and <math>M</math>, either <math>L\preceq M</math> or <math>M\preceq L</math> (or both, in which case they are viewed as equally desirable). | ||
Line 103: | Line 153: | ||
In more formal language: A von Neumann–Morgenstern utility function is a function from choices to the real numbers: | In more formal language: A von Neumann–Morgenstern utility function is a function from choices to the real numbers: | ||
:<math> u\colon X\to \R</math> | :<math> u\colon X\to \R</math> | ||
which assigns a real number to every outcome in a way that |
which assigns a real number to every outcome in a way that represents the agent's preferences over simple lotteries. Using the four assumptions mentioned above, the agent will prefer a lottery <math>L_2</math> to a lottery <math>L_1</math> if and only if, for the utility function characterizing that agent, the expected utility of <math>L_2</math> is greater than the expected utility of <math>L_1</math>: | ||
:<math>L_1\preceq L_2 \text{ iff } u(L_1)\leq u(L_2)</math>. | :<math>L_1\preceq L_2 \text{ iff } u(L_1)\leq u(L_2)</math>. | ||
Of all the axioms, independence is the most often discarded. A variety of ] theories have arisen, most of which omit or relax the independence axiom. | |||
Repeating in category language: <math>u</math> is a morphism between the category of preferences with uncertainty and the category of reals as an additive group. | |||
Of all the axioms, independence is the most often discarded. A variety of ] theories have arisen, most of which drop or relax the independence axiom. | |||
===Utility as probability of success=== | |||
Castagnoli and LiCalzi and Bordley and LiCalzi (2000) provided another interpretation for Von Neumann and Morgenstern's theory. Specifically for any utility function, there exists a hypothetical reference lottery with the expected utility of an arbitrary lottery being its probability of performing no worse than the reference lottery. Suppose success is defined as getting an outcome no worse than the outcome of the reference lottery. Then this mathematical equivalence means that maximizing expected utility is equivalent to maximizing the probability of success. In many contexts, this makes the concept of utility easier to justify and to apply. For example, a firm's utility might be the probability of meeting uncertain future customer expectations. | |||
<ref>Castagnoli, E. and M. LiCalzi. "Expected Utility Theory without Utility." Theory and Decision, 1996</ref><ref>Bordley, R. and M. LiCalzi. "Decision Analysis with Targets instead of Utilities," Decisions in Economics and Finance. 2000.</ref><ref>Bordley,R. And C.Kirkwood. Multiattribute preference analysis with Performance Targets. Operations Research. 2004.</ref><ref>{{cite journal |last=Bordley |first=R. |first2=S. |last2=Pollock |title=A Decision-Analytic Approach to Reliability-Based Design Optimization |journal=Operations Research |volume=57 |issue=5 |pages= 1262–1270|year=2009 |doi=10.1287/opre.1080.0661 }}</ref> | |||
==Indirect utility== | ==Indirect utility== | ||
{{Main|Indirect utility}} | {{Main|Indirect utility}} | ||
An indirect utility function gives the optimal attainable value of a given utility function, which depends on the prices of the goods and the income or wealth level that the individual possesses. | An indirect utility function gives the ] of a given utility function, which depends on the prices of the goods and the income or wealth level that the individual possesses. | ||
=== |
===Money=== | ||
One use of the indirect utility concept is the notion of the utility of money. The (indirect) utility function for money is a nonlinear function that is ] and asymmetric about the origin. The utility function is ] in the positive region, |
One use of the indirect utility concept is the notion of the utility of money. The (indirect) utility function for money is a nonlinear function that is ] and asymmetric about the origin. The utility function is ] in the positive region, representing the phenomenon of ]. The boundedness represents the fact that beyond a certain amount money ceases being useful at all, as the size of any economy at that time is itself bounded. The asymmetry about the origin represents the fact that gaining and losing money can have radically different implications both for individuals and businesses. The non-linearity of the utility function for money has profound implications in decision-making processes: in situations where outcomes of choices influence utility by gains or losses of money, which are the norm for most business settings, the optimal choice for a given decision depends on the possible outcomes of all other decisions in the same time-period.<ref>{{cite book |first=J. O. |last=Berger |title=Statistical Decision Theory and Bayesian Analysis |location=Berlin |publisher=Springer-Verlag |edition=2nd |year=1985 |chapter=Utility and Loss |isbn=3-540-96098-8 }}</ref> | ||
== Budget constraints == | |||
Individuals' consumptions are constrained by their budget allowance. The graph of budget line is a linear, downward-sloping line between X and Y axes. All the bundles of consumption under the budget line allow individuals to consume without using the whole budget as the total budget is greater than the total cost of bundles (Figure 2). If only considers prices and quantities of two goods in one bundle, a budget constraint could be formulated as <math>p_1X_1+p_2X_2 =Y</math>, where <math>p_1</math> and <math>p_2</math> are prices of the two goods, <math>X_1</math> and <math>X_2</math> are quantities of the two goods. | |||
] | |||
: <math> | |||
\text{slope} = \frac{-P(x)}{P(y)} | |||
</math> | |||
=== Constrained utility optimisation === | |||
Rational consumers wish to maximise their utility. However, as they have budget constraints, a change of price would affect the quantity of demand. There are two factors could explain this situation: | |||
* Purchasing power. Individuals obtain greater purchasing power when the price of a good decreases. The reduction of the price allows individuals to increase their savings so they could afford to buy other products. | |||
* Substitution effect. If the price of good A decreases, then the good becomes relatively cheaper with respect to its substitutes. Thus, individuals would consume more of good A as the utility would increase by doing so. | |||
==Discussion and criticism== | ==Discussion and criticism== | ||
Cambridge economist ] famously criticized utility for being a circular concept: "Utility is the quality in commodities that makes individuals want to buy them, and the fact that individuals want to buy commodities shows that they have utility"<ref>{{cite book |first=Joan |last=Robinson |year=1962 |title=Economic Philosophy |location=Harmondsworth, Middle-sex, UK |publisher=Penguin Books }}</ref>{{rp|48}} Robinson also |
Cambridge economist ] famously criticized utility for being a circular concept: "Utility is the quality in ] that makes individuals want to buy them, and the fact that individuals want to buy commodities shows that they have utility".<ref>{{cite book |first=Joan |last=Robinson |year=1962 |title=Economic Philosophy |location=Harmondsworth, Middle-sex, UK |publisher=Penguin Books }}</ref>{{rp|48}} Robinson also stated that because the theory assumes that preferences are fixed this means that utility is not a ] assumption. This is so because if we observe changes of peoples' behavior in relation to a change in prices or a change in budget constraint we can never be sure to what extent the change in behavior was due to the change of price or budget constraint and how much was due to a change of preference.<ref>{{cite web |last=Pilkington |first=Philip |title=Joan Robinson's Critique of Marginal Utility Theory |work=Fixing the Economists |date=17 February 2014 |url=https://fixingtheeconomists.wordpress.com/2014/02/17/joan-robinsons-critique-of-marginal-utility-theory/ |url-status=live |archive-url=https://web.archive.org/web/20150713112846/https://fixingtheeconomists.wordpress.com/2014/02/17/joan-robinsons-critique-of-marginal-utility-theory/ |archive-date=13 July 2015 |df=dmy-all }}</ref>{{Unreliable source?|date=June 2023|reason=A blogpost from a fringe website is not a reliable source, link to a scholarly article|certain=y}} This criticism is similar to that of the philosopher ] who argued that the '']'' (all else equal) conditions on which the ] theory of demand rested rendered the theory itself a meaningless ], incapable of being tested experimentally.<ref>{{cite web |last=Pilkington |first=Philip |title=utility Hans Albert Expands Robinson's Critique of Marginal Utility Theory to the Law of Demand |work=Fixing the Economists |date=27 February 2014 |url=https://fixingtheeconomists.wordpress.com/2014/02/27/hans-albert-expands-robinsons-critique-of-marginal-utility-theory-to-the-law-of-demand/ |url-status=live |archive-url=https://web.archive.org/web/20150719164628/https://fixingtheeconomists.wordpress.com/2014/02/27/hans-albert-expands-robinsons-critique-of-marginal-utility-theory-to-the-law-of-demand/ |archive-date=19 July 2015 |df=dmy-all }}</ref>{{Unreliable source?|date=June 2023|certain=Yes|reason=A blogpost from a fringe website is not a reliable source, link to a scholarly article}} In essence, a curve of demand and supply (a theoretical line of quantity of a product which would have been offered or requested for given price) is purely ] and could never have been demonstrated ]{{Dubious|date=June 2023|reason=There have been studies that see a D&S Curve, it's also what you do in Micro classes in Uni.}}. | ||
Other questions of what arguments ought to be included in a utility function are difficult to answer, yet seem necessary to understanding utility. Whether people gain utility from coherence of ], ] or a sense of ] is important to understanding their behavior in the utility ].<ref>{{cite journal|last1=Klein|first1=Daniel|title=Professor|journal=Econ Journal Watch|date=May 2014|volume=11|issue=2|pages=97–105|url=http://econjwatch.org/file_download/826/CompleteIssueMay2014.pdf|access-date=November 15, 2014|url-status=live|archive-url=https://web.archive.org/web/20141005153234/http://econjwatch.org/file_download/826/CompleteIssueMay2014.pdf|archive-date=5 October 2014|df=dmy-all}}</ref> Likewise, choosing between alternatives is itself a process of determining what to consider as alternatives, a question of choice within uncertainty.<ref>{{cite book|last1=Burke|first1=Kenneth|title=Towards a Better Life|date=1932|publisher=University of California Press|location=Berkeley, Calif}}</ref> | |||
Another criticism comes from the assertion that neither cardinal nor ordinal utility is empirically observable in the real world. In the case of cardinal utility it is impossible to measure the level of satisfaction "quantitatively" when someone consumes or purchases an apple. In case of ordinal utility, it is impossible to determine what choices were made when someone purchases, for example, an orange. Any act would involve preference over a vast ] of choices (such as apple, orange juice, other vegetable, vitamin C tablets, exercise, not purchasing, etc.).<ref>{{Way-back |date=20110716090409 |url=http://www.societies.cam.ac.uk/cujif/ABSTRACT/980606.htm|lang_ja&client=firefox-a |title= }}</ref><ref>http://elsa.berkeley.edu/~botond/mistakeschicago.pdf</ref> | |||
An ] theory is that utility may be better considered as due to preferences that maximized evolutionary ] in the ancestral environment but not necessarily in the current one.<ref name=AEP>{{cite book |last1=Capra |first1=C. Monica |last2=Rubin |first2=Paul H. |title=Applied Evolutionary Psychology |date=2011 |publisher=Oxford University Press |isbn=9780191731358 |chapter=The Evolutionary Psychology of Economics|doi=10.1093/acprof:oso/9780199586073.003.0002}}</ref> | |||
Other questions of what arguments ought to enter into a utility function are difficult to answer, yet seem necessary to understanding utility. Whether people gain utility from coherence of wants, beliefs or a sense of duty is key to understanding their behavior in the utility organon.<ref>{{cite journal|last1=Klein|first1=Daniel|title=Professor|journal=Econ Journal Watch|date=May 2014|volume=11|issue=2|pages=97–105|url=http://econjwatch.org/file_download/826/CompleteIssueMay2014.pdf|accessdate=November 15, 2014}}</ref> Likewise, choosing between alternatives is itself a process of determining what to consider as alternatives, a question of choice within uncertainty.<ref>{{cite book|last1=Burke|first1=Kenneth|title=Towards a Better Life|date=1932|publisher=University of California Press|location=Berkeley, Calif.:}}</ref> | |||
== Measuring utility functions == | |||
An ] perspective is that utility may be better viewed as due to preferences that maximized evolutionary ] in the ancestral environment but not necessarily in the current one.<ref name=AEP>Paul H. Rubin and C. Monica Capra. The evolutionary psychology of economics. In {{Cite journal | last1 = Roberts | first1 = S. C. | editor1-last = Roberts | doi = 10.1093/acprof:oso/9780199586073.001.0001 | editor1-first = S. Craig | title = Applied Evolutionary Psychology | year = 2011 | publisher = Oxford University Press| isbn = 9780199586073 | pmid = | pmc = }}</ref> | |||
There are many empirical works trying to estimate the form of utility functions of agents with respect to money.<ref>{{Cite web |last=Kirby, Kris N. |date=2011 |title=An empirical assessment of the form of utility functions |url=https://psycnet.apa.org/record/2011-03782-002 |access-date=2023-10-31 |website=psycnet.apa.org |language=en}}</ref> | |||
==See also== | ==See also== | ||
{{Portal|Business and Economics}} | |||
* ] | |||
* ] | * ] | ||
* ] | * ] | ||
* ] | |||
* ] - a problem faced by consumers in a market: how to maximize their utility given their budget. | |||
* ] - processes for estimating the utility functions of human subjects. | |||
==References== | ==References== | ||
Line 141: | Line 203: | ||
==Further reading== | ==Further reading== | ||
* {{cite book |last=Anand |first=Paul |title=Foundations of Rational Choice Under Risk |location=Oxford |publisher=Oxford University Press |year=1993 |isbn=0-19-823303-5 }} | * {{cite book |last=Anand |first=Paul |title=Foundations of Rational Choice Under Risk |location=Oxford |publisher=Oxford University Press |year=1993 |isbn=0-19-823303-5 |url-access=registration |url=https://archive.org/details/foundationsofrat00anan }} | ||
* {{cite book | |
* {{cite book |author-link=Peter C. Fishburn |last=Fishburn |first=Peter C. |title=Utility Theory for Decision Making |location=Huntington, NY |publisher=Robert E. Krieger |year=1970 |isbn=0-88275-736-9 }} | ||
* {{cite journal|last=Georgescu-Roegen|first=Nicholas|title=The Pure Theory of Consumer's Behavior|journal=Quarterly Journal of Economics|date=Aug 1936|volume=50|issue=4|pages=545–593|jstor=1891094|doi=10.2307/1891094}} | * {{cite journal|last=Georgescu-Roegen|first=Nicholas|title=The Pure Theory of Consumer's Behavior|journal=Quarterly Journal of Economics|date=Aug 1936|volume=50|issue=4|pages=545–593|jstor=1891094|doi=10.2307/1891094}} | ||
* {{cite book | |
* {{cite book |author-link=Itzhak Gilboa|last=Gilboa |first=Itzhak |title=Theory of Decision under Uncertainty |location=Cambridge |publisher=Cambridge University Press |year=2009 |isbn=978-0-521-74123-1 }} | ||
* {{cite book | |
* {{cite book |author-link=David M. Kreps |last=Kreps |first=David M. |title=Notes on the Theory of Choice |location=Boulder, CO |publisher=West-view Press |year=1988 |isbn=0-8133-7553-3 }} | ||
* {{cite journal | |
* {{cite journal |author-link=John Forbes Nash Jr. |last=Nash |first=John F. |title=The Bargaining Problem |journal=] |volume=18 |issue=2 |pages=155–162 |jstor=1907266 |year=1950 |doi=10.2307/1907266|s2cid=153422092 }} | ||
* {{cite book | |
* {{cite book |author-link=John von Neumann |last1=Neumann |first1=John von |author-link2=Oskar Morgenstern |last2=Morgenstern |first2=Oskar |name-list-style=amp |title=Theory of Games and Economic Behavior |url=https://archive.org/details/in.ernet.dli.2015.215284 |location=Princeton, NJ |publisher=Princeton University Press |year=1944 }} | ||
* {{cite book |last=Nicholson |first=Walter |title=Micro-economic Theory |location=Hinsdale |publisher=Dryden Press |year=1978 |edition=Second |isbn=0-03-020831-9 |pages=53–87 }} | * {{cite book |last=Nicholson |first=Walter |title=Micro-economic Theory |location=Hinsdale |publisher=Dryden Press |year=1978 |edition=Second |isbn=0-03-020831-9 |pages=53–87 }} | ||
* {{cite book |last=Plous |first=S. |title=The Psychology of Judgement and Decision Making |location=New York |publisher=McGraw-Hill |year=1993 |isbn=0-07-050477-6 }} | * {{cite book |last=Plous |first=S. |title=The Psychology of Judgement and Decision Making |location=New York |publisher=McGraw-Hill |year=1993 |isbn=0-07-050477-6 }} | ||
==External links== | ==External links== | ||
{{Commons category|Utility (decision theory)}} | |||
* | |||
* |
* | ||
* |
* | ||
* | |||
* | |||
* | |||
* | |||
* | |||
* ]] - , , , and perhaps also | |||
* - , {{Webarchive|url=https://web.archive.org/web/20151112192023/http://www.businessdictionary.com/definition/place-utility.html |date=12 November 2015 }}, | |||
{{Webarchive|url=https://web.archive.org/web/20151030091408/http://www.businessdictionary.com/definition/time-utility.html |date=30 October 2015 }}, and perhaps also | |||
{{Commodity}} | |||
{{microeconomics}} | {{microeconomics}} | ||
{{Economics}} | |||
{{Authority control}} | |||
] | ] | ||
] | ] | ||
] | ] | ||
] | ] |
Latest revision as of 05:51, 18 December 2024
Concept in economics and decision theory This article is about the economic concept. For other uses, see Utility (disambiguation).
Part of a series on |
Utilitarianism |
---|
Predecessors |
Key proponents |
Types of utilitarianism |
Key concepts |
Problems |
Works
|
Related topics |
Philosophy portal |
In economics, utility is a measure of a certain person's satisfaction from a certain state of the world. Over time, the term has been used with at least two meanings.
- In a normative context, utility refers to a goal or objective that we wish to maximize, i.e., an objective function. This kind of utility bears a closer resemblance to the original utilitarian concept, developed by moral philosophers such as Jeremy Bentham and John Stuart Mill.
- In a descriptive context, the term refers to an apparent objective function; such a function is revealed by a person's behavior, and specifically by their preferences over lotteries.
The relationship between these two kinds of utility functions has been a source of controversy among both economists and ethicists, with most maintaining that the two are distinct but generally related.
Utility function
Consider a set of alternatives among which a person has a preference ordering. A utility function represents that ordering if it is possible to assign a real number to each alternative in such a manner that alternative a is assigned a number greater than alternative b if and only if the individual prefers alternative a to alternative b. In this situation, someone who selects the most preferred alternative must also choose one that maximizes the associated utility function.
Suppose James has utility function such that is the number of apples and is the number of chocolates. Alternative A has apples and chocolates; alternative B has apples and chocolates. Putting the values into the utility function yields for alternative A and for B, so James prefers alternative B. In general economic terms, a utility function ranks preferences concerning a set of goods and services.
Gérard Debreu derived the conditions required for a preference ordering to be representable by a utility function. For a finite set of alternatives, these require only that the preference ordering is complete (so the individual can determine which of any two alternatives is preferred or that they are indifferent), and that the preference order is transitive.
Suppose the set of alternatives is not finite (for example, even if the number of goods is finite, the quantity chosen can be any real number on an interval). In that case, a continuous utility function exists representing a consumer's preferences if and only if the consumer's preferences are complete, transitive, and continuous.
Applications
Utility can be represented through sets of indifference curve, which are level curves of the function itself and which plot the combination of commodities that an individual would accept to maintain a given level of satisfaction. Combining indifference curves with budget constraints allows for individual demand curves derivation.
A diagram of a general indifference curve is shown below (Figure 1). The vertical and horizontal axes represent an individual's consumption of commodity Y and X respectively. All the combinations of commodity X and Y along the same indifference curve are regarded indifferently by individuals, which means all the combinations along an indifference curve result in the same utility value.
Individual and social utility can be construed as the value of a utility function and a social welfare function, respectively. When coupled with production or commodity constraints, by some assumptions, these functions can be used to analyze Pareto efficiency, such as illustrated by Edgeworth boxes in contract curves. Such efficiency is a major concept in welfare economics.
Preference
While preferences are the conventional foundation of choice theory in microeconomics, it is often convenient to represent preferences with a utility function. Let X be the consumption set, the set of all mutually exclusive baskets the consumer could consume. The consumer's utility function ranks each possible outcome in the consumption set. If the consumer strictly prefers x to y or is indifferent between them, then .
For example, suppose a consumer's consumption set is X = {nothing, 1 apple,1 orange, 1 apple and 1 orange, 2 apples, 2 oranges}, and his utility function is u(nothing) = 0, u(1 apple) = 1, u(1 orange) = 2, u(1 apple and 1 orange) = 5, u(2 apples) = 2 and u(2 oranges) = 4. Then this consumer prefers 1 orange to 1 apple but prefers one of each to 2 oranges.
In micro-economic models, there is usually a finite set of L commodities, and a consumer may consume an arbitrary amount of each commodity. This gives a consumption set of , and each package is a vector containing the amounts of each commodity. For the example, there are two commodities: apples and oranges. If we say apples are the first commodity, and oranges the second, then the consumption set is and u(0, 0) = 0, u(1, 0) = 1, u(0, 1) = 2, u(1, 1) = 5, u(2, 0) = 2, u(0, 2) = 4 as before. For u to be a utility function on X, however, it must be defined for every package in X, so now the function must be defined for fractional apples and oranges too. One function that would fit these numbers is
Preferences have three main properties:
- Completeness
Assume an individual has two choices, A and B. By ranking the two choices, one and only one of the following relationships is true: an individual strictly prefers A (A > B); an individual strictly prefers B (B>A); an individual is indifferent between A and B (A = B). Either a ≥ b OR b ≥ a (OR both) for all (a,b)
- Transitivity
Individuals' preferences are consistent over bundles. If an individual prefers bundle A to bundle B and bundle B to bundle C, then it can be assumed that the individual prefers bundle A to bundle C. (If a ≥ b and b ≥ c, then a ≥ c for all (a,b,c)).
- Non-satiation or monotonicity
If bundle A contains all the goods that a bundle B contains, but A also includes more of at least one good than B. The individual prefers A over B. If, for example, bundle A = {1 apple,2 oranges}, and bundle B = {1 apple,1 orange}, then A is preferred over B.
Revealed preference
It was recognized that utility could not be measured or observed directly, so instead economists devised a way to infer relative utilities from observed choice. These 'revealed preferences', as termed by Paul Samuelson, were revealed e.g. in people's willingness to pay:
Utility is assumed to be correlative to Desire or Want. It has been argued already that desires cannot be measured directly, but only indirectly, by the outward phenomena which they cause: and that in those cases with which economics is mainly concerned the measure is found by the price which a person is willing to pay for the fulfillment or satisfaction of his desire.
Functions
Utility functions, expressing utility as a function of the amounts of the various goods consumed, are treated as either cardinal or ordinal, depending on whether they are or are not interpreted as providing more information than simply the rank ordering of preferences among bundles of goods, such as information concerning the strength of preferences.
Cardinal
Main article: Cardinal utilityCardinal utility states that the utilities obtained from consumption can be measured and ranked objectively and are representable by numbers. There are fundamental assumptions of cardinal utility. Economic agents should be able to rank different bundles of goods based on their preferences or utilities and sort different transitions between two bundles of goods.
A cardinal utility function can be transformed to another utility function by a positive linear transformation (multiplying by a positive number, and adding some other number); however, both utility functions represent the same preferences.
When cardinal utility is assumed, the magnitude of utility differences is treated as an ethically or behaviorally significant quantity. For example, suppose a cup of orange juice has utility of 120 "utils", a cup of tea has a utility of 80 utils, and a cup of water has a utility of 40 utils. With cardinal utility, it can be concluded that the cup of orange juice is better than the cup of tea by the same amount by which the cup of tea is better than the cup of water. This means that if a person has a cup of tea, they would be willing to take any bet with a probability, p, greater than .5 of getting a cup of juice, with a risk of getting a cup of water equal to 1-p. One cannot conclude, however, that the cup of tea is two-thirds of the goodness of the cup of juice because this conclusion would depend not only on magnitudes of utility differences but also on the "zero" of utility. For example, if the "zero" of utility were located at -40, then a cup of orange juice would be 160 utils more than zero, a cup of tea 120 utils more than zero. Cardinal utility can be considered as the assumption that quantifiable characteristics, such as height, weight, temperature, etc can measure utility.
Neoclassical economics has largely retreated from using cardinal utility functions as the basis of economic behavior. A notable exception is in the context of analyzing choice with conditions of risk (see below).
Sometimes cardinal utility is used to aggregate utilities across persons, to create a social welfare function.
Ordinal
Main article: Ordinal utilityInstead of giving actual numbers over different bundles, ordinal utilities are only the rankings of utilities received from different bundles of goods or services. For example, ordinal utility could tell that having two ice creams provide a greater utility to individuals in comparison to one ice cream but could not tell exactly how much extra utility received by the individual. Ordinal utility, it does not require individuals to specify how much extra utility they received from the preferred bundle of goods or services in comparison to other bundles. They are only needed to tell which bundles they prefer.
When ordinal utilities are used, differences in utils (values assumed by the utility function) are treated as ethically or behaviorally meaningless: the utility index encodes a full behavioral ordering between members of a choice set, but tells nothing about the related strength of preferences. For the above example, it would only be possible to say that juice is preferred to tea to water. Thus, ordinal utility utilizes comparisons, such as "preferred to", "no more", "less than", etc.
If a function is ordinal and non-negative, it is equivalent to the function , because taking the square is an increasing monotone (or monotonic) transformation. This means that the ordinal preference induced by these functions is the same (although they are two different functions). In contrast, if is cardinal, it is not equivalent to .
Examples
In order to simplify calculations, various alternative assumptions have been made concerning details of human preferences, and these imply various alternative utility functions such as:
- CES (constant elasticity of substitution).
- Isoelastic utility
- Exponential utility
- Quasilinear utility
- Homothetic preferences
- Stone–Geary utility function
- Gorman polar form
- Hyperbolic absolute risk aversion
Most utility functions used for modeling or theory are well-behaved. They are usually monotonic and quasi-concave. However, it is possible for rational preferences not to be representable by a utility function. An example is lexicographic preferences which are not continuous and cannot be represented by a continuous utility function.
Marginal utility
Economists distinguish between total utility and marginal utility. Total utility is the utility of an alternative, an entire consumption bundle or situation in life. The rate of change of utility from changing the quantity of one good consumed is termed the marginal utility of that good. Marginal utility therefore measures the slope of the utility function with respect to the changes of one good. Marginal utility usually decreases with consumption of the good, the idea of "diminishing marginal utility". In calculus notation, the marginal utility of good X is . When a good's marginal utility is positive, additional consumption of it increases utility; if zero, the consumer is satiated and indifferent about consuming more; if negative, the consumer would pay to reduce his consumption.
Law of diminishing marginal utility
Rational individuals only consume additional units of goods if it increases the marginal utility. However, the law of diminishing marginal utility means an additional unit consumed brings a lower marginal utility than that carried by the previous unit consumed. For example, drinking one bottle of water makes a thirsty person satisfied; as the consumption of water increases, he may feel begin to feel bad which causes the marginal utility to decrease to zero or even become negative. Furthermore, this is also used to analyze progressive taxes as the greater taxes can result in the loss of utility.
Marginal rate of substitution (MRS)
Marginal rate of substitution is the slope of the indifference curve, which measures how much an individual is willing to switch from one good to another. Using a mathematic equation, keeping U(x1,x2) constant. Thus, MRS is how much an individual is willing to pay for consuming a greater amount of x1.
MRS is related to marginal utility. The relationship between marginal utility and MRS is:
Expected utility
Main article: Expected utility hypothesisExpected utility theory deals with the analysis of choices among risky projects with multiple (possibly multidimensional) outcomes.
The St. Petersburg paradox was first proposed by Nicholas Bernoulli in 1713 and solved by Daniel Bernoulli in 1738, although the Swiss mathematician Gabriel Cramer proposed taking the expectation of a square-root utility function of money in an 1728 letter to N. Bernoulli. D. Bernoulli argued that the paradox could be resolved if decision-makers displayed risk aversion and argued for a logarithmic cardinal utility function. (Analysis of international survey data during the 21st century has shown that insofar as utility represents happiness, as for utilitarianism, it is indeed proportional to log of income.)
The first important use of the expected utility theory was that of John von Neumann and Oskar Morgenstern, who used the assumption of expected utility maximization in their formulation of game theory.
In finding the probability-weighted average of the utility from each possible outcome:
Von Neumann–Morgenstern
Main article: Von Neumann–Morgenstern utility theoremVon Neumann and Morgenstern addressed situations in which the outcomes of choices are not known with certainty, but have probabilities associated with them.
A notation for a lottery is as follows: if options A and B have probability p and 1 − p in the lottery, we write it as a linear combination:
More generally, for a lottery with many possible options:
where .
By making some reasonable assumptions about the way choices behave, von Neumann and Morgenstern showed that if an agent can choose between the lotteries, then this agent has a utility function such that the desirability of an arbitrary lottery can be computed as a linear combination of the utilities of its parts, with the weights being their probabilities of occurring.
This is termed the expected utility theorem. The required assumptions are four axioms about the properties of the agent's preference relation over 'simple lotteries', which are lotteries with just two options. Writing to mean 'A is weakly preferred to B' ('A is preferred at least as much as B'), the axioms are:
- completeness: For any two simple lotteries and , either or (or both, in which case they are viewed as equally desirable).
- transitivity: for any three lotteries , if and , then .
- convexity/continuity (Archimedean property): If , then there is a between 0 and 1 such that the lottery is equally desirable as .
- independence: for any three lotteries and any probability p, if and only if . Intuitively, if the lottery formed by the probabilistic combination of and is no more preferable than the lottery formed by the same probabilistic combination of and then and only then .
Axioms 3 and 4 enable us to decide about the relative utilities of two assets or lotteries.
In more formal language: A von Neumann–Morgenstern utility function is a function from choices to the real numbers:
which assigns a real number to every outcome in a way that represents the agent's preferences over simple lotteries. Using the four assumptions mentioned above, the agent will prefer a lottery to a lottery if and only if, for the utility function characterizing that agent, the expected utility of is greater than the expected utility of :
- .
Of all the axioms, independence is the most often discarded. A variety of generalized expected utility theories have arisen, most of which omit or relax the independence axiom.
Indirect utility
Main article: Indirect utilityAn indirect utility function gives the optimal attainable value of a given utility function, which depends on the prices of the goods and the income or wealth level that the individual possesses.
Money
One use of the indirect utility concept is the notion of the utility of money. The (indirect) utility function for money is a nonlinear function that is bounded and asymmetric about the origin. The utility function is concave in the positive region, representing the phenomenon of diminishing marginal utility. The boundedness represents the fact that beyond a certain amount money ceases being useful at all, as the size of any economy at that time is itself bounded. The asymmetry about the origin represents the fact that gaining and losing money can have radically different implications both for individuals and businesses. The non-linearity of the utility function for money has profound implications in decision-making processes: in situations where outcomes of choices influence utility by gains or losses of money, which are the norm for most business settings, the optimal choice for a given decision depends on the possible outcomes of all other decisions in the same time-period.
Budget constraints
Individuals' consumptions are constrained by their budget allowance. The graph of budget line is a linear, downward-sloping line between X and Y axes. All the bundles of consumption under the budget line allow individuals to consume without using the whole budget as the total budget is greater than the total cost of bundles (Figure 2). If only considers prices and quantities of two goods in one bundle, a budget constraint could be formulated as , where and are prices of the two goods, and are quantities of the two goods.
Constrained utility optimisation
Rational consumers wish to maximise their utility. However, as they have budget constraints, a change of price would affect the quantity of demand. There are two factors could explain this situation:
- Purchasing power. Individuals obtain greater purchasing power when the price of a good decreases. The reduction of the price allows individuals to increase their savings so they could afford to buy other products.
- Substitution effect. If the price of good A decreases, then the good becomes relatively cheaper with respect to its substitutes. Thus, individuals would consume more of good A as the utility would increase by doing so.
Discussion and criticism
Cambridge economist Joan Robinson famously criticized utility for being a circular concept: "Utility is the quality in commodities that makes individuals want to buy them, and the fact that individuals want to buy commodities shows that they have utility". Robinson also stated that because the theory assumes that preferences are fixed this means that utility is not a testable assumption. This is so because if we observe changes of peoples' behavior in relation to a change in prices or a change in budget constraint we can never be sure to what extent the change in behavior was due to the change of price or budget constraint and how much was due to a change of preference. This criticism is similar to that of the philosopher Hans Albert who argued that the ceteris paribus (all else equal) conditions on which the marginalist theory of demand rested rendered the theory itself a meaningless tautology, incapable of being tested experimentally. In essence, a curve of demand and supply (a theoretical line of quantity of a product which would have been offered or requested for given price) is purely ontological and could never have been demonstrated empirically.
Other questions of what arguments ought to be included in a utility function are difficult to answer, yet seem necessary to understanding utility. Whether people gain utility from coherence of wants, beliefs or a sense of duty is important to understanding their behavior in the utility organon. Likewise, choosing between alternatives is itself a process of determining what to consider as alternatives, a question of choice within uncertainty.
An evolutionary psychology theory is that utility may be better considered as due to preferences that maximized evolutionary fitness in the ancestral environment but not necessarily in the current one.
Measuring utility functions
There are many empirical works trying to estimate the form of utility functions of agents with respect to money.
See also
- Happiness economics
- Law of demand
- Marginal utility
- Utility maximization problem - a problem faced by consumers in a market: how to maximize their utility given their budget.
- Utility assessment - processes for estimating the utility functions of human subjects.
References
- Debreu, Gérard (1954), "Representation of a preference ordering by a numerical function", in Thrall, Robert M.; Coombs, Clyde H.; Raiffa, Howard (eds.), Decision processes, New York: Wiley, pp. 159–167, OCLC 639321.
- Jehle, Geoffrey; Reny, Philipp (2011), Advanced Microeconomic Theory, Prentice Hall, Financial Times, pp. 13–16, ISBN 978-0-273-73191-7.
- "nonsatiation". Oxford Reference. Retrieved 18 July 2024.
- Marshall, Alfred (1920). Principles of Economics. An introductory volume (8th ed.). London: Macmillan.
- ^ Dominick, Salvatore (2008). Principles Of Microeconomics. New Delhi: Oxford Higher Education/Oxford University Press. p. 60. ISBN 9780198062301.
- Lin, Chung-Cheng; Peng, Shi-Shu (2019). "The role of diminishing marginal utility in the ordinal and cardinal utility theories". Australian Economic Papers. 58 (3): 233–246. doi:10.1111/1467-8454.12151. S2CID 159308055 – via Wiley Online Library.
- Moscati, Ivan (2013). "How Cardinal Utility Entered Economic Analysis, 1909-1944". SSRN Electronic Journal. doi:10.2139/ssrn.2296881. hdl:10419/149700. ISSN 1556-5068. S2CID 55651414.
- Ingersoll, Jonathan E. Jr. (1987). Theory of Financial Decision Making. Totowa: Rowman and Littlefield. p. 21. ISBN 0-8476-7359-6.
- ^ Castro, Luiz Carvalho; Araujo, Antônio Souza (2019). "Marginal Utility & its Diminishing Methods" (PDF). International Journal of Tax Economics and Management: 36–47. eISSN 2618-1118.
- Bloomenthal, Andrew. "Marginal Utility". Investopedia. Retrieved 25 April 2021.
- Berger, J. O. (1985). "Utility and Loss". Statistical Decision Theory and Bayesian Analysis (2nd ed.). Berlin: Springer-Verlag. ISBN 3-540-96098-8.
- Robinson, Joan (1962). Economic Philosophy. Harmondsworth, Middle-sex, UK: Penguin Books.
- Pilkington, Philip (17 February 2014). "Joan Robinson's Critique of Marginal Utility Theory". Fixing the Economists. Archived from the original on 13 July 2015.
- Pilkington, Philip (27 February 2014). "utility Hans Albert Expands Robinson's Critique of Marginal Utility Theory to the Law of Demand". Fixing the Economists. Archived from the original on 19 July 2015.
- Klein, Daniel (May 2014). "Professor" (PDF). Econ Journal Watch. 11 (2): 97–105. Archived (PDF) from the original on 5 October 2014. Retrieved 15 November 2014.
- Burke, Kenneth (1932). Towards a Better Life. Berkeley, Calif: University of California Press.
- Capra, C. Monica; Rubin, Paul H. (2011). "The Evolutionary Psychology of Economics". Applied Evolutionary Psychology. Oxford University Press. doi:10.1093/acprof:oso/9780199586073.003.0002. ISBN 9780191731358.
- Kirby, Kris N. (2011). "An empirical assessment of the form of utility functions". psycnet.apa.org. Retrieved 31 October 2023.
Further reading
- Anand, Paul (1993). Foundations of Rational Choice Under Risk. Oxford: Oxford University Press. ISBN 0-19-823303-5.
- Fishburn, Peter C. (1970). Utility Theory for Decision Making. Huntington, NY: Robert E. Krieger. ISBN 0-88275-736-9.
- Georgescu-Roegen, Nicholas (August 1936). "The Pure Theory of Consumer's Behavior". Quarterly Journal of Economics. 50 (4): 545–593. doi:10.2307/1891094. JSTOR 1891094.
- Gilboa, Itzhak (2009). Theory of Decision under Uncertainty. Cambridge: Cambridge University Press. ISBN 978-0-521-74123-1.
- Kreps, David M. (1988). Notes on the Theory of Choice. Boulder, CO: West-view Press. ISBN 0-8133-7553-3.
- Nash, John F. (1950). "The Bargaining Problem". Econometrica. 18 (2): 155–162. doi:10.2307/1907266. JSTOR 1907266. S2CID 153422092.
- Neumann, John von & Morgenstern, Oskar (1944). Theory of Games and Economic Behavior. Princeton, NJ: Princeton University Press.
- Nicholson, Walter (1978). Micro-economic Theory (Second ed.). Hinsdale: Dryden Press. pp. 53–87. ISBN 0-03-020831-9.
- Plous, S. (1993). The Psychology of Judgement and Decision Making. New York: McGraw-Hill. ISBN 0-07-050477-6.
External links
- Definition of Utility by Investopedia
- Anatomy of Cobb-Douglas Type Utility Functions in 3D
- Anatomy of CES Type Utility Functions in 3D
- Simpler Definition with example from Investopedia
- Maximization of Originality - redefinition of classic utility
- Utility Model of Marketing - Form, Place Archived 12 November 2015 at the Wayback Machine, Time
Archived 30 October 2015 at the Wayback Machine, Possession and perhaps also Task
Commodities and commoditization | |||||||
---|---|---|---|---|---|---|---|
Soft commodities |
| ||||||
Hard commodities |
| ||||||
Organizations | |||||||
Laws | |||||||
Miscellaneous | |||||||